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What is it about?

• Goal:
• Find “efficient” exact algorithms for difficult problems (NP-hard).

• For some (NP-hard) problems, the difficulty is not due to the size
of the input, but to...
the structure of the input, the size of the solution...

• Introduction to Parameterized Algorithms through Vertex Cover

A very nice book:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555
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Reminder on Minimum Vertex Cover
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Finding a Vertex Cover of minimum size is “difficult"

Compute a Min. Vertex Cover is NP-complete
[Garey,Johnson 1979]

Example of vertex cover
of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover
input: graph G = (V ,E)

For k = 1 to |V |−1 do
For every set S ⊆ V of size k do

If S is a vertex cover of G
then Return S

Time-complexity: O(2|V ||E |)

2|V | : number of subsets of vertices
O(|E |): time to check if vertex cover

⇒ Exponential in the size of the graph.
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Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)
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Vertex Cover of size ≤ k? Two simple Lemmas

G = (V ,E) be a graph vc(G)= min. size of a vertex cover in G

Lemma 1: vc(G)≤ k ⇒ |E | ≤ k(|V |−1)
small vertex cover⇒ “few" edges

proof: Let S ⊆ V be any vertex cover of size at most k . Each vertex of S covers at
most |V |−1 edges. Each edge must be covered.

Lemma 2: Let {x ,y} ∈ E . vc(G) = min{vc(G \ x),vc(G \ y)}+ 1
“for any edge xy , any minimum vertex cover contains at least one of x or y ..."

proof:

• Let S ⊆ V be any vertex cover of G \ x . Then S∪{x} is a vertex cover of G.
Hence vc(G)≤ vc(G \ x)+1 (symmetrically for G \ y )

• Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.

If x ∈ S then S \ x vertex cover of G \ x . Hence vc(G \ x)≤ vc(G)−1.

Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y)≤ vc(G)−1.
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Vertex Cover of size ≤ k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G = (V ,E)

If |E |= 0, Return 0. Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Rec(G\x), B = Rec(G\y), Return min{A,B}+1

Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)
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Parameterized Complexity in brief

Parameterized Problem
A parameterized problem is a language L⊆ Σ∗×Σ∗, where Σ is a finite
alphabet. The first component corresponds to the input. The second
component is called the parameter of the problem.

Class FPT
A parameterized problem is fixed-parameter tractable (FPT) if it can be
determined in time f (k) · |x |O(1) whether (x ,k) ∈ L, where f is a computable
function only depending on k .
The corresponding complexity class is called FPT.

In other words:
Given a (NP-hard) problem with input of size n and a parameter k , a FPT
algorithm runs in time f (k) ·nO(1) for some computable function f .

Examples: k -Vertex Cover, k -Longest Path...

N. Nisse Graph Theory and applications 10/22
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Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k

proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22
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Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k ) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22



Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k ) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22



Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k ) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22



Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover Comparison of previous algorithms

Problem: Let k ∈ N be a fixed integer. Given G = (V ,E), vc(G)≤ k?

time-complexity numerical example
|V |= 104 and k = 10

brute-force for Min. Vertex Cover O(|E | ·2|V |) >> 103000

brute-force, k fixed (Alg1) O(|E ||V |k ) 1048

bounded Branch & Bound (Alg2) O(2k · k |V |) 108

first kernelization (Alg3) O(2k · k2 + k |V |) 2 ·105
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Kernelization

Problem Kernel
Let L be a parameterized problem, that is, L consists of (I,k), where I is the
problem instance and k is the parameter.
Reduction to a problem kernel then means to replace instance (I,k) by a
“reduced" instance (I′,k ′) (called problem kernel) such that

1 k ′ ≤ k , |I′| ≤ g(k) for some function g only depending on k ,

2 (I,k) ∈ L if and only if (I′,k ′) ∈ L, and

3 reduction from (I,k) to (I′,k ′) has to be computable in polynomial time.

A Kernelization algorithm consists in
1 reduce the size of the instance I in time polynomial in |I|= n

2 solve the problem on the reduced instance I′ with size O(g(k))

Time-complexity: O(f (g(k)) + nO(1)

where function f is the time-complexity for solving the problem on I′ (e.g., brute force)
It is a FPT algorithm!!
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FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: ⇐ see previous slide (“decidable" implies that function f exists)
⇒ Kernelization: Apply the FPT algorithm. The kernel is the answer ∈ {YES,NO}.

It is desirable (if possible) to compute “small" kernel, e.g.,

• linear kernel g(k) = O(k)

• quadratic kernel g(k) = O(k2)

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel
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Back to Fractional Relaxation for Vertex Cover
Let G = (V ,E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: From Fractional to Integral Solution
Let (xv )v∈V be a fractional optimal solution.
V0 = {v ∈ V | xv < 1/2} , V1 = {v ∈ V | xv > 1/2} and V1/2 = {v ∈ V | xv = 1/2}
There exists a Minimum (Integral) vertex cover S such that V1 ⊆ S ⊆ V1∪V1/2

Corollary: reduction Rule using LP for Vertex Cover

Let (xv )v∈V be a fractional optimal solution.
Then vc(G)≤ k if and only if vc(G \V1)≤ k−|V1|.
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Linear Kernel for Vertex Cover

Alg4: Linear Kernel for vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |= 0, Return TRUE
Remove isolated vertices
Let (xv )v∈V be an optimal solution obtained by LP
If optimal fractional solution > `, Return FALSE
Else let V1 = {v ∈ V | xv > 1/2}.

If V1 6= /0 then Return Alg4(G \V1, `−|V1|).
Else Apply Alg2(G, `)

While possible, apply LP and add to the solution the vertices w with xw > 1/2.
When it is not possible anymore, then all vertices v are such that xv = 1/2 (check it).
Hence |V | ≤ 2k (Linear kernel).
Then, apply brute force algorithm (e.g., Alg2) to the remaining “small" graph
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Take Aways

• Parameterized Problem: input (size n) + parameter k

• FPT algorithm: in time f (k)nO(1)

• Kernelization: Data reduction

• Kernelization⇔ FPT

• Linear Kernel for Vertex Cover
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