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Abstract Blin et al. [5] (TCS 2008) proposed a dis- 1 Introduction
tributed protocol enabling the smallest possible num-

ber of searchers to clear any unknown graph in a deThe graph searching problem [6,17] consists, for a
centralized manner. However, the strategy that is actuteam ofsearchers, in capturing an invisible arbitrarily
ally performed lacks of an important property, namelyfast fugitive hidden in a graph (see [10] for a recent sur-
the monotonicity. This paper deals with the smallestvey). Equivalently, an undirected connected graph can
number of searchers that are necessary and sufficiepe seen as a system of tunnels contaminated by a toxic
to monotonously clear any unknown graph in a decengas. In this latter setting, the searchers have to clear,
tralized manner. The clearing of the graph is required.e., to decontaminate, the graph. We will use this latter
to be connected, i.e., the clear part of the graph musbrmulation in the paper.

remain permanently connected, and monotone, i.e.,-the Thesearch problem has been widely studied in the
cllear partof the graph .only grows. We prove thata dls'design of distributed protocols for clearing a network
tributed protocol clearing any unknownnode graph a decentralized manner [5,7-9,14,16]. Initially, all

in @ monotone connected way, in a decentralized selsjyes are contaminated and all searchers are placed
ting, can achieve but cannot beat competitive ratio Ofat a particular vertex of the graph, called theme-
O(gr), compared with the centralized minimum oo 'ghsequently the searchers stand at vertices of
number of searchers. Moreover, our lower bound hold§he graph and move along the edges. An edgkeised

even in a synchronous setting, while our constructivg, yan it is traversed by a searcher. A clear edigere-
upper bound holds even in an asynchronous setting. . taminated as soon as there exists a pRthetweere

and a contaminated edge such that no searchers are oc-
cupying any vertex or any edge Bf A search strategy

is a sequence of moves of the searchers along the edges

— ) ) ) of the graph, such thatcontamination never occurs,
A preliminary version of this paper appeared in the proceed-

ings of the 11th International Conference On Principles @D that is, a CI?a_r edge aIW_ayS remains clear. A Se.arCh
tributed Systems (OPODIS'07), LNCS 4878, pages 105-118. strategy is aiming at clearing the whole network. Given
a graphG and a homebasg < V(G), the search prob-
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number of steps (moves). Secondly, a search strategy We define asearch protocol & as a distributed
is connected [1,2], in the sense that, at any step of theprotocol that solves the search problem: for any con-
strategy, the clear part of the graph induces a connectatkcted grapl& and any homebasg € V(G), a team
subgraph. This latter property ensures safe communif searchers executing can clearG in a monotone
cations between the searchers. In the following, theonnected way, starting fromy. In these settings, the
search number mcs(G, vp) of a graphG with homebase searchers do not know in advance in which graph they
Vo € V(G) denotes the smallest number of searchers reare launched in. The number of searchers used’y
quired to clear the graph in a monotone connected wayp clearG is the maximum number of searchers that
starting fromvp, in centralized settings. stand at the vertices @& over all steps of the execution
Several distributed protocols have been proposed tof &2. Thecost of a search protoco?” in a graphG
solve the search problem [1,5,7-9,14,16]. Two mairwith homebas&g is measured by the ratio between the
approaches have been used in the previous works. Qrumber of searchers it uses to cléaand the search
one hand, Blin et al. proposed a distributed protocohumbermcsG,Vvp) of G. This ratio, maximized over
that enablesncs(G, vp) + 1 searchers to clear amp-  all graphs and all starting nodes, is called tbepeti-
known asynchronous grap®, starting from any home- tiveratio r(?) of the protocol?.
basevy, in a connected way [5]. That is, the clearing
of the graph is performed without the searchers being
provided any information about the graph. However,1.2 Our results
the search strategy that is actually performed is not
monotone and may use an exponential number of step¥ye prove that any search protocol for clearmgode
which is not surprising since the problem of computinggraphs has competitive rat@(%). Moreover, we
mcs(G, Vo) is NP-complete [15]. On the other hand, the propose an optimal search protocol that has compet-
distributed protocols that are proposed in [7-9, 14, 16]tive ratio O(@). More precisely, we prove that for
enablemcsG,Vvp) searchers to monotonously clear aany distributed protocol?, there exists a constaot
graphG, starting from a homebasg, such that the such that for any sufficiently large there exists a-
searchers are given some a priori information aboufode grapiG with a homebasep € V(G), such that
it. In all these works, an extra searcher is required as” requires at leasti;cw mes(G, vo) searchers to clear
soon as the network is asynchronous. In this papef3, starting fromvp. Note that thisn-node graplG is
we consider the problem from another point of view.a tree with maximum degree 3. On the other hand,
More precisely, we address the problem of the mini-we propose a distributed search protocol that uses at
mum number of searchers necessary to solve the searghost O(55;) mcs(G, Vo) searchers to clear any con-
problem (again, the performed strategy must be connected graplG in a monotone connected way, starting
nected and monotone) without any a priori informationfrom any homebase, € V(G). Moreover, our proto-
about the graph. col performs clearing af-node graphs using searchers
with at mostO(logn) bits of memory, and whiteboards
of sizeO(n) bits. Note that the lower bound holds even
1.1 Model and definitions in a synchronous setting, while our protocol can be im-
plemented even in an asynchronous setting.
We model the searchers by autonomous mobile com-
puting entities with distinct IDs i{1,---,|V(G)|}. A
network is modeled by an undirected connected and.3 Related work
simple graph. To strengthen our bounds, we assume
that the searchers as well as the network are synchrda the problem of connected graph searching [1,2,11,
nous when proving our lower bound and asynchronou4?,18], the clear part must remain connected during
when proving our upper bound. The network is anony-all steps of the search strategy. This property is very
mous, that is, nodes are not labeled. The(degdges useful as soon as we want to ensure secure commu-
incident to any node are labeled from 1 to dég), so  nications between the searchers. Contrary to the non-
that the searchers can distinguish the different edges irconnected graph searching [3,4,6,13,17] where mono-
cident to a node. These labels are cafjedt numbers.  tonicity can be ensured for free, monotonicity in the
Every node of the network has a zone of local mem-connected version of the problem generally requires
ory, calledwhiteboard, in which searchers can read, more searchers. Indeed, Alspash et al. provedreaat
erase, and write symbols. Moreover, it is assumed thatontamination doeshelp in the case of connected graph
searchers can access these whiteboards in fair mutus¢arching [18] (see also [12]). That is, they describe
exclusion. a class of graphs for which the smallest number of



searchers required to connectedly clear these graphsdsiring the execution of the search protocol is possible

strictly less than the number of searchers necessary gince the searchers have no information on the graph

clear them in a monotone connected way. This resulthey are clearing.

has an important impact since it is not known whether ~ We need the following definition. Aartial graph

the decision problem corresponding to the connected a simple connected graph which can have edges with

search number of a graph, i.e., the smallest number ainly one end. Edges with one single end (resp., two

searchers required to clear a graph in a connected wagnds) are calletalf-edges (resp. full-edges). LetG =

belongs to NP. Moreover, monotone strategies are ofV,H,F) be a partial graph, whe is the vertex-set

particular interest since, first, they performin a polyno-of G, H its set of half-edges arfd its set of full-edges.

mial number of steps, and second, it is a priori difficultLet G~ be the grapHV,F), with the same vertex-set

to design non-monotone search strategies. thanG and edge-sef. Let G™ be the graph obtained
Several distributed protocols have been proposed tby adding a degree-one end to any half-edgé.of

solve the search problem for particular graph’s topolo-  Let us give some definitions and results that will be

gies. More precisely, Barriére et al. designed protocolsised in the following. Aernary tree is a tree of max-

for clearing trees [1], Flocchini, Luccio and Song con-imum degree at most three. A search strategy that is

sidered chordal rings and tori [7] and meshes [9], Flocnot constrained to satisfy neither the connected prop-

chini, Huang and Luccio considered hypercubes [8]erty, nor the monotone property is simply a sequence

and Luccio dealt with Sierpinski’'s graphs [14]. Assum- of moves of the searchers along the edges of a graph

ing the searchers know the topology of the asynchroresulting in clearing the whole graph. L&G) denote

nous networkG they must clear, these protocols en-the smallest number of searchers that are necessary to

ablemcs(G,vp) + 1 searchers to cled® in a mono- clear a graplG in such a way. A lot of research has

tone connected way, starting from any homebgse  been done regarding the graph searching problem in

V(G). The extra searcher, in comparison with the centhe class of trees. In particular, the following results

tralized case, is necessary and due to the asynchromye known.

of the network [9]. In [5], Blin et al. proposed a dis-

tributed protocol allowingncs(G,vp) +1 searchers to Theorem 1 Let T beatree with n > 2 vertices,

clear any unknown asynchronous graphin a con- — §T) < 1+ logs(n— 1) (Megiddo et al. [15])
nected way, starting from any homebagec V(G). — Wo € V(T), mes(T,vo) < 25(T) — 1 (Barri ere et
In this case, the searchers do not need any a prioriin- 2]) -

formation about the graph in which they are placed. '

However, the search strategy actually performed is not  The remaining part of this section is devoted to the
monotone and may be performed using an exponentigyroof of Theorem 2. Recall that a search protocol has

number of steps. In [16], Nisse and Soguet proposed tgeen defined as a distributed algorithm for clearing a
give to the searchers some information about the grapfraph in a monotone connected way.

by putting short labels on the nodes of the graph. They

proved that®(nlogn) bits of information are neces- Theorem 2 Any search protocol for clearing n-node
sary and sufficient to solve the search problem for angraphs has competitive ratio Q(%).

n-node asynchronous grag) starting from a home-

basevp and usingmcs(G, vo) + 1 searchers. Proof Let & be a (successful) search protocol. We
prove that there exists a constant 0, such that for
anyn > 5, there exists a ternarynode treel (actu-

2 Lower Bound on the Competitive Ratio ally, T has exactly one internal vertex of degree two
if nis odd, and none otherwise), such thi&tuses at

In this section, we assume that the searchers and tHeastq searchers to cleaf in a monotone connected

network are synchronous. This section is devoted tavay, starting from any homebasge V(T ), with g >

prove a lower bound on the competitive ratio of anyc g mes(T, Vo).

search protocol. For this purpose, we consider a game Fix n > 5. We will construct am-node ternary tree

between an arbitrary search protocol and an adversary., that & has to clear starting fronip € V(T). Let

Roughly speaking, the adversary gradually builds theus describe the game executed turn by turrébyand

graph, which is actually a ternary tree, as the searcthe adversaryy. This game progressively constructs a

protocol clears it in a monotone connected way. Thepartial graphr, that ends up being the tréefor which

role of the adversary is to force the protocol to usethe cost of the search protocé? is high.

the maximum possible number of searchers to clear the Initially, the partial graphT, consists of a single

graph. The fact that the adversary can build the grapkertex, the homebasg, incident to three half-edges.




All searchers are placed 8§. Then,2? and.«/ play 3 An Algorithm of Optimal Competitive Ratio

alternatively, starting with?. At each round;T, =

(V,H,F) corresponds to the part @fthat % currently  In this section, we assume that both the searchers and

knows. At each round, the search protogélchooses the network are asynchronous. We propose a search

a searcher and it moves this searcher along an edgeprotocol namedic_search (for monotone connected

of Tp in such a way that recontamination does not oc-search) having competitive ratio 6)‘(%) for anyn-

cur. Such a move is always possible si#eis a suc- node graph. The lower bound we proved in Section 2

cessful search protocol, and thus, it eventually clearshows that this distributed search protocol has thus an

T in a monotone connected way. Note tieanay be optimal competitive ratio Oﬁ(ﬁ).

a half-edge or a full-edge. K is a full-edge, thenz Before describing the search protoeel search,

skips its turn. Otherwise, two cases must be considwe need some definitions. In the following, ttepth

ered. EitherV (T )| <n—1, or V(TS )| =n—1.In  of arooted tred is the maximum length of the paths

the first casew adds a new end to e such thatvis  between the root and any leaf ®f Letv be a vertex

incident to two new half-edge$ andh. That is, the of the rooted tre@ that is not the root, and letbe the

partial graph becomég, = (V U{V}, Hnew, Fnew), With  parent ofv. The edge{u,v} is called theparent-edge

Hhew = (H\ {e})) Uu{f}u{h} andFey =FU{e}. In  ofwv.

the second casey adds a new end to e such thatv A complete ternary tree is defined as follows. The

is incident to only one new half-edde Again, thisis complete ternary tre®,, of depth 0, consists of a single

possible since” does not know the graph in advance. vertex, called its root. For arky> 1, a complete ternary

The game ends whe¥ (T )| = n. Atsuch aroundg?  treeTy, of depthk, is a ternary tree in which all internal

decides that the graphis actuallyT,". vertices have degree exactly three, and there exists a
Let us first do the following easy remarks. At eachvertex, called its root, that is at distance exaktfyom

round of the gameT, is a ternary tree, andly is a  all leaves.

ternary tree with at least(n’ +2)/2] leaves, where Finally, for any graphG, we definemcs(G) to be

n' is the number of vertices df; (this can be easily Miney () MCS(G, V).

proved by induction on the number of rounds). More- .

over,T, is exactly the clear part df at this step of the  Theorem 3 (Barriere etal. [2])

execution of 2. In other words, the half-edges For any k > 0, mes(Ty) = k+ 1.

corresponds to the contaminated edges that are incident

to the clear part of . Since the execution o ensures

that the performed strategy is monotone, it follows tha

at any round of the game, the vertices incident to a{:ontractionéof G. Awell known result is that, for any
least one half-edge are occupied by a searcher. Let lgath and_any manH of G, Sf(G) = S(H) (folklore).
consider the last round that is Wheriv(Tij)| equals Note-that this resglt is not valid for the segrch number
n. We show that at this round the number of vertices of "> €+ there exist some grap@isandH minor of G

T, occupied by searchers is at leaay4|. From the such thames(H) > mes(G) [2].

previous remarks, it follows that;"™ at roundr, that is

T, is a ternary tree with at lea$tn+ 2)/4| vertices i

occupied by a searcher. Indeed, every parent of a leat-+ G€neral ideas of protocet_search

in T must be occupied by a searcher, and every ver- _ -
tex is parent of at most two leaves. Thu®, uses at Before going through the description of our protocol,

leastq > | n/4] searchers. By Theoremimcs(T, vo) < Ielt us f|rstfcon3|der s?rze gensréal charactgrlstllcs of th(;
1+ 2logy(n— 1). Therefore, clearing of a connected graph by some simple searc

protocol. At every step, the clear part of the graph in-
duces a connected subgraph containing the homebase.
In/4] . Any vertex of the clear part that is incident to a contam-
inated edge is occupied by a searcher, preserving the
clear part from recontamination. The set of such ver-
tices is called thévorder of the clear part. Thus, after
having cleared a contaminated edge, a searcher checks
whether it is preserving the clear part of the graph from

A graphH is aminor of a graphG if H is a sub-
tgraph of a graph obtained by a succession of edge

mcs(T, Vo)
a= 1+2log(n—1) x

It follows easily that there is a constant- 0 such that
for anyn > 5 we have

4> ¢ —— mes(T,vo)

logn - , - .
°g 1 The contraction of the edges with endpointsu, v is the re-
. placement olu andv with a single vertex whose neighbors are
which concludes the proof of the theorem. O the vertices that were neighborstobr v.



recontamination. If its current vertex is incident to atevery vertex ofSis occupied by a searcher. We define
least one contaminated edge and if it is not guarded bthe root ofSto be the root off.

another searcher, then the searcher has to stay at the The subtre&is used by Protocalc_searchto de-
current vertex to prevent recontamination. cide the next contaminated edge to be cleared. Indeed,
t each step, Protocak_search decides to clear an

. . .a
The main issue of the search protocol consists in .
- . P Oedge ofG that is chosen such th&becomes as close
deciding the next contaminated edge to be cleared; . )
s possible to a complete ternary tree. More precisely,

Note that, because of the connectedness of the strats .
. _at each step, Protocat_search will choose the next

egy, the next edge to be cleared must be an edge incl- . :
; . contaminated edge to be cleared in such a way $hat

dent to a vertex in the clear part. Another issue of the

search protocol is to ensure that a searcher not stan{EMaNs of degree at most three and such that the depth

ing at the border of the clear part of the graph is alwaysOf Smay k_)e increased frqmz Otok+1onlyif Swas
omorphic toTy at a previous step.

I
able to reach the chosen edge through the clear arE o . L
9 9 P The intuitive reason of this choice is that the com-

We now briefly describe how our protoamt_search . L :
deals with these issues. plete ternary tree is the tree requiring the (asyr_nptoUc)
largest number of searchers compared to the size of the
Let G be a connected-node graph andp € V(G).  tree, even for a centralized algorithm. Thus, if the ad-
Throughoutthe execution of the algorithne, search  versary forces our protocol to use a lot of searchers
dynamically maintains a rooted ternary subtie®f by choosing a graph for which almost every cleared
the (current) clear part €5. The root ofT willbe used  edge leads to a new vertex (basic idea of the proof of
to host all the currently “unused” searchers. More prethe lower bound), then our protocol forces the chosen
cisely, the tred is required to cover all vertices occu- graph to have a large complete ternary tree as a minor,
pied by at least one searcher. Thanks to this propertynd thus even a centralized algorithm needs a logarith-
T will be used by the searchers to go from the root ofmic number of agents to clear the graph. This is the
T to a vertex of the border of the clear part in order tointuitive reason why our protocak_search achieves
clear a contaminated edge. After having cleared a corthe optimal competitive rati®(n/logn).
taminated edge, and if the new position of the searcher Figure 1 shows a state of a graph at some step of
does not lie at the border of the clear part or is alreadyhe execution of Protocalc_search. The light gray
occupied by another searcher, the former searcher wipart represents the clear part of the graph at this step.
also useT to go back to the root of . This can easily The treeT rooted inr is depicted using bold edges.
be done by performing a DFS of. Dotted edges represent those edges of the clear part
Furthermore, our protocahc_search maintains that belong to botfi andS. (That is,Sis obtained from

the property that a searcher lies, at least, at every verl- by contracting the non-dotted edgesfoj Dark gray

tex of the border of the clear part, and at every verte>§’ertices are. those occupied by searchers at this step,
of degree 3 of. In addition, a goal of our protocol i.e., the vertices 08. In this example, the next edge to

is to keepT small and to use few agents. As a conse-be cleared must be an edge incidenet f.

guence, if a searcher occupies a vertewt incident to

any contaminated edge and of degree at most two, then
our protocol relieves this useless searcher and send it
to the root. Of course, § was the root, then the root is
also moved elsewhere in the tree. Additionallyy i

a leaf inT, then this leaf is removed together with the
longest path without searchers leading to it, because

this branch is of no use anymore to cover the vertices
occupied by searchers. Fig. 1 Protocolmc_sear_ch maintains two subtree_s: asubgr@h_
of the clear part covering the searchers (bold lines) andremi

The protocolmc_search also maintains a second Sof T (dotted lines). The clear part appears in light giays
rooted subtre&that is defined as a minor @f. More ~ "éPresented to the right.
preciselySis obtained fronT by contracting all edges
{u,v} of T such thaw is the parent o¥ andv is not
occupied by a searcher. In other wor@stepresents
the structure oT with respect to the searchers. That s, 3.2 Protocolhc_search
if there is a path ifT without searchers but connecting
two vertices occupied by some searchers, then this patin this section, we describe the main features of Pro-
is contracted to a single edgednThus, in some sense, tocolmc_search that is also described in a more com-




pact way in Figure 6. For the purpose of simplifying Let us describe a phase of the execution of Proto-
the presentation, we assume in Figure 6 that searcheesl mc_search. A phase starts by the election of the
are able to communicate by exchanging messages gkarcher that will perform moves and/or labellings of
size O(logn) bits. This assumption is satisfied by us- edges. The purpose of this searcher is to make the tree
ing an additional searcher. This extra searcher is usefl as close as possible to a complete ternary tree. The
to schedule the moves of the other searchers and ®lected searcher is an arbitrary searcher with minimum
transmit few information between the searchers. Forevel and that occupies a vertaxe V(G) satisfying

this purpose, the extra searcher performs a DFS of thene of the following four conditions. Each of the four

treeT that enables it to reach any other searcher. Usingases will be described in detail below.

this extra searcher enables Protamalsearch to clear

both synchronous and asynchronous networks. Firs

we describe the data structure usedibysearch.

The whiteboard of every vertexc V(G) contains
one vectorstatus,. For any edgee € E(G) incident
to v, satus,[€] takes a value i = {Contaminated,
Removed, Tree, Minor}. Initially, for any edgee with
endy, status,[e] = Contaminated. To simplify the pre-
sentation, we assume that each edge{u,v} € E(G)
has only one label(e) = status,[e] = status,[e]. This

pase am,+t, < 2andc, > 1,

Case b:m,+t, =1 andc, =0,

Case c:m, +t, = 2, ¢, = 0 andv is not the root,
Case d:m,+t, = 2,c, = 0 andv is the root.

Roughly speaking, the goal in Case a is to make the
ternary treeS (and thusT) grow by adding new inci-
dent edges to nodes of degree at most two, by clearing
an incident contaminated edge. The other rules, Cases
b, c and d, are designed to prune the t&fbut not

simplification may easily be implemented by the extranecessarilyT) in nodes where it cannot grow anymore,

searcher. Indeed, each time an edgerelabeled, the
extra searcher does a return trip throwgio synchro-

nize the labels of both its ends. Moreover, the white-

board of every vertex contains a boolearoot, which
is true if and only ifv is the current root o6andT.

The protocol is divided irO(|E(G)|) phases. At
each phase, Protocat_search relabels at least one

that is where the degree is less than three but where
there are no incident contaminated edges to be added.
We will prove that, at any phase, any searcher ac-
tually occupies a vertex @& (more precisely, either the
root or a vertex whose parent-edge is labeléidor).
Therefore, this election can easily be implemented by
the extra searcher performing a DFSTafMoreover,

edge. Moreover, an edge cannot be labeled twice ughat can be done wit®(logn) bits of memory, since
ing the same label. More precisely, an edge labele¢he extra searcher only needs to remember the mini-

Contaminated can only be relabeleilinor or Remo-
ved. Similarly, an edge labeledinor (resp.,Tree) can
only be relabeledree or Removed (resp.,Removed).
Finally, the edges labeled witRemoved are never re-
labeled. This proves that Protocet_search termi-
nates.

Let us define some notations. At any stéps the
subgraph ofs induced by the edges label&tinor or
Tree. In the next section, we prove thatis indeed
a tree.S is the minor of T obtained by contracting
all edges labeledree. Initially, T and S are rooted
atvp, the homebase. Finally, for any vertex V(G),

mum fevel of a searcher satisfying one of the above
conditions that it meets during this DFS.

Once the extra searcher has performed this DFS
and has gone back to the root Bf let k be the min-
imum level, satisfying one of the above conditions,
it has met. Then, the extra searcher performs a new
DFS to reach a searchérwith (evel = k satisfying
one of the conditions. Lat be the vertex occupied by
the searcheA. We now go further into the details of
the four conditions listed above. In the following, when
we refer to the root, we mean the current rootToind
thus, ofS.

my, ty, ry, ¢y denote the number of edges incident tocage a.m,+t, < 2 andc, > 1. This case is depicted

v that are respectively labelédinor, Tree, Removed,
Contaminated.

Every searcher has an integer state variéble/ in

{0,---,n}. Roughly, this variable indicates the distance
between the vertexcurrently occupied by the searcher

and the root, in the tre8. SinceSis obtained fronil
by contracting the edges label&dee and keeping the
edges labeledinor, this variable gives precisely the
number of edges labelddinor in the path between
v and the root in the tre@&. Initially, every searcher
occupies the rooty and hagevel = 0.

in Figure 2.

In this casey has degree at most two ih and is
incident to at least one contaminated edgd&he
purpose of this case is to clear the edyéf this
edge leads to a new vertex, theis added to both
T andS.

More precisely, the extra searcher leads an addi-
tional searcheB from the root to the vertex dur-
ing its second DFS. The searchHgrfollowed by
the extra searcher, clesgand reaches its other end
u e V(G). If there is an other searcher atthen



the extra searcher labetsvith Removed, i.e.,eis
clear but does not belongTa ThenB and the extra
searcher go back to the root. Otherwise, i.eu,ig

a newly discovered vertex, the extra searcher labels
ewith Minor, i.e.,eis added to botisandT. Then

B remains au to guard it and takegevel = k+ 1.

The extra searcher goes back to the root.

Fig. 2 Situation when Case a will be executed at veedbeft).
Situation after the execution of Case a (right).

In Figure 2, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The tfieés rooted in
r and its edges are depicted in bold lines, and the
dotted lines represent the edgesofThis case is
applied to the verter. Note that the newly cleared
edge could have been chosen incident s well
(that is, this case could have been applied toe-
causef ande have the same level).

Case b.m, +t, =1 andc, = 0. This case is depicted
in Figure 3.
In this casey is a leaf inT and S, and is inci-
dent to no contaminated edge. In other words, all
edges incident tg are labeledRemoved except one
edge, say, that is labeledinor or Tree. (The lat-
ter case occurs only if is the root.) It means that
the searcher occupyingdoes not protect the clear
part of the graph from recontamination and thus,
either it can go back to the root, or it can move
away with the root, ifv is the root. Moreover, re-
call that we want the tre€ to be a small subtree

spanning the vertices occupied by searchers. Thus,

ecan be pruned fror. For this purpose, the edge
e is relabeledremoved. However, the tre§ may
be pruned more. Indeed, latbe the end ot dif-
ferent fromv and assume that, before relabel®g
we hadmy, +t, = 2, ¢, = 0, andu was not occu-
pied by any searcher. Then after relabelsghe
vertexu is a leaf of T that is of no use to cover the
vertices occupied by the searchers. Therefore this
leaf can be pruned as well. In this case, the edge
of T incident tou and different frome is pruned

by being relabeledRemoved. This process is exe-
cuted recursively until a vertex satisfying at least
one of the following three conditions is reached:
(1) the vertex is occupied, (2) the vertex is not of

degree 2 i, (3) the vertex is incident to at least
one contaminated edge. (Note that the condition (1)
is in fact sufficient. Indeed, we will prove later that
each of (2) and (3) implies (1).) Finally,vfwas the
root, thenw becomes the new root. The level of all
searchers are updated if necessary.

In other words, ifP = (V,v1,--- ,V,w), r >0, is the
longest path off such that, forany, 1<i<r, v,

is not occupied by any searchgrhas degree two
inT (i.e.,my +t, = 2), andv; has no contaminated
incident edge (i.egy, = 0), then all edges d? are
relabeledRemoved. This process corresponds, in
T, to prune the branch containingand, inS to
simply remove the leaf.

More precisely, the pruning operation is performed
in the following way: the searchéroccupying ver-
texvtraverses the edge= {v,v; } labeledMinor or
Tree, relabeling itRemoved. If v was the root, then
v, becomes the new root, i.e., the booleaost,
androoty, are updated and all searchers occupying
v go tovs. Oncee has been removed from, if v;
has degree one iR, is incident to no contaminated
edge, and was not occupied before the remova| of
then the searchek traversegvy, v, } relabeling it
Removed. If v; was the root, then the root is moved
to v, and all searchers that were occupyinggo

to vo. This process is done recursively while it is
possible. Then, the extra searcher and seargher
go back to the root and takésvel! = 0. Again, it is
possible thanks to a DFS @f.

Finally, if, at the beginning of this phasewas the
root, then the level of any searcher that was not
standing atv is decreased by one. (Their distance
to the root inS has been decreased by one in the
operation. Indeed we prove later that exactly one
edge labeled/inor is pruned.) To do so, the extra
searcher can perform a DFSDf

Fig. 3 Situation when Case b will be executed at verntéheft).
Situation after the execution of Case b (right).

In Figure 3, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The tiieés rooted in

r and its edges are depicted in bold lines, and the
dotted lines represent the edgesSofThis case is
applied to the leaf. The pathP is the path ofT



Fig. 4 Situation when Case c will be executed at vendieft).

betweerr andw. At the end of the proceswiis the of this case is to move the root tobecause the

new root ofSandT. current rootv is not used to prevent recontamina-
Case c.m,+t, = 2, ¢, = 0 andv is not the root. This tion and is not a degree-3 vertex\wfThis is done
case is depicted in Figure 4. by moving the root tau and contracting the edge

In this casey is not the root, has degree two in ein S. That corresponds to relabeling the edge
T, and is incident to no contaminated edge. Note  with Tree. Finally the level of some searchers are
first that the parent-edge of v is labeledMinor updated.

because a vertex different from the root and occu-  More precisely, all searchers standing é&he root)
pied by a searcher always has its parent-edge la- perform an arbitrary but common DFS traversal of

beledMinor (this will be proved by Claim 3 in the T until traversing an edge labeledMinor. While
proof of Lemma 1). The purpose of this case isto  traversing it, they relabel it witiTree. Let u be
removev from Sbecause the search&is not used their current position. The vertex becomes the

to prevent recontamination and is not at a degree-3 new root, i.e., the booleamsot, androot, are up-
vertex of T. This is done by sending back to the dated. Again, we need to update, i.e., to decrease by
root and by contracting the edgén S. That corre- one, the level of any searcher that was standing at a
sponds to relabelingree the parent-edgeof vin descendant of in the subtree containing (when

T that was labeleMinor. Finally the level of some v was the root ofT ). This can be done by the ex-
searchers are updated. tra searcher by a DFS traversal, as in the previous
More precisely, the searcharraverses the parent- cases. Finally, the extra searcher goes back to the
edgee of v, labeling itTree. Then, it goes back to new root.

the root and takegevel = 0. Since this case cor-
responds to the contraction efin S, we need to
update, i.e., to decrease by one, the level of any
searcher standing at a descendant &or this pur-
pose, the extra searcher can perform a DF3,pf
the subtree of rooted atv. Finally, the extra sear-
cher goes back to the root.

Fig. 5 Situation when Case d will be executed at verntéheft).
Possible situation after the execution of Case d (right).

In Figure 5, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The tiieés rooted in

r and its edges are depicted in bold lines, and the

Situation after the execution of Case c (right). dotted lines represent the edgesSofThis case is

applied to the root that is moved tal. Note that
the root could have been movedaas well, de-
pending on the order in which the arbitrary DFS of
T is performed.

In Figure 4, the light gray part represents the clear

part of the graph, the dark gray vertices are those
occupied by the searchers. The tiless rooted inr

and its edges are depicted in bold lines, and the dot-
ted lines represent the edgesiThis case is ap-
plied to the vertex. The searcher occupyimgoes

back to the root and the edgds contracted (i.e.,

relabeledrree). Moreover, the level of the searcher T section is devoted to prove the correctness of Pro-
occupyinga is decreased by one. tocol mc_search. For this purpose, we first prove the

3.3 Correctness of Protocet _search

Case d.m,+t, = 2,c, = 0 andv is the root. This case following technical lemma.

is depicted in Figure 5.

Inthis caseyis the root, has degreetwoThandis Lemma 1 Let usconsider the end of a phase of the ex-
incident to no contaminated edge. ledbe the first  ecution of Protocol mc_search. Let T be the subgraph
edge labeled/linor to be traversed when perform- of G induced by the edges labeled Minor or Tree. Let
ing some DFS traversal af from v. Letu be the  Sbethe minor of T when all edges |abeled Tree have
vertex such thae is its parent-edge. The purpose been contracted.



Initially all searchers stand at the ragtwith feve? = 0.

During the execution ofic_search, T is the tree that con
sists of edges labelebree or Minor. At the beginning, we

haveT = ({w},0).

Description of the execution of any phase afic_search.

While there exists an edge label€dntaminated do

1. Election of a searchéoccupying a vertex, with min-
imum level, sayL, such that one of the four following

endWhile

conditions is satisfied.

(Casea)ym,+ty <2,¢c,>1

(Case bym,+t,=1,¢,=0

(Case ¢)m, +ty, =2, ¢, = 0 andv is not the root
(Case d)m, +t, = 2,c, = 0 andv is the root

. (Case a)
An additional searcheB from the root goes t@.
Let e be an edge incident vand labeled
Contaminated; B clearse.
Let u be the other end &
if uis occupied by another searchiben
Labele Removed.
SearcheB goes back to the root.
elseLabele Minor; SearcheB setsfevel = L + 1 endif

(Case b)

Let e be the edge incident tlabeledMinor or Tree.

Labele Removed.

Let u be its other end.

if vis the rootthen u becomes the new root; any
searcher not standingatlecreases its level by ong
all searchers standing ago tou; endif

(my andt, have been updated when relabelg)g

While my +t, =1, ¢, = 0 andu was not occupiedo
Let f be the edg®Minor or Tree incident tou.
Label f Removed.
Letu’ be the other end of. A goes tou'.
if uis the rootthen u’ becomes the new root

and all searchers standinguago tou’ endif

u «— U (again,my, andt, have been updated)

EndWhile

SearcheA goes to the root.

(Case c)

Let e be the parent-edge ofand letu be its other end.
Labelewith Tree.

Let Ty be the subtree of obtained by removing and
containingv.

Any searcher occupying a vertex @ decreases its
level by one.

SearcheA goes to the root.

(Case d)
Let e be the first edge labeledlinor traversed wher
performing some DFS df from v and letu be the ver-
tex such thaeis its parent-edge.

Labelewith Tree.

Let T’ be the subtree oFf obtained by removing and
containingu. Any searcher occupying a vertex Bf
decreases ité&vel by one.

u becomes the new root.

All searchers that were standingvego tou.

Fig. 6 Protocolmc_search

1. T and Sare rooted trees with maximum degree at
most three;

2. the set of vertices of G occupied by a searcher ex-
actly consists of: the root, and the vertices whose
parent-edgeis labeled Minor;

3. if Shas depth k > 1, then there exists a previous
phase when Swas the complete ternary tree Ty_;.

Proof The proof is by induction on the phase number.
Let p > 1 be the number of a phase of the execution of
mc_search and let us assume that the result is valid at
the beginning of phasp. Trivially this induction hy-
pothesis holds whep = 1, sinceT ansSare restricted

to the one-vertex tree that consists of the homebase
where all searchers are standing. Oétbe the sub-
graph ofG induced by the edges labelbtinor or Tree

at the beginning of phagg and letS be the minor cor-
responding to the contraction of edges labdleee. T
andSare the corresponding objects at the end of phase
p. The proof of Lemma 1 proceeds in four claims. First
we prove thaGandT are trees.

Claim. 1 SandT are trees, and has maximum de-
gree at most three.

Proof. Note that, by definition, for any vertexc V (G),

my, +ty is the degree of in T'. According to the induc-
tion hypothesisT’ is a tree with maximum degree at
most three. Let us show that at the end of phasé

is a tree with maximum degree three. We consider the
four cases a, b, c and d.

Case a. Either an edge= {v,u} is added toT’, i.e.,
T=(V(T)U{u},E(T")U{e}), or T’ remains un-
changed, i.e.T = T'. In the first case, we have
veV(T’) andu ¢ V(T’). ThusT is a tree in both
cases. Moreovem, +t, was at most two, thus
has degree at most two . ThusT has maximum
degree at most three.

Case b.T is obtained fronT’ by recursively removing
leaves ofT’. Thus,T, asT’, is a tree of maximum
degree three.

Cases c and d. At most one edgeTdfmay be rela-
beledTree, thusT' =T.

It follows thatT is a tree with maximum degree at most
three. Sincé&is obtained fronT by edge contractions,
Sis also a tree. o

We now prove a structural property that will be
used in the subsequent claims.

Claim. 2 Any vertex belonging to the tre€ but not
occupied by any searcher has degree exactlyT2 in

Proof. First of all, when a vertex appears for the first
time in T, it is occupied (initialization or case a). We



then note that when a searcher leaves a vertex unoccu- Assume first that was the root at the beginning of
pied, either this vertex is removed from(case b), or the phase. This means that the only edgP ttfiat
it is of degree 2 (cases c or d). Moreover, the degree was labeledinor was the parent-edge of that is
in T of a vertex can only increase in case a, and thus the edge incident tawand belonging t®. Thus, we
only if this vertex is occupied. Thus the degree of an  haveViy =V}, \ {w}. Moreoverwbecomes the new

unoccupied vertex is at most 2.

Besides, the degree ih of a vertex can only de-
crease in case b, if it is the vertexincident to the last
pruned edge. Thus assume that the degree gbes
from 2 to 1 by application of case b at some venex
By definition of case b, the vertex satisfies at least
one of the following two conditions: (1) the vertex is

occupied, (3) the vertex is incident to at least one con-

taminated edge. W satisfies (3), then it is occupied,

root. On the other hand, the set of occupied vertices
remains the same except fothat was occupied but

is not anymore. Therefore, the vertices occupied by
a searcher are exactly the root and the elements of
V.

Assume now thav was not the root at the begin-
ning of the phase. This means that the only edge
of P that was labele®linor was the edge incident

to v, that is the parent-edge of Thus, we have

because our protocol maintains a searcher at any vertex Vi = Vj; \ {v}. On the other hand, the set of oc-

belonging to the border of the clear part. Thus in both
casesw is occupied. As a consequence, the degree of

an unoccupied node cannot be one.
This concludes the proof of the claim. o

Before proving that the maximum degree 9fs
three, we prove the second property.

Claim. 3 The set of vertices occupied by a searcher
exactly consists of: the root, and the vertices whose

parent-edge is labelédinor.

Proof. We consider the four cases a, b, c and d.\lypt

cupied vertices remains the same except/ftrat
was occupied but is not anymore. Therefore, the
vertices occupied by a searcher are exactly the root
and the elements My.

Thus the property holds in both subcases.

Case c. The parent-edgeof v is the only edge rela-

beled. According to the induction hypothesis, edge
e is labeledMinor at the beginning of the phase
becauser is occupied by a searcher at this time.
Hence,e is relabeled fromMinor to Tree. Thus
Wm = V) \ {v}. Since the searcher leavego go

to the root, the property holds.

resp.Viu, be the set of vertices such that their parent-Case d. Leebe the edge relabeled in phasd-etube

edge are labeleMlinor at the beginning, resp. end, of

the vertex such thatis its parent-edge. The edge
is the only edge relabeled, and it is relabeled from

phasep.

Case a. The edge= {v,u}, labeledContaminated at
the beginning of phasp, is the only edge to be re-
labeled. It is relabeled eithéemoved or Minor.

In the first caseVuy =V}, and the searchers oc-
cupy exactly the same vertices than at the begin-
ning of phasep, thus the property holds. In the
second casay is a new leaf ofT (andS), ande Therefore, at the end of phagethe second property
is the parent edge af. ThusViy = V{, U {u}. In  holds. o
both cases the vertices occupied by a searcher are
exactly the root and the elements\gj. Thus the
property holds.

Case b. LeP = (v,---,w) be the path removed from
the treeT at this phase. We first prove thatis

occupied. By construction, the vertexsatisfies at Proof. By Claim 3, the child extremity of any edge
least one of the following three conditions: (1) the

: ’ - {u,v} labeledTree is not occupied by any searcher,
yertex is occupied, (2), th? vertex is not of degree 2and thus by Claim 2, it has degree exactly two. Thus,
in T, (3) the vertex is incident to at least one CON-\uhen this edgéu, v} is contracted to obtais from T,
taminated edge. By Claim 2, we now that (2) im-

X - the vertex resulting from the fusion afandv has the
plies (1). Moreover, as we already noticed beforeg 1o degree ashad before the contraction. Therefore,

if w satisfies (3), then it is occupied, because OUI5 has maximum degree at most three, fike o
protocol maintains a searcher at any vertex belong- ’

ing to the border of the clear part. Thus, in any case
w is occupied.

Minor to Tree. ThusVy =V, \ {u}. Moreover, all
searchers from the old root go to the new rodti-
nally, although the root changes, the child extrem-
ity of any edge other thamlabeledMinor does not
change. Thus the vertices occupied by a searcher
are exactlwiy U{u} (=V};) and the property holds.

We prove now that the maximum degreeSik at
most three.

Claim. 4 Shas maximum degree at most three.

To conclude the proof of the lemma, let us prove
the third property.
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Claim. 5 If Shas deptlk > 1, then there exists a previ- By Theorem 3, we have
ous phase wheBwas the complete ternary trég_;.
o pre SIEY TR L log)v (T| = O(K) = O(mes(Ti 1))
Proof. First, for any searcher occupying a verigts
level is the number of edges labeldtinor between and by Theorem 1,
v and the root. This can be 9a5|ly prgved by 'nduc'mcs(Tk,l) < 28(Ti1).
tion. Letk > 1 and let us consider the first phgseat

which the depth oSbecomek. The phase’ consists Thus we have loy/ (Tx)| = O(mcs(G, vp)).
of the clearing of a contaminated edge- {u, v} with Finally, since the functio Oéx is strictly increas-

v e V(T) occupied by a searcher with ledel- 1, and  ing, and
ueV(G)\V(T). Since the move performed at phase
pis e(xe)c\ute(d 2)y a searcher with lekel 1, it means VTl =3V (Ta)| + 1< 3[V(G)| +1=3n+1,
that no searcher with level less thkn- 1 can move we obtain:
according to the rules. That is, all internal vertices of n
Shave degree exactly three (because of cases ¢ and dy O <|— X mCS(G,Vo)> )
; ogn

and all leaves ofs are at distanc& — 1 from the root
(because of cases a and b), %= Ti_1. o which concludes the proof of the theorem. O

This concludes the proof of the lemma. O To conclude this section, let us estimate the number
of moves done by the searchers during the execution of
Protocolmc_search. As we already mentioned, at each
phase, at least one edge is relabeled, and each edge is
relabeled at most three times. This proves that there are
O(m) phases during the clearing of any graph with
edges. During any phase, one “move consuming” oper-
Proof Let us first prove that the protocak_search  ation consists of the DFSs performed by the searchers.
clearsG in a monotone connected way. Initially, all Inthe worst case, the extra searcher will execute a con-
edges are labele@ontaminated and the label of an stant number of DFSs oF, while any other searcher
edgee becomesMinor or Removed as soon a is  will follow the extra searcher during at most one DFS.
traversed by a searcher. Moreover, after this traversal,he other “move consuming” operation consists of the
each of its ends is occupied by a searcher (Case a). Thaoves of all the searchers currently standing at the root
strategy is obviously monotone since a searcher is rethat must follow the root when it is moved, leading to
moved from a vertew if either v is occupied by an possiblyO(q-n) moves in a single phase. This leads
other searcher (Case a), or no contaminated edge is ite an upper bound oD(q-n-m) moves executed by
cidenttov, i.e.,c, =0, (Cases b, c and d). Furthermore, the searchers to clearranodem-edge graph using
the strategy is connected since it is monotone and starggents.
from a single vertexyp. Finally, Protocolmc_search
eventually clear§s. Indeed, at each step, an edge is la-

beled, and any edge is relabeled at most three timeé: Further Work

Minor, Tree, andRemoved in this order. Thus, no loo . . .
' P It would be interesting to establish a tradeoff between

can occur. Moreover, we proved above thdt a tree. . . .
. the optimal competitive ratio of a search protocol and
Therefore, at any step, at least the searchers occupylnﬁ . . .
. i s tHe amount of information provided to the searchers.
its leaves satisfy the conditions of one of the cases a, b cere . . .
Another difficult problem is to improve the competi-

¢, or d. Thus, while there remains a contaminated edg? : .
. . ive ratio of a search protocol by allowing the search
a searcher will eventually be called to clear this edge. AR
strategy to be not monotone while it is still performed

It remains to show that Protocak_search uses : .
n : in a polynomial number of steps. Moreover, since the
g = O(g5e mcs(G, vp)) searchers. Let us consideto L , :
09 search problem assumes performing in an hostile envi-

be the maximum depth & during the clearing o6. ) . : .
. ronment, it would be interesting to design fault tolerant
By the three properties of Lemma 1 we have o . .
and/or self stabilizing algorithms for clearing a graph.
_ V(T
log |V (Tk)| Acknowledgements David licinkas received additional support

Moreover, by the third property of LemmaT,_1isa  from the ANR projectAladdin and the INRIA projectCepage.
minor of G. thus Nicolas Nisse received additional support from the CONICYT
’ via the projectAnillo en Redes, ACT08 and from the European

S(kal) < S(G) < mcs(G7V0) and|V (kal)| < |V(G)| projects 1ST FET AEOLUS.

We can now prove the main theorem.

Theorem 4 Let G bea connected n-nodegraphand let
Vg be one of its vertices. Protocol mc_search enables
O(% mcs(G, Vp)) searchersto clear G inamonotone
connected way, starting from vp.

a<[V(Tk)| x log|V (Tk)| -
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