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Abstract. In the cops and robber game, two players play alternately by moving their tokens along
the edges of a graph. The first one plays with the cops and the second one with one robber. The cops
aim at capturing the robber, while the robber tries to infinitely evade the cops. The main problem
consists in minimizing the number of cops used to capture the robber in a graph. This minimum
number is called the cop-number of the graph. If the cops and the robber have the same velocity,
3+ 3

2
g cops are sufficient to capture one robber in any graph with genus g (Schröder, 2001). In the

particular case of a grid, 2 cops are sufficient.
We investigate the game in which the robber is slightly faster than the cops. In this setting, we
prove that the cop-number of planar graphs becomes unbounded. More precisely, we prove that
Ω(

√
log n) cops are necessary to capture a fast robber in the n×n square-grid. This proof consists

in designing an elegant evasion-strategy for the robber. Then, it is interesting to ask whether a
high value of the cop-number of a planar graph H is related to a large grid G somehow contained
in H. We prove that it is not the case when the notion of containment is related to the classical
transformations of edge removal, vertex removal, and edge contraction. For instance, we prove that
there are graphs with cop-number at most 2 and that are subdivisions of arbitrary large grid. On
the positive side, we prove that, if H planar contains a large grid as an induced subgraph, then H
has large cop-number. Note that, generally, the cop-number of a graph H is not closed by taking
induced subgraphs G, even if H is planar and G is an distance-hereditary induced-subgraph.
Keywords: Cops and robber, planar graph, minor, subdivision, grid.

1 Introduction

Introduced by Nowakowsky and Winkler [NW83], and by Quilliot [Qui83], cops and robber
game is a two player game in a graph G (see [Als04] for a survey). The first player, C, plays
with the cops that are aiming at capturing the robber, played by the second player R. First,
C chooses a subset of vertices of G and places his cops on these vertices. Then, R places his
robber on some vertex of G. Then, C and R play alternately. At each step, C chooses a subset
of his cops and move each of them along some path of length at most vcop ≥ 1 edges. Then, R
moves his robber along some path of length at most vrobber ≥ 1 edges. Note that both players
have perfect knowledge of the position(s) of their adversary. The robber is caught as soon as
it occupies the same vertex as a cop. The purpose of C is to capture the robber, while R tries
to infinitely avoid being caught. In the following, we refer to vcop and vrobber as the cops’ speed
and the robber’s speed, respectively. For any graph G, the (p, q)-cop-number, denoted cp,q(G),
is the smallest number of cops with speed p sufficient to capture any robber with speed q in G.

The case p = q = 1 has received particular attention in the literature, and c1,1(G) is generally
called the cop-number of the graph G. The main result in [NW83,Qui83] is a characterization
of the graphs with cop-number one, called cop-win graphs. In particular, trees, chordal graphs
and, more generally, graphs with chordality at most 4 are cop-win [Far87,AF88,Che97]. This
characterization also allowed Hahn and MacGillivray [HM06] to design an algorithm deciding
in time O(nk) if the cop-number of a n-node graph is at most k ≥ 1 (see also [BI93]). Goldstein
and Reingold [GR95] prove that the problem of computing the cop-number of a directed graph
(in this setting, the cops and the robber are constrained to follow the orientation of the arcs)
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is EXPTIME-complete. This problem is EXPTIME-complete as well in undirected graph when
cops and robber are given their initial positions [GR95].

¿From a combinatorial point of view, the cop-number of bounded genus graphs has been
widely studied. In [AF84], Aigner and Fromme proved that the cop-number of any planar graph
is at most three. In particular, the cop-number of any grid is two. The result of Aigner and
Fromme is based on the simple following Proposition 1.

Proposition 1. [AF84] In any graph G and for any shortest path P of G, after a finite number
of steps, a single cop can prevent the robber with speed one from entering P .

Then, Aigner and Fromme [AF84] prove that it is possible to recursively divide any planar
graph using three shortest paths chosen in such a way that the area accessible to the robber
only decreases. Using the same kind of techniques, Quilliot [Qui85] proves that the cop-number
of any graph with genus g ≥ 0 is at most 3+2g. Schröder [Sch01] improves this bound to 3+ 3

2g.
Proposition 1 is also essential in the proof of the fact the cop-number of any H-minor-free graph
is upper bounded by the number of edges of H [And86].

It is noticeable that very few lower bounds of the cop-number of graphs have been proved.
Aigner and Fromme [AF84] prove that the cop-number of any graph with girth at least 5 is
lower bounded by its minimum degree. Frankl [Fra87] improves this bound to dt for any graph
with girth at least 8t − 3 and minimum degree d + 1. Note also that, for any k ≥ 3 and n ≥ 1,
it exists a k-regular graph with cop-number at least n [And84].

We investigate the cops and robber game in planar graphs when the robber is slightly faster
than the cops, i.e., vrobber > vcop. It is easy to be convinced that Proposition 1 becomes false as
soon as the robber is faster than the cops. In particular, we prove that allowing the robber to
be faster than the cops may drastically increase the number of cops necessary to capture it in
a square-grid. We then generalize this result to a larger class of planar graphs. More precisely,
we propose a certificate that is sufficient to decide that “many” cops are necessary to capture
a fast robber. We leave as an open question, if our certificate is also a necessary condition.

For ease of description, in this paper, we consider that the robber’s speed is two while the
cops’ speed is one, and we refer to c1,2(G) as the cop-number of the graph G. However our
results can easily be generalized for any vrobber/vcop > 1.

1.1 Our results

Our main result consists in proving that the cop-number of square-grids is not bounded. We
prove that the cop-number of a n×n square-grid is at least Ω(

√
log n). The proof is constructive

since we give a simple and explicit evasion-strategy for the robber. More precisely, we prove that,
for any k ≥ 1, there are two constants a > 0 and b > 2, such that, one robber with speed 2 can
infinitely evade k cops with speed one in any n × n square-grid with n ≥ 4 akbk(k+1)/2 = f(k).

A natural question is then to ask whether this lower bound still holds for planar graphs
somehow containing a large grid. In other words, is a high value of the cop-number of a planar
graph H related to a large grid G somehow contained in H? On the negative side, the classical
transformations of edge removal, vertex removal, and edge contraction do not preserve “small”
cop-number. For instance, for any k ≥ 1, we design a subdivision H of a n × n square-grid
with n ≥ f(k), such that the cop-number of H is at most 2. The converse also holds: we prove
that the cop-number of a planar graph may drastically decrease by contracting edges incident
to degree-2 vertices. This confirms the intuition according to which the cop-number of a graph
is more related to the distances rather than to the connectivity of the graph.

On the other hand, we prove that if H planar contains a large grid as an induced subgraph,
then H has large cop-number. More precisely, any planar graph H that contains a n×n square-
grid G with n ≥ 2f(k) as an induced subgraph has cop-number at least k. Note that this
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latter result is not trivial because the cop-number of a graph is generally not closed by taking
induced subgraphs, even if H is planar and G is a distance-hereditary induced-subgraph. Indeed,
consider the cycle C4, and let H be the graph obtained from C4 by adding a universal vertex.
The cop-number of H equals one, whereas it equals two in C4.

2 Fast Robber in large grid

This section is devoted to prove the following theorem.

Theorem 1. For any grid G of size n, c1,2(G) = Ω(
√

log(n)).

To prove Theorem 1, we propose an evasion strategy for the robber. This strategy is formally
described in section 2.2. The proof of its correctness mainly follows Lemma 3. Lemmata 1 and 2
are technical results that allow to prove Lemma 3.

2.1 Definitions

We consider a robber that is slightly faster than the cops running in a square grid. A square
grid G on n×n vertices is the graph where the vertices can be naturally assigned to the points
of positive integer coordinates in the square n × n of the plane, with edges joining each vertex
to its closest neighbors (with respect to the Euclidean metric). We say that the size of G is n.
In order to prove that the number of cops needed to capture the robber is unbounded, for each
number k of cops, we will construct a grid G(k) of size f(k), and a corresponding strategy, by
which the robber can infinitely evade the cops.

Given the number of cops k and the corresponding grid G = G(k), a key to our analysis lies
in fixing a recursive partition of the grid into gradually smaller subgrids of levels k down to 0.
Each level i corresponds to the game played on a subgrid of size sizei, with only i cops taken
into consideration. At each step s, the subgrid of level i, or i-subgrid, currently occupied by the
robber is denoted by Ri

s. Let us fix an ordering of the cops: cop1, . . . , copk. The sizes of subgrids
are chosen such that there is a strategy allowing the robber to successfully evade i cops in the
i-subgrid Ri around him, and to move to neighboring i-subgrids fast enough not to let other
cops enter into Ri. And that is for each i between 0 and k. Let us introduce some notation that
we use in order to describe the above mentioned strategy on the graph G = G(k).

zoom = (zoom1, · · · , zoomk) is a sequence of scaling factors, that is, an i-subgrid contains
zoomi×zoomi vertex disjoint (i−1)-subgrids. This means that sizei is equal to zoomi×sizei−1,
where we fix size0 = 2 as a starting point. We say that an i-subgrid H i is adjacent to a j-subgrid
F j if there is an edge in G incident to a vertex in each of them. When i is clear from the context,
an (i − 1)-subgrid relative to an i-subgrid is called a square on a board. A path of squares is a
sequence of squares such that any square is adjacent to its predecessor, and its length is simply
the number of squares. In this way, we can notice a fractal-like structure of G, with the grid
topology of squares on boards of corresponding levels. Let us introduce a coordinate system for
subgrids at each level. The coordinates of an i-subgrid H are (absH , ordH), which correspond to
the row (bottom-up) and column (left-right) occupied by H in the partition of G into subgrids
of sizei. In other words, a vertex v is in H iff the abscissa of v is between (absH − 1) ∗ sizei + 1
and absH ∗ sizei, and the ordinate of v is between (ordH − 1) ∗ sizei + 1 and ordH ∗ sizei.

margin = (margin1, · · · , margink) is a sequence of safety distances. Given an i-subgrid H i,
we note by around(H i) the subgrid induced by the i-subgrids that are near H i. More formally,
around(H i) is the subgrid induced by the i-subgrids H, such that |ordHi − ordH | ≤ 1 and
|absHi − absH | ≤ 1. Similarly, we define the margin of H i, denoted by margin(H i), as the
subgrid induced by the i-subgrids H, such that |ordHi − ordH | ≤ mi and |absHi − absH | ≤ mi.
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For any i, a configuration in which copi is outside the subgrid around(Ri−1) (i.e., copi

does not occupy any vertex of it), where Ri−1 is the square occupied by the robber, is a valid
position at level i. If moreover, the cop copi is also outside margin(Ri−1) and margin(Ri−1) is
a subgraph of Ri, the position of the robber is called a nice position at level i.

Definition 1. The robber occupies an i-nice position if it occupies a nice position at level j,
for all 1 ≤ j ≤ i.

Suppose the robber is in a nice position at level i. If copi occupies a square adjacent to the
margin, we say that the cop is blocking a side. If copi occupies a square in a corner (adjacent
to two other squares blocking different sides), we say that the cop is blocking a corner.

detour = (detour1, · · · , detourk) is a sequence of extra distances. At level i, detouri is an
upper bound on the additional distance that the robber needs to travel in order to evade copi.
More precisely, starting from a nice position at level i, the length of the path of squares that
the robber will follow to go into a nice position in a neighboring board is upper bounded by
zoomi + detouri. Notice that zoomi is the minimum number of squares that the robber needs
to cross in order to get from the left extreme (resp., up extreme) of a board H i to the board F i

next to the right (resp., down) of H i.

time = (time0, · · · , timek) is a sequence of numbers of rounds. At level i, timei is an upper
bound on the time needed by the robber in order to get from a nice position on a board
H i to a nice position on a neighboring board F i. Moreover, we set the sequence velocity =
(velocity0, · · · , velocityk), with velocityi = sizei/timei, as the “relative” speed of the robber at
level i. Since the robber has speed velocity0 = 2, which is its “absolute” speed, and size0 = 2,
we get time0 = 1.

2.2 Informal description of the robber’s strategy

In this section we give an intuitive description of the robber’s strategy in order to explain the
relations between the sequences defined in the previous section.

Let 1 ≤ i ≤ k. Recall that a square denotes an (i − 1)-subgrid and a board denotes an
i-subgrid.

Let us first describe our induction hypothesis at level i−1. Let Ri−1 be the square occupied
by the robber. We assume that if all of the cops copj , i − 1 < j, remain outside around(Ri−1),
and if the initial position of the robber is (i− 1)-nice, then the robber can reach an (i− 1)-nice
position in any square adjacent to Ri−1, in at most timei−1 < sizei−1 rounds. Let us describe
the robber’s strategy that ensures that the induction hypothesis remains valid at the level i.

Let Ri be the board that is occupied by the robber. We assume that all of the cops copj ,
j > i, remain outside around(Ri) during the whole game that we will describe. Moreover, let us
assume that, for any 1 ≤ j ≤ i, the initial position of the robber is nice at level j. In other words,
the robber occupies an i-nice position. In particular, it means that copi is outside the subgrid
margin(Ri−1) and margin(Ri−1) is a subgraph of Ri, where Ri−1 denotes the (i − 1)-subgrid
initially occupied by the robber. Let Di be a board that is a neighbor of Ri. We describe a
strategy for the robber that ensures that (1) the robber reaches an i-nice position in Di in at
most timei < sizei steps, and (2) copi remains outside around(Ri−1) during the whole game.

For ease of description, we assume that Di is below Ri (i.e., Di has smaller ordinate than
Ri). This strategy is depicted in Figure 1. In Figures 1(a), 1(b), and 1(c), the hatched zone
corresponds to the path of squares covered by the robber during the game.

At each step s ≥ 0 of the game, let Ri−1
s and Ci−1

s be the squares occupied by the robber and
copi respectively. Roughly speaking, the strategy consists in the following. While copi is outside
margin(Ri−1

s ) and does not block neither a side nor a corner of margin(Ri−1
s ), the robber goes
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(c) Illustration of Strategy 3

Fig. 1. Strategy performed by the robber if (a) copi never blocks a side of margin(Ri
s), (b) copi blocks any but

the bottom side of margin(Ri
s), and (c) copi blocks the bottom side of margin(Ri

s).

down, that is, it goes to the square H i−1 that is the below-neighbor of Ri−1
s . By applying the

induction hypothesis, the robber reaches an (i − 1)-nice position in H i−1 in at most timei−1

steps. If, performing that way, the robber reaches a square H i−1 such that margin(H i−1) is a
subgraph of Di, we are done. Moreover, it has taken at most zoomi∗timei−1 steps. This strategy
is illustrated in Figure 1(a). If at some step f of the game, copi is blocking a side or a corner of
margin(Ri−1

f ), we consider different cases according to which side or corner of margin(Ri−1
f )

is blocked.

– Let us first assume that copi blocks a side or a corner above margin(Ri−1
f ). That is, Ci−1

f

has greater ordinate than any square in margin(Ri−1
f ). Then, the strategy remains the

same: the robber goes down (cf. Figure 1(a)). The robber traverses a square in at most
timei−1 < sizei−1 steps, whereas copi needs sizei−1 steps. By Lemma 1, sizei−1 > ti−1.
Therefore, each time the robber moves to a new square Ri−1

s , copi is outside margin(Ri−1
s ).

In particular, this is the case at the step when margin(Ri−1
s ) is contained in Di for the first

time. Then the strategy achieves.
– Let us now assume that copi blocks a side or a corner at the left (resp. at the right)

of margin(Ri−1
f ). That is, Ci−1

f has smaller (resp., greater) abscissa than any square in

margin(Ri−1
f ). Again, the strategy consists in going down. However, this time, after the

first step when margin(Ri−1
s ) is a subgraph of Di, the robber continues going down along

a path of di extra squares in Di. This is because the cop may enter in margin(Ri−1
s ) dur-

ing this passage, and we want to have it outside the margin in the end. This strategy is
illustrated in Figure 1(b). di corresponds to an extra distance that the robber must cover
in order to avoid copi. detouri will be taken equal to an upper bound of this extra distance
in any of the strategies described below. For our strategy to be valid, we must ensure two
properties. First, in order to apply the induction hypothesis, copi must permanently remain
outside around(Ri−1

s ). Second, at some step s ≤ timei, the robber must reach an i-nice
position in Di, that is, copi must be outside margin(Ri−1

s ) while margin(Ri−1
s ) is a sub-

graph of Di. In order to ensure the above two properties, we set several inequalities between
sizei−1, zoomi, margini, detouri, timei−1, velocityi−1 and timei.
• For the first property to be satisfied, it is sufficient to ensure that, if Ci−1

f is blocking

the left-bottom corner of margin(Ri−1
f ) and copi goes to the right while the robber is
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going down, then copi cannot enter around(Ri−1
s ). Indeed, one can observe that the cop

occupying this position yields the worst possible case of blocking a side or a corner.
Let N be the minimum number of steps that are necessary for the cop to intercept the
robber, and let M be the maximum number of steps that are necessary for the robber to
cross the place of this hypothetical interception. In other words, we want that M < N .
Recall that sizei−1 is the minimum number of steps for a cop to traverse a square (from
one of its sides to cross the opposite one), whereas timei−1 is the maximum number of
steps for the robber to cover the same distance. By looking at Figure 2(a), it is easy
to be convinced that N > (margini − 1)sizei−1, and M < (4 + margini)timei−1. In
Figure 2(a), M1 = 4+margini and N1 = margini−1. Hence, we get our first inequality.
For any i, 1 ≤ i ≤ k:

margini ≥ ⌈4 + velocityi−1

velocityi−1 − 1
⌉ (1)

• For the second property to be satisfied, it is sufficient to ensure that, if the step f is
such that the squares of margin(Ri−1

f ) with the greatest ordinate are still in Ri and all

the other squares of it are in Di, and Ci−1
f is the left-bottom corner of margin(Ri−1

f ),

then copi is above margin(Ri−1
h ) at the last step h of the game, and margin(Ri−1

h ) is
a subgraph of Di. Again, this position of Ri−1

f leads to the worse possible configuration
of this case. Let N be the minimum number of steps that are necessary for the cop to
reach margin(Ri−1

h ), and let M be the maximum number of steps that are necessary
for the robber to reach Ri−1

h . Again, we want that M < N . Moreover, h ≤ ti. Looking
at Figure 2(b), it is easy to be convinced that N > (di − 2 ∗ margini − 2)sizei−1, and
M < di ∗ timei−1. Hence, we get our second equation. For any i, 1 ≤ i ≤ k:

di ≥ ⌈(2 ∗ margini + 2)velocityi−1

velocityi−1 − 1
⌉ (2)

For the final position of the robber to be nice, we also need margin(Ri−1
h ) to be a

subgraph of Di, that is:

di + 2margini + 1 < zoomi

Finally, the whole game must take at most timei < sizei steps, therefore:

(zoomi + di)timei−1 < (zoomi + detouri)timei−1 ≤ timei < sizei

– It remains the case when copi blocks a side below margin(Ri−1
f ). That is, Ci−1

f has smaller

ordinate than any square in margin(Ri−1
f ). In this case, the robber chooses the right side,

if Ri−1
f is closest to this side of Ri, and the left side otherwise. W.l.o.g., let the robber

choose the right side. Then, the robber first goes to the right, along a path of di squares.
Let Ri−1

r be the last of these squares, at which the robber arrives at step r. Note that, by
Inequality 1, copi never enters around(Ri−1

s ) during this phase. Moreover, by Inequality 2,
at step r, copi is to the left of margin(Ri−1

r ). Starting from step r, the strategy is the same
as in the previous case: the robber goes down, and after the first step when margin(Ri−1

s )
is a subgraph of Di, the robber continues going down along a path of di extra squares in Di.
This strategy is illustrated in Figure 1(c). Again, by applying Inequalities 1 and 2, we get
that copi never enters around(Ri−1

s ) during the whole game, and, at the last step h, copi is
outside margin(Ri−1

h ). In order to ensure margin(Ri−1
h ) to be a subgraph of Di, we need

the following inequality:

di + 2 ∗ margini + 1 < zoomi/2 (3)
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Fig. 2. Illustration of Inequality 1 and 2: (a) copi must never enter in around(Ri
s), and (b) the robber must reach

a nice position, i.e., copi must not enter in margin(Ri
h).

Finally, the whole game must take at most timei < sizei steps, therefore:

(zoomi + 2di)timei−1 ≤ (zoomi + detouri)timei−1 ≤ timei < sizei (4)

In the following, we turn Inequalities 1 and 2 into equalities, we set detouri = 2di, and we
prove that, for a sequence zoom well chosen, Inequalities 3 and 4 are satisfied.

2.3 Proof of Theorem 1

We first prove that there are two constants a > 0 and b > 2, such that to set zoomi = abi (for
all i ≤ k) ensures that Inequalities 3 and 4 are valid.

Let k ≥ 1 and velocity0 = 2. We will now precisely define the sequence zoom, and define
the relations between the sequences zoom, margin, detour, time, size and velocity. For any
1 ≤ i ≤ k, let us turn Inequalities 1 and 2 into equalities:

margini = ⌈4 + velocityi−1

velocityi−1 − 1
⌉, and, detouri = 2di = 2 ∗ ⌈(2 ∗ margini + 2)velocityi−1

velocityi−1 − 1
⌉. (5)

We also set:
timei = (zoomi + detouri)timei−1 (6)

¿From Equations 5, 6 and the fact that velocityi = sizei/timei, we get that velocityi =
zoomi

zoomi+detouri
∗ velocityi−1 ≥ βi ∗ velocityi−1, where βi is defined by:

βi =
zoomi

zoomi + 2 ∗ (
(2∗(

4+velocityi−1

velocityi−1−1
+1)+2)velocityi−1

velocityi−1−1 + 1)

=
zoomi

zoomi +
2+4∗velocityi−1+14∗velocity2

i−1

(velocityi−1−1)2

Finally, let us assign some values to the sequence zoom, in order to satisfy Inequalities 3
and 4. For this purpose, let us set 2 > α > 1, and let a = ⌈ 20

(α−1)2
⌉ ∗ ⌈ 2

ln(velocity0/α)⌉ and let b be

an integer such that b > max{2, ln(velocity0/α)
2 }. For any 1 ≤ i ≤ k, we set

zoomi = abi. (7)
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Lemma 1. Inequality 4 is satisfied. That is, for any 0 ≤ i ≤ k, velocityi = sizei/timei > 1.

Proof. We prove by induction on i, 0 ≤ i ≤ k, that 2 ≥ velocityi > α. It is straightforward
for i = 0. Let i > 0, and let us assume that the result is valid for any j < i. velocityi =
velocity0 ∗

∏i
j=1 βj , thus we need to prove that

∏i
j=1 βj > α/velocity0. Actually, we prove that

1/
∏i

j=1 βj < velocity0/α. By the induction hypothesis, we get that, for any 0 ≤ j ≤ i − 1,

2 = velocity0 ≥ velocityj > α. Thus,
2+4∗velocityi−1+14∗velocity2

i−1

(velocityi−1−1)2
< ⌈ 20

(α−1)2
⌉. Hence, we obtain

that 1/βi < (zoomi + ⌈ 20
(α−1)2

⌉)/zoomi < 1 + 1/( 2
ln(velocity0/α) ∗ bi).

For any i, 0 ≤ i ≤ k:

2 > 1 − (1/b)k

ln(velocity0/α) >
ln(velocity0/α)

2
∗ 1/b − (1/b)k+1

1 − 1/b
(because b > 2)

>
X

1≤j≤i

1/(
2

ln(velocity0/α)
∗ bj)

≥
X

1≤j≤i

ln(1 + 1/(
2

ln(velocity0/α)
∗ bj)) (because x ≥ ln(1 + x))

= ln(
Y

1≤j≤i

(1 + 1/(
2

ln(velocity0/α)
∗ bj)))

velocity0/α >
Y

1≤j≤i

(1 + 1/(
2

ln(velocity0/α)
∗ bj))

velocity0/α > 1/
Y

1≤j≤i

βj

⊓⊔

Lemma 2. Inequality 3 is satisfied. That is, for any 1 ≤ i ≤ k, detouri+4∗margini+2 < zoomi

Proof. For any 1 ≤ i ≤ k,

detouri + 4 ∗ margini + 2 < 2 ∗ (
(2 ∗ (

4+velocityi−1

velocityi−1−1
+ 1) + 2)velocityi−1

velocityi−1 − 1
+ 1) + 4(

4 + velocityi−1

velocityi−1 − 1
+ 1) + 2

=
24 ∗ velocity2

i−1 + 4 ∗ velocityi−1 − 8

(velocityi−1 − 1)2

<
20

(α − 1)2
(because of Lemma 1)

< zoomi =
20

(α − 1)2
∗ 2

ln(velocity0/α)
∗ b i

(because b > max{2,
ln(velocity0/α)

2
})

⊓⊔

Both previous Lemmata allow us to prove the following:

Lemma 3. Let i, 1 ≤ i ≤ k. Let us assume that the robber occupies an i-nice position in a
level-i subgrid Ri in G. Moreover, let us assume that, all of the cops copj, j > i, permanently
remain outside around(Ri). Let Di be any level-i subgrid adjacent to Ri.

The strategy described in section 2.2 ensures that

1. the robber reaches an i-nice position in Di in at most timei < sizei steps
2. copi remains outside around(Ri−1) during the whole game.

8



Proof. The proof is by induction on i. W.l.o.g., let us assume that Di is below Ri. Recall that
a square denotes a (i − 1)-subgrid of Ri or Di. Also, Ri−1

s denotes the square occupied by the
robber at step s.

Let us consider the three possible strategies described in section 2.2.

– The robber goes down from its current (i − 1)-nice position in square Ri−1
s to an (i − 1)-

nice position to the below-neighbor of Ri−1
s , until margin(Ri−1

s ) is a subgraph of Di (cf.
Figure 1(a)).

Note that it is possible to apply the induction hypothesis because the robber occupies an
(i− 1)-nice position, all of the cops copj , j > i, remain outside around(Ri) ⊃ around(Ri−1

s )
and we prove below that copi remains outside around(Ri−1

s ).

First, by applying the induction hypothesis or straightforwardly if i = 1, this strategy
performs in at most zoomi ∗ timei−1 steps. By equation 6, zoomi ∗ timei−1 < timei.

This strategy is performed either if copi never blocks a side of margin(Ri−1
s ), or copi

blocks the above-side or an above-corner of margin(Ri−1
s ). If copi never blocks a side of

margin(Ri−1
s ), the Lemma holds trivially. Let us assume the opposite.

If i = 1, t0 = 1 step is sufficient for the robber to go from one square to another (because
size0 = 2 and velocity0 = 2), whereas copi need at least size0 = 2 steps to performs the
same displacement. Therefore, copi will never enter margin(Ri−1

s ). If i > 1, let us apply the
induction hypothesis. ti−1 step are sufficient for the robber to go from one square to another,
whereas copi need at least sizei−1 steps to performs the same displacement. By Lemma 1,
sizei−1 > ti−1. Therefore, each time the robber moves to a new square Ri−1

s , copi is outside
of margin(Ri−1

s ). In particular, this is the case at the step when margin(Ri−1
s ) is contained

in Di for the first time.

– The robber goes down from its current (i − 1)-nice position in square Ri−1
s to an (i − 1)-

nice position in the below-neighbor of Ri−1
s . After the first step when margin(Ri−1

s ) is a
subgraph of Di, the robber continues going down along a path of di extra squares in Di (cf.
Figure 1(b)).

• First, by applying the induction hypothesis or straightforwardly if i = 1, this strategy
performs in at most (zoomi +di)∗ timei−1 steps. By equation 6, (zoomi +di)∗ timei−1 <
timei.

This strategy is performed if there is a step f of the game, when copi blocks the left or the
right-side or a below-corner of margin(Ri−1

f ). Let Ci−1
f be the square occupied by copi at

this step. Note that |absRi−1

f
−absCi−1

f
| = margini+1, and ordCi−1

f
≥ ordRi−1

f
−margini−1.

• Let s be some step of the game, and let us prove that copi cannot enter around(Ri−1
s )

while the robber is occupying it. Indeed, by applying the induction hypothesis or straight-
forwardly if i = 1, the robber will leave the square Ri−1

s in at most (ordRi−1

f
− ordRi−1

s
+

1)timei−1 steps after f . Two cases must be considered.

If ordRi−1
s

≥ ordRi−1

f
− margini − 3, the distance between Ci−1

f and Ri−1
s , is at least

(|absRi−1
s

− absCi−1

f
| − 2) (this distance is minimum for ordCi−1

f
= ordRi−1

s
). Therefore,

copi requires at least (|absRi−1
s

−absCi−1

f
|−2)∗sizei−1 = (margini−1)∗sizei−1 steps to

enter around(Ri−1
s ). In this case, the robber leaves Ri−1

s in at most (margini+4)∗timei−1

steps. By Inequality 1, copi cannot enter around(Ri−1
s ) while the robber is occupying it

(cf. Figure 2(a)).

Otherwise, the distance that copi must cover in order to enter around(Ri−1
s ) is minimum

when ordCi−1

f
is minimum, that is, ordCi−1

f
= ordRi−1

f
− margini − 1. In this case, copi

requires at least (|absCi−1

f
− absRi−1

s
| − 2+ ordCi−1

f
− ordRi−1

s
− 2) ∗ sizei−1 = (margini −
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1 + ordRi−1

f
− margini − 1 − ordRi−1

s
− 2) ∗ sizei−1 = (ordRi−1

f
− ordRi−1

s
− 4) ∗ sizei−1

steps to enter around(Ri−1
s ). By Inequality 1 and Lemma 1 (sizei−1 > ti−1), we get

(ordRi−1

f
−ordRi−1

s
−4)∗sizei−1 = (ordRi−1

f
−ordRi−1

s
−margin−3)∗sizei−1+(margin−

1) ∗ sizei−1 > (ordRi−1

f
− ordRi−1

s
− margin − 3) ∗ timei−1 + (margini + 4) ∗ timei−1 =

(ordRi−1

f
−ordRi−1

s
+1)∗timei−1. Again, copi cannot enter around(Ri−1

s ) while the robber

is occupying it.

This concludes the proof of the fact that copi remains outside around(Ri−1) during the
whole game.

• It remains to prove that the robber reaches an i-nice position in Di. That is, we prove
that copi is above margin(Ri−1

h ) at the last step h of the game, and margin(Ri−1
h ) is a

subgraph of Di. Let top (resp., right) be the greatest ordinate (resp., abscissa) of the
squares in Di. Note that, ordRi−1

h
= top − margini − di and absRi−1

h
= absRi−1

f
.

By Lemma 2, di < zoomi/2. Thus, top − margini > ordRi−1

h
> top − zoomi + margini.

Moreover, margin(Ri−1
f ) is a subgraph of Ri, thus right−zoomi +margini < absRi−1

h
<

right − margini. Therefore, margin(Ri−1
h ) is a subgraph of Di.

The distance that copi must cover in order to enter margin(Ri−1
s ) is minimum when

ordCi−1

f
is minimum, that is, ordCi−1

f
= ordRi−1

f
−margini−1. In this case, copi requires

at least (|absCi−1

f
− absRi−1

h
| − 2 + ordCi−1

f
− ordRi−1

h
− 2) ∗ sizei−1 = (margini − 1 +

ordRi−1

f
− margini − 1 − ordRi−1

h
− 2) ∗ sizei−1 = (ordRi−1

f
− ordRi−1

h
− 4) ∗ sizei−1

steps to enter around(Ri−1
s ). By Inequality 2 and Lemma 1 (sizei−1 > ti−1), we get

(ordRi−1

f
−ordRi−1

s
−4)∗sizei−1 = (ordRi−1

f
−ordRi−1

s
−di+2∗margini+2)∗sizei−1+(di−

2∗margini−2)∗sizei−1 > (ordRi−1

f
−ordRi−1

s
−di+2∗margini+2)∗timei−1+di∗timei−1 =

(ordRi−1

f
− ordRi−1

s
+ 2 ∗ margini + 2) ∗ timei−1. Moreover, by applying the induction

hypothesis or straightforwardly if i = 1, at most (ordRi−1

f
− ordRi−1

h
)timei−1 steps are

sufficient for the robber to reach an (i − 1)-nice position in the square Ri−1
h . Therefore,

copi cannot enter margin(Ri−1
h ) while the robber is occupying it.

This concludes the proof of the fact that the robber reaches an i-nice position in Di.

– The robber goes down from its current (i− 1)-nice position in square Ri−1
s to an (i− 1)-nice

position to the below-neighbor of Ri−1
s . At some step f , copi is blocking the side below

margin(Ri−1
f ). The robber chooses the right side, if Ri−1

f is closest to this side of Ri, and
the left side otherwise. W.l.o.g, let the robber choose the right side. Then, the robber first
goes to the right, along a path of di squares. Let Ri−1

r be the last of these squares, at which
the robber arrives at step r. Starting from step r, the robber goes down, and after the first
step when margin(Ri−1

s ) is a subgraph of Di, the robber continues going down along a path
of di extra squares in Di (cf. Figure 1(c)).

First, by applying the induction hypothesis or straightforwardly if i = 1, this strategy
performs in at at most (zoomi +detouri)∗ timei−1 steps. By equation 6, (zoomi +detouri)∗
timei−1 = timei.

Let right be the greatest abscissa of the squares in Di, and let h be the last step of the
game. Note that, by Lemma 2, absRi−1

r
< right − margin. Therefore, by the same analysis

as in the last item of the previous case, margin(Ri−1
h ) is a subgraph of Di.

Then, we prove that copi remains outside around(Ri−1
s ) for any square Ri−1

s on the path
between Ri−1

f and Ri−1
r . For this purpose, it is sufficient to observe that the configuration is

similar to the previous strategy, by reflecting the grid along the Ri−1
s -Ci−1

s axis. Moreover,
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this observation proves that when the robber arrives in Ri−1
r , copi neither can stand inside

margin(Ri−1
r ), nor block the bottom side of margin(Ri−1

r ).

Let us show that copi cannot block the bottom side of margin(Ri−1
s ) for any remaining

step s of the game. Indeed, the distance that copi must cover in order to block the bottom
side of margin(Ri−1

s ) is minimum when ordCi−1

f
= ordRi−1

f
− margini − 1 and absCi−1

f
=

absRi−1

f
+ margini. In this case, copi requires at least S = (absRi−1

s
− absCi−1

f
− margini −

1 + ordCi−1

f
− ordRi−1

s
+ margini) ∗ sizei−1 steps to block the bottom side of margin(Ri−1

s ).

By Inequality 2 and Lemma 1, S = (absRi−1
s

− absRi−1

f
− 2 ∗ margini − 2 + ordRi−1

f
−

ordRi−1
s

) ∗ sizei−1 = (di − 2 ∗ margini − 2) ∗ sizei−1 + (ordRi−1

f
− ordRi−1

s
) ∗ sizei−1 >

di ∗ timei−1 + (ordRi−1

f
− ordRi−1

s
) ∗ timei−1 > (di + ordRi−1

f
− ordRi−1

s
) ∗ timei−1 which is

the upper bound on the number of steps after f required to leave Ri−1
s (by applying the

induction hypothesis). Hence, copi cannot block the bottom side of margin(Ri−1
s ) for any

square Ri−1
s on the path between Ri−1

r and Ri−1
h .

Therefore, the configuration is the same as in the previous cases and the lemma holds.

This concludes the proof of the lemma and of Theorem 1 ⊓⊔

We are now able to prove Theorem 1

Proof. More precisely, we prove that, for any k ≥ 1, one robber with speed velocity0 = 2 can
infinitely evade k cops with speed one in any grid of size more than 4akbk(k+1)/2, where a and
b are defined as previously.

Let G be the grid of size 2 ∗ sizek = 2 ∗ size0 ∗
∏

1≤i≤k zoomi = 4 ∗ ak ∗ bk(k+1)/2. Note that,
if one robber can infinitely evade k cops in G, it can perform the same strategy and evade k
cops as well in any bigger grid. It remains to prove that the strategy described in Section 2.2
enables the robber to infinitely evade k cops in G.

Now, let us assume that k cops are placed on vertices of G. G is divided into 4 vertex-disjoint
subgrids of size sizek (i.e., level-k subgrids). Let us fix an ordering of the cops (cop1, . . . , copk).
Choose one of the level-k subgrids not occupied by copk, and denote it by Rk. Notice that, by
Equation 3, Rk contains at least four (k−1)-subgrids Rk−1

1 , . . . , Rk−1
1 such that margin(Rk−1

i ),
1 ≤ i ≤ 4, are disjoint and entirely contained in Rk. Any position inside these subgrids is nice
at level k. Recursively, choose one not occupied by copk−1 to be Rk−1, and proceed until finding
R0. Any position inside R0 is k-nice and we may pick it as the initial position for the robber.
The top level strategy consists in traversing the four level-k subgrids of G along the cycle given
by their adjacencies. Lemma 3 (by taking i = k) proves that, starting from a k-nice position in
some level-k subgrid Rk, the robber can reach a k-nice position in any level-k subgrid adjacent
to Rk, without being caught by the cops. By repeating this process infinitely, the robber can
infinitely evade k cops in G, which proves Theorem 1. ⊓⊔

Corollary 1. For any grid G of size n, and for any 1 ≤ p < q, cp,q(G) > Ω(
√

log(n)).

Proof. Let 0 < α < 1. By setting, size0 = q, a = ⌈2+4q+14q2

(p+α−1)2
⌉, and b > max{2, ln(q/(p+α))

2 }, the

proof the corollary follows the proof of Theorem 1. ⊓⊔

3 Fast robber cop-number with respect to graph containment

We have seen that the number of cops needed to capture a fast robber in a grid G may be
arbitrarily large. It would be interesting to see if a high value of the cop-number of a planar
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graph H is related to a large grid G somehow contained in H. On the negative side, the classical
transformations of edge removal, vertex removal, and edge contraction do not preserve bounded
cop-number. Moreover, there are graphs of arbitrarily large tree-width [Bod98] (that is, somehow
containing a large grid) and cop-number two.

Proposition 2. For any k ≥ 1, there is a planar graph H with c1,2(H) ≤ 2, such that a graph
G with c1,2(G) ≥ k can be obtained from H by contracting edges (resp., by removing edges,
resp., by removing vertices).

Proof. Let k ≥ 1. Let G be the grid of size n ≥ f(k) (cf. definitions in Section 2). For the
following descriptions, let us fix a planar embedding with vertices being the positive integer
points of n × n square. Let SDℓ(G) be the graph obtained by subdividing each edge of G to
create a path of length ℓ. Note that, the reasoning used to prove Theorem 1 can be easily
extended to show that the cop-number of SDℓ(G) also is at least k.

Let us call the column (vertical path) of vertices of abscissa equal d = ⌈n/2⌉ the backbone.
Let H be the graph obtained from SD6d(G) by recursively contracting edges incident to a vertex
of degree two on a line (horizontal path) or on the backbone. In other words, H results from
the graph G by replacing all “vertical” edges, except for these on the backbone, with paths of
length 6d. Let us propose a strategy that allows to capture the robber in H with just two cops.
Put these cops, denoted c, c′, on the intersections of the backbone with the lines of ordinate
1 ≤ o < n and o′ = o+1. The robber chooses its position, and then we start moving towards it.

Suppose that the robber occupies a position of ordinate or between o′ and o′ − 1/2. Start
moving c′ towards the robber, along the line o′. At some point, the robber needs to take a long
path towards the line above or the line below - otherwise c′ captures it at the border of the
grid. Suppose that the robber takes the column of abscissa a, between lines o′ and o. Then c′

continues moving to the intersection of line o′ with P . When c′ reaches this intersection, the
robber has covered a distance of at most 4d downwards P . Indeed, it takes at most d steps for
c′ to reach the intersection, and the initial position of the robber had ordinate at least o′ − 1/2.
Now c moves to the other end of P , along the line o - this distance is at most d, so he arrives
before the robber can reach this point. The robber is blocked on an induced path with both ends
guarded by cops, thus the cops can approach and eventually capture it. So, suppose the robber
takes the column of abscissa a on the way towards the line o′ + 1. Like in the previous case, c′

blocks the intersection of the line o′ with the column a in at most d steps. Then, c first crosses
two edges up along the backbone and then approaches the intersection of P with the line o′ +1,
along this line. It takes at most d + 2 steps. By a similar reasoning to that of the previous case,
they manage to block the ends of P and eventually capture the robber. If the robber is not at
a vertex of ordinate between o and o′, let the cops approach it along the backbone, occupying
two consecutive vertices at each step. This way we recreate the configuration described above,
at the top (or bottom) line of the grid, at the latest. Thus, two cops are sufficient to capture
the robber in H.

Therefore, with contraction of some edges of SD6d(G), the cop-number drops from at least
k down to 2. On the other hand, by contracting all edges incident to a vertex of degree two in
H we obtain G, so the cop-number drastically goes up again.

Now let the column of vertices of abscissa equal d be the backbone of G, and let us consider
SD12d(G). For every edge of a line or of the backbone of G add a path of length two between
the corresponding vertices in SD12d(G), and denote the resulting graph by H. Notice that a
strategy analogous to the one described above also allows to capture the robber with just two
cops in H, i.e., c1,2(H) ≤ 2. By removing (in H) these auxiliary vertices or one edge incident
to each of them, we obtain a graph G in which it is as difficult to capture the robber as in
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SD12d(G), i.e., c1,2(G) ≥ k. On the other hand, by removing some vertices or removing some
edges from SD12d(G) we can create a tree, thus a graph of cop-number two. ⊓⊔

Let G be a distance-hereditary subgraph of a planar graph H, i.e., the distance between
any two vertices in G is the same as the corresponding distance in H. Even in this setting, the
cop-number of G may be higher than that of H. Indeed, take G to be the graph C4, a cycle on
four vertices. Add a universal vertex u to G and denote the resulting graph by H. Catching the
robber in C4 takes 2 cops, whereas just one cop placed on u in H does the job in one move. On
the other hand, take G′ to be K2. This time, taking a distance preserving induced subgraph G′

of G lowers the cop-number.
Nevertheless, we can define a larger family of planar graphs of high cop-number than the

grids themselves.

Theorem 2. Let H be a planar graph containing a grid G of size 4 ∗ sizek as an induced
subgraph, then c1,2(H) ≥ k.

Proof. Notice that if, for each of the vertices of degree 2 in G (the “corners”), we contract
one incident edge, then we obtain a 3-connected planar graph. By a theorem of Whitney (see
Theorem 4.3.2 of [Die05]), a 3-connected planar graph has only one embedding into the sphere,
modulo topological equivalence. So, the embedding of G is also unique, and any embedding of
the whole H has to respect it. That means that, for any two vertices u, v of G, and for any
path P between u and v such that any internal vertex of P belongs to H \ G, whatever be the
embedding of H into the sphere, only two cases may occur, otherwise there would have been a
crossing between an edge of P and an edge of G. Either P belongs to the external face of the
embedding of G, or P belongs to the face limited by an induced 4-vertices cycle C of G, such
that u, v ∈ V (C). In the latter case, since G is an induced subgraph, P contains at least one
vertex in H \ G.

Notice that G can be partitioned into sixteen subgrids of size sizek. Consider the four of
them that are in the center of this partition, and together form a subgrid of size 2 ∗ sizek.
Denote it by G′. Because H has to respect the embedding of G, it cannot be a path P in H \G′

between two vertices of G′ strictly shorter than the paths in G′.
The escape strategy used in the proof of Theorem 1 can be easily adopted to H, with the

robber restricted to stay in G′. The reasoning used in the proof can be easily extended to see
that the robber can find a k-nice initial position, and keep moving in order to keep his position
k-nice forever. The arguments used to show that the cops cannot get too close to the robber
applying our strategy remain valid, since G′ preserves the distances. In other words, there are
no “short-cuts” available in H. Notice that it is a particular property of our escape strategy,
that the absence of short-cuts in H \ G′ ensures that the robber can still escape in H. Indeed,
the strategy of the robber is mainly based on the distance between the robber and the cops. ⊓⊔
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