Graph Theory and Optimization
Parameterized Algorithms

Nicolas Nisse

Université Côte d’Azur, Inria, CNRS, I3S, France

October 2018
What is it about?

- **Goal:**
 - Find “efficient” exact algorithms for difficult problems (NP-hard).
 - For some (NP-hard) problems, the difficulty is not due to the size of the input, but to... the structure of the input, the size of the solution...

- Introduction to **Parameterized Algorithms** through Vertex Cover

A very nice book:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
Reminder on Minimum Vertex Cover

Let $G = (V, E)$ be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E$, $e \cap K \neq \emptyset$

set of vertices that “touch” every edge

Finding a Vertex Cover of minimum size is “difficult”

Compute a Min. Vertex Cover is NP-complete

[Garey, Johnson 1979]
Reminder on Minimum Vertex Cover

Let $G = (V, E)$ be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E$, $e \cap K \neq \emptyset$

set of vertices that “touch” every edge

Finding a Vertex Cover of minimum size is “difficult”

Compute a Min. Vertex Cover is NP-complete

[Refs: Garey, Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph
Reminder on Minimum Vertex Cover

Let $G = (V, E)$ be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that “touch” every edge

Finding a Vertex Cover of minimum size is “difficult”

Compute a Min. Vertex Cover is **NP-complete**

[Garey,Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover

Input: graph $G = (V, E)$

For $k = 1$ to $|V| - 1$ **do**

For every set $S \subseteq V$ of size k **do**

If S is a vertex cover of G

then Return S
Reminder on Minimum Vertex Cover

Let $G = (V, E)$ be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E$, $e \cap K \neq \emptyset$

set of vertices that “touch” every edge

Finding a Vertex Cover of minimum size is “difficult”

Compute a Min. Vertex Cover is NP-complete

[Garey,Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover

input: graph $G = (V, E)$

For $k = 1$ to $|V| - 1$ **do**

For every set $S \subseteq V$ of size k **do**

If S is a vertex cover of G

then Return S

Time-complexity: $O(2^{|V|} |E|)$

$2^{|V|}$: number of subsets of vertices

$O(|E|)$: time to check if vertex cover

\Rightarrow Exponential in the size of the graph.
Toward “polynomial" algorithms

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let \(k \in \mathbb{N} \) be a fixed integer.
Give an algorithm for deciding if a graph has a vertex cover of size \(k \).
What is its complexity?

Algorithm 1 for fixed \(k \):

1. Input: graph \(G = (V, E) \)
2. For every set \(S \subseteq V \) of size \(k \) do
 - If \(S \) is a vertex cover of \(G \) then Return \(S \)
3. Return "No vertex cover of size \(\leq k \)"

\[\text{Time-complexity: } O(|V|^k |E|) \]

\[|V|^k : \text{# of subsets of vertices of size } k \]
\[O(|E|) : \text{time to check if vertex cover} \]

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size \(k \) of the solution)
Toward "polynomial" algorithms

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let \(k \in \mathbb{N} \) be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size \(k \)
What is its complexity?

Algorithm 1 for fixed \(k \)

Input: graph \(G = (V, E) \)

For every set \(S \subseteq V \) of size \(k \)
do

If \(S \) is a vertex cover of \(G \) then
Return \(S \)

Return "No vertex cover of size \(\leq k \)"

Time-complexity:
\[O(|V|^k |E|) \]

\(|V|^k\): \# of subsets of vertices of size \(k \)

\(O(|E|) \): time to check if vertex cover

\(\Rightarrow \) Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size \(k \) of the solution)
Toward “polynomial" algorithms

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let \(k \in \mathbb{N} \) be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size \(k \)
What is its complexity?

Algorithm 1 for fixed \(k \)

fixed parameter: \(k \in \mathbb{N} \)
input: graph \(G = (V, E) \)

For every set \(S \subseteq V \) of size \(k \) do

- If \(S \) is a vertex cover of \(G \)
- **then** Return \(S \)

Return “No vertex cover of size \(\leq k \)"
Toward “polynomial” algorithms

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: $k \in \mathbb{N}$
input: graph $G = (V, E)$
For every set $S \subseteq V$ of size k do
 If S is a vertex cover of G
 then Return S
Return “No vertex cover of size $\leq k$"

Time-complexity: $O(|V|^k |E|)$

$|V|^k$: # of subsets of vertices of size k
$O(|E|)$: time to check if vertex cover

\Rightarrow Polynomial in the size of the graph.
Toward “polynomial” algorithms

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: $k \in \mathbb{N}$
input: graph $G = (V, E)$
For every set $S \subseteq V$ of size k do
 If S is a vertex cover of G
 then Return S
Return “No vertex cover of size $\leq k$"

Time-complexity: $O(|V|^k|E|)$
$|V|^k$: # of subsets of vertices of size k
$O(|E|)$: time to check if vertex cover
⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
Vertex Cover of size $\leq k$? Two simple Lemmas

$G = (V, E)$ be a graph

$vc(G) = \text{min. size of a vertex cover in } G$

Lemma 1: $vc(G) \leq k \Rightarrow |E| \leq k(|V| - 1)$

small vertex cover \Rightarrow “few” edges
Vertex Cover of size $\leq k$? Two simple Lemmas

$G = (V, E)$ be a graph

$\text{vc}(G) = \text{min. size of a vertex cover in } G$

Lemma 1: $\text{vc}(G) \leq k \Rightarrow |E| \leq k(|V| - 1)$

Small vertex cover \Rightarrow “few” edges

Proof: Let $S \subseteq V$ be any vertex cover of size at most k. Each vertex of S covers at most $|V| - 1$ edges. Each edge must be covered.
Vertex Cover of size $\leq k$? Two simple Lemmas

$G = (V, E)$ be a graph

$\text{vc}(G) =$ min. size of a vertex cover in G

Lemma 1: $\text{vc}(G) \leq k \Rightarrow |E| \leq k(|V| - 1)$

small vertex cover \Rightarrow “few” edges

proof: Let $S \subseteq V$ be any vertex cover of size at most k. Each vertex of S covers at most $|V| - 1$ edges. Each edge must be covered.

Lemma 2: Let $\{x, y\} \in E$. $\text{vc}(G) = \min\{\text{vc}(G \setminus x), \text{vc}(G \setminus y)\} + 1$

“for any edge xy, any minimum vertex cover contains at least one of x or y...”
Vertex Cover of size \(\leq k \)? Two simple Lemmas

Let \(G = (V, E) \) be a graph

\[\text{vc}(G) = \text{min. size of a vertex cover in } G \]

Lemma 1: \(\text{vc}(G) \leq k \Rightarrow |E| \leq k(|V| - 1) \)

proof: Let \(S \subseteq V \) be any vertex cover of size at most \(k \). Each vertex of \(S \) covers at most \(|V| - 1\) edges. Each edge must be covered.

Lemma 2: Let \(\{x, y\} \in E \).

\[\text{vc}(G) = \min\{\text{vc}(G \setminus x), \text{vc}(G \setminus y)\} + 1 \]

"for any edge \(xy \), any minimum vertex cover contains at least one of \(x \) or \(y \)"

proof:

- Let \(S \subseteq V \) be any vertex cover of \(G \setminus x \). Then \(S \cup \{x\} \) is a vertex cover of \(G \).

 \[\text{Hence } \text{vc}(G) \leq \text{vc}(G \setminus x) + 1 \]

 (symmetrically for \(G \setminus y \))

- Let \(S \subseteq V \) be any vertex cover of \(G \). At least one of \(x \) or \(y \) is in \(S \).

 If \(x \in S \) then \(S \setminus x \) vertex cover of \(G \setminus x \). Hence \(\text{vc}(G \setminus x) \leq \text{vc}(G) - 1 \).

 Otherwise, if \(y \in S \), then \(S \setminus y \) vertex cover of \(G \setminus y \) and \(\text{vc}(G \setminus y) \leq \text{vc}(G) - 1 \).
Vertex Cover of size $\leq k$? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover

Input: graph $G = (V, E)$

- If $|E| = 0$, Return 0.
- Else if $|E| = 1$, Return 1
- Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return $\min\{A, B\} + 1$
Vertex Cover of size $\leq k$?

First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover

Input: graph $G = (V, E)$

- If $|E| = 0$, Return 0.
- Else if $|E| = 1$, Return 1
- Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return $\min\{A, B\} + 1$

Binary tree of depth $O(|V|)$. Complexity: $O(2^{|V|} |E|)$.

N. Nisse

Graph Theory and applications 8/22
Vertex Cover of size $\leq k$? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover

input: graph $G = (V, E)$

If $|E| = 0$, Return 0.
Else if $|E| = 1$, Return 1
Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return $\min\{A, B\} + 1$

Question: $\text{vc}(G) \leq k$? limit recursion-depth + limit \# of edges (Lemma 1)
Vertex Cover of size $\leq k$?

Question: $vc(G) \leq k$?

Limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if $vc(G) \leq k$

input: graph $G = (V, E)$, integer $\ell \leq k$.

- If $|E| > 0$ and $\ell = 0$, Return ∞.
- Else if $|E| = 0$, Return 0.
- Else if $|E| = 1$, Return 1
- Else Let $\{x, y\} \in E$, let $A = \text{Alg2}(G \setminus x, \ell - 1)$, $B = \text{Alg2}(G \setminus y, \ell - 1)$, Return $\min\{A, B\} + 1$

$vc(G) \leq k = 3$?
Vertex Cover of size \(\leq k \)?

First FPT algorithm

Question: \(\text{vc}(G) \leq k? \)

Limit recursion-depth + limit \# of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if \(\text{vc}(G) \leq k \)

Input: graph \(G = (V, E) \), integer \(\ell \leq k \).

- If \(|E| > 0 \) and \(\ell = 0 \), Return \(\infty \).
- Else if \(|E| = 0 \), Return 0.
- Else if \(|E| = 1 \), Return 1
- Else Let \(\{x, y\} \in E \), let \(A = \text{Alg2}(G \setminus x, \ell - 1) \), \(B = \text{Alg2}(G \setminus y, \ell - 1) \), Return \(\min\{A, B\} + 1 \)

Binary tree of depth \(O(k) \): **Complexity:** \(O(2^k|E|) \). By Lem. 1, \(|E| = O(k|V|) \),

Alg2 decides if \(\text{vc}(G) \leq k \) in time \(O(2^k \cdot k|V|) \) (linear in \(|G| \))

| \(V \) and \(k \) are “separated” | \(\Rightarrow \) Fixed Parameterized Tractable (FPT) |
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
Parameterized Complexity in brief

Parameterized Problem

A parameterized problem is a language $L \subseteq \Sigma^* \times \Sigma^*$, where Σ is a finite alphabet. The first component corresponds to the input. The second component is called the parameter of the problem.

Class FPT

A parameterized problem is fixed-parameter tractable (FPT) if it can be determined in time $f(k) \cdot |x|^{O(1)}$ whether $(x, k) \in L$, where f is a computable function only depending on k. The corresponding complexity class is called FPT.

In other words:

Given a (NP-hard) problem with input of size n and a parameter k, a FPT algorithm runs in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Examples: k-Vertex Cover, k-Longest Path...
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
A general GOOD idea: **Data reduction**

Find simple rules to reduce the size of the input

From input \(G \), compute (in polynomial-time) another instance \(G' \) s.t.

\[|G'| < |G| \text{ and a solution for } G \text{ can be deduced from a solution for } G'. \]

Hence, it is sufficient to solve the problem on the (smaller) instance \(G' \)

Back to \(k \)-Vertex Cover:

Lemma 3: Let \(G = (V, E) \) and \(v \in V \) with degree \(> k \).
Then \(v \) belongs to any vertex cover \(S \) of size at most \(k \)

Rule: If \(G \) has a vertex \(v \) of degree \(> k \), \(vc(G) \leq k \iff vc(G \setminus v) \leq k - 1 \).

Lemma 4: \(G = (V, E) \). If \(vc(G) \leq k \) and no vertex of degree \(> k \)
Then \(|E| \leq k^2 \)
Vertex Cover of size $\leq k$?

Data Reduction

A general GOOD idea: **Data reduction**

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

$$|G'| < |G|$$

and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to k-Vertex Cover:

Lemma 3: Let $G = (V, E)$ and $v \in V$ with degree $> k$.

Then v belongs to any vertex cover S of size at most k

Rule: If G has a vertex v of degree $> k$, $\text{vc}(G) \leq k \iff \text{vc}(G \setminus v) \leq k - 1$.

Lemma 4: $G = (V, E)$. If $\text{vc}(G) \leq k$ and no vertex of degree $> k$

Then $|E| \leq k^2$.
Vertex Cover of size $\leq k$?

Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

$$|G'| < |G|$$

and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to k-Vertex Cover:

Lemma 3: Let $G = (V, E)$ and $v \in V$ with degree $> k$.

Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and $|S| > k$.

Rule: If G has a vertex v of degree $> k$, $vc(G) \leq k \iff vc(G \setminus v) \leq k - 1$.

Lemma 4: $G = (V, E)$. If $vc(G) \leq k$ and no vertex of degree $> k$

Then $|E| \leq k^2$
Vertex Cover of size $\leq k$?

Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

$$|G'| < |G|$$

and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to k-Vertex Cover:

Lemma 3: Let $G = (V, E)$ and $v \in V$ with degree $> k$.
Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and $|S| > k$.

Rule: If G has a vertex v of degree $> k$, $vc(G) \leq k \iff vc(G \setminus v) \leq k - 1$.

Lemma 4: $G = (V, E)$. If $vc(G) \leq k$ and no vertex of degree $> k$ Then $|E| \leq k^2$
Vertex Cover of size $\leq k$?

Data Reduction

A general GOOD idea: **Data reduction**

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

$$|G'| < |G|$$

and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to k-Vertex Cover:

Lemma 3: Let $G = (V, E)$ and $v \in V$ with degree $> k$.
Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and $|S| > k$.

Rule: If G has a vertex v of degree $> k$, $vc(G) \leq k \Leftrightarrow vc(G\setminus v) \leq k - 1$.

Lemma 4: $G = (V, E)$. If $vc(G) \leq k$ and no vertex of degree $> k$
Then $|E| \leq k^2$

proof: Each of the $\leq k$ vertices of a Vertex Cover covers at most k edges.
Vertex Cover of size $\leq k$? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if $\text{vc}(G) \leq k$

input: graph $G = (V, E)$, integer $\ell \leq k$.

Remove isolated vertices

- If $|E| = 0$, Return TRUE.
- Else if $\ell = 0$, Return FALSE
- Else if no vertex of degree $> \ell$ and $|V| > \ell^2$, Return FALSE
- Else if no vertex of degree $> \ell$, Apply Alg2(G, ℓ)
- Else Let v be a vertex of degree $> \ell$. Apply Alg3$(G \setminus v, \ell - 1)$.

While there is a “high” degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Alg2) to the remaining “small” graph

Time-complexity: $O(2^k \cdot k^2 + |V| \cdot k)$

(If it is a FPT algorithm!!)

$O(|V| \cdot k)$: find at most k vertices of “high” degree

$O(2^k \cdot k^2)$: application of Alg2 to a graph with $O(k^2)$ edges

Reduction Rule

“Brute Force”

Kernelization: Apply reduction rule(s) until the instance has constant (only dependent on k) size. Then apply “brute force"
Vertex Cover of size \(\leq k \)? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if \(\text{vc}(G) \leq k \)

input: graph \(G = (V, E) \), integer \(\ell \leq k \).

Remove isolated vertices

If \(|E| = 0 \), Return TRUE. Else if \(\ell = 0 \), Return FALSE

Else if no vertex of degree \(> \ell \) and \(|V| > \ell^2 \), Return FALSE

Else if no vertex of degree \(> \ell \), Apply Alg2(\(G, \ell \))

Else Let \(v \) be a vertex of degree \(> \ell \). Apply Alg3(\(G \setminus v, \ell - 1 \)).

While there is a “high” degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Alg2) to the remaining “small” graph

Time-complexity: \(O(2^k \cdot k^2 + |V| \cdot k) \)

\(O(|V| \cdot k) \): find at most \(k \) vertices of “high” degree

\(O(2^k \cdot k^2) \): application of Alg2 to a graph with \(O(k^2) \) edges

(It is a FPT algorithm!!)

Reduction Rule

“Brute Force”

Kernelization: Apply reduction rule(s) until the instance has constant (only dependent on \(k \)) size. Then apply “brute force”
Vertex Cover of size $\leq k$?
First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if $\text{vc}(G) \leq k$

input: graph $G = (V, E)$, integer $\ell \leq k$.

Remove isolated vertices

If $|E| = 0$, *Return TRUE*.
Else if $\ell = 0$, *Return FALSE*

Else if no vertex of degree $> \ell$ and $|V| > \ell^2$, *Return FALSE*

Else if no vertex of degree $> \ell$, Apply Alg2(G, ℓ)

Else Let v be a vertex of degree $> \ell$. Apply Alg3($G \setminus v, \ell - 1$).

While there is a “high” degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Alg2) to the remaining “small” graph

Time-complexity: $O(2^k \cdot k^2 + |V| \cdot k)$

($\text{It is a FPT algorithm!!}$)

$O(|V| \cdot k)$: find at most k vertices of “high” degree

$O(2^k \cdot k^2)$: application of Alg2 to a graph with $O(k^2)$ edges

Reduction Rule

“Brute Force”

Kernelization: Apply reduction rule(s) until the instance has constant (only dependent on k) size. Then apply “brute force”
Vertex Cover

Problem: Let \(k \in \mathbb{N} \) be a fixed integer. Given \(G = (V, E) \), \(vc(G) \leq k? \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time-complexity</th>
<th>Numerical Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>brute-force for Min. Vertex Cover</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>brute-force, (k) fixed (\textit{Alg1})</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>bounded Branch & Bound (\textit{Alg2})</td>
<td>(O(2^k \cdot k</td>
<td>V</td>
</tr>
<tr>
<td>first kernelization (\textit{Alg3})</td>
<td>(O(2^k \cdot k^2 + k</td>
<td>V</td>
</tr>
</tbody>
</table>
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
Kernelization

Problem Kernel

Let \(L \) be a parameterized problem, that is, \(L \) consists of \((I, k)\), where \(I \) is the problem instance and \(k \) is the parameter.

Reduction to a problem kernel then means to replace instance \((I, k)\) by a “reduced” instance \((I', k')\) (called **problem kernel**) such that

1. \(k' \leq k \), \(|I'| \leq g(k)\) for some function \(g \) only depending on \(k \),

2. \((I, k) \in L\) if and only if \((I', k') \in L\), and

3. reduction from \((I, k)\) to \((I', k')\) has to be computable in **polynomial time**.

A *Kernelization* algorithm consists in

1. reduce the size of the instance \(I \) in time polynomial in \(|I| = n\)

2. solve the problem on the reduced instance \(I' \) with size \(O(g(k)) \)

Time-complexity: \(O(f(g(k)) + n^{O(1)}) \)

where function \(f \) is the time-complexity for solving the problem on \(I' \) (e.g., brute force)

It is a FPT algorithm!!
Problem Kernel

Let L be a parameterized problem, that is, L consists of (I, k), where I is the problem instance and k is the parameter.

Reduction to a problem kernel then means to replace instance (I, k) by a “reduced” instance $(I’, k’)$ (called problem kernel) such that

1. $k’ \leq k$, $|I’| \leq g(k)$ for some function g only depending on k,
2. $(I, k) \in L$ if and only if $(I’, k’) \in L$, and
3. reduction from (I, k) to $(I’, k’)$ has to be computable in polynomial time.

A Kernelization algorithm consists in

1. reduce the size of the instance I in time polynomial in $|I| = n$
2. solve the problem on the reduced instance $I’$ with size $O(g(k))$

Time-complexity: $O(f(g(k)) + n^{O(1)})$

where function f is the time-complexity for solving the problem on $I’$ (e.g., brute force)

It is a FPT algorithm!!
FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]
A parameterized problem is FPT if and only if it is decidable and has a kernelization algorithm.

proof: \(\Leftarrow \) see previous slide ("decidable" implies that function \(f \) exists)
\(\Rightarrow \) Kernelization: Apply the FPT algorithm. The kernel is the answer \(\in \{YES, NO\} \).

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
 \[g(k) = O(k) \]
- quadratic kernel
 \[g(k) = O(k^2) \]

Example: Alg3 for Vertex Cover

In what follows: kernelization algorithm for Vertex Cover with linear kernel
Theorem: [Bodlaender et al. 2009]
A parameterized problem is FPT if and only if it is decidable and has a kernelization algorithm.

Proof: \(\Leftarrow \) see previous slide ("decidable" implies that function \(f \) exists)
\(\Rightarrow \) Kernelization: Apply the FPT algorithm. The kernel is the answer \(\in \{\text{YES}, \text{NO}\} \).

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel \(g(k) = O(k) \)
- quadratic kernel \(g(k) = O(k^2) \)

Example: Alg3 for Vertex Cover

In what follows: kernelization algorithm for Vertex Cover with linear kernel
FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if it is **decidable** and has a **kernelization** algorithm.

proof: \iff see previous slide ("decidable" implies that function f exists)

\Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{\text{YES}, \text{NO}\}$.

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel $g(k) = O(k)$
- quadratic kernel $g(k) = O(k^2)$

Example: Alg3 for Vertex Cover

In what follows: kernelization algorithm for Vertex Cover with linear kernel
Theorem: [Bodlaender et al. 2009]
A parameterized problem is **FPT** if and only if it is **decidable** and has a **kernelization** algorithm.

proof: \iff see previous slide ("decidable" implies that function f exists)
\Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{\text{YES}, \text{NO}\}$.

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
 $$g(k) = O(k)$$
- quadratic kernel
 $$g(k) = O(k^2)$$

Example: Alg3 for Vertex Cover

In what follows: kernelization algorithm for Vertex Cover with linear kernel
Outline

1 Vertex Cover: from exponential to polynomial
2 Vertex Cover: a first FPT Algorithm
3 Parameterized Complexity
4 Vertex Cover: a first Kernelization Algorithm
5 Kernelization
6 Linear kernel for Vertex Cover via Linear Programming
7 Conclusion
Back to Fractional Relaxation for Vertex Cover

Let $G = (V, E)$ be a graph

Integer Linear programme (ILP) for Vertex Cover:

<table>
<thead>
<tr>
<th>Min. $\sum_{v \in V} x_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.t.: $x_v + x_u \geq 1 \quad \forall {u, v} \in E$</td>
</tr>
<tr>
<td>$x_v \in {0, 1} \quad \forall v \in V$</td>
</tr>
</tbody>
</table>

Fractional relaxation (LP) for Vertex Cover:

<table>
<thead>
<tr>
<th>Min. $\sum_{v \in V} x_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.t.: $x_v + x_u \geq 1 \quad \forall {u, v} \in E$</td>
</tr>
<tr>
<td>$x_v \geq 0 \quad \forall v \in V$</td>
</tr>
</tbody>
</table>

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution. $V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$.

There exists a Minimum (Integral) vertex cover S such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$.

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution. Then $\text{vc}(G) \leq k$ if and only if $\text{vc}(G \setminus V_1) \leq k - |V_1|$.
Back to Fractional Relaxation for Vertex Cover

Let $G = (V, E)$ be a graph

Integer Linear programme (ILP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]

Fractional relaxation (LP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \geq 0 \quad \forall v \in V
\end{align*}
\]

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution.

$V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$

There exists a Minimum (Integral) vertex cover S such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution.

Then $\text{vc}(G) \leq k$ if and only if $\text{vc}(G \setminus V_1) \leq k - |V_1|$.
Back to Fractional Relaxation for Vertex Cover

Let \(G = (V, E) \) be a graph

Integer Linear programme (ILP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.:} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]

Fractional relaxation (LP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.:} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \geq 0 \quad \forall v \in V
\end{align*}
\]

Theorem: From Fractional to Integral Solution

Let \((x_v)_{v \in V}\) be a fractional optimal solution.
\(V_0 = \{v \in V \mid x_v < 1/2\}\), \(V_1 = \{v \in V \mid x_v > 1/2\}\) and \(V_{1/2} = \{v \in V \mid x_v = 1/2\}\).

There exists a Minimum (Integral) vertex cover \(S\) such that \(V_1 \subseteq S \subseteq V_1 \cup V_{1/2}\)

proof: \(S^*\) be an optimal (integral) solution of Vertex Cover. Let \(S = (S^* \setminus V_0) \cup V_1\).

Clearly \(S\) is a vertex cover. By contradiction, if \(S\) is not optimal, \(|S^* \cap V_0| < |V_1 \setminus S^*|\).

Let \(v \in V_1 \cup V_0\) be a vertex with \(x_v\) as close as possible from 1/2 (exists by assumption). Let \(\varepsilon = |x_v - 1/2|\). Remove \(\varepsilon\) to \(x_w\) for any \(w \in V_1 \setminus S^*\) and add \(\varepsilon\) to \(x_w\) for any \(w \in V_0 \cap S^*\). We get a smaller feasible fractional solution, a contradiction.
Back to Fractional Relaxation for Vertex Cover

Let $G = (V, E)$ be a graph

Integer Linear programme (ILP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.:} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]

Fractional relaxation (LP) for Vertex Cover:

\[
\begin{align*}
\text{Min.} & \quad \sum_{v \in V} x_v \\
\text{s.t.:} & \quad x_v + x_u \geq 1 \quad \forall \{u, v\} \in E \\
& \quad x_v \geq 0 \quad \forall v \in V
\end{align*}
\]

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution.

$V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$

There exists a Minimum (Integral) vertex cover S such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution.

Then $vc(G) \leq k$ if and only if $vc(G \setminus V_1) \leq k - |V_1|$.
Alg4: Linear Kernel for \(vc(G) \leq k \)

input: graph \(G = (V, E) \), integer \(\ell \leq k \).

- If \(|E| = 0 \), Return TRUE
- Remove isolated vertices
- Let \((x_v)_{v \in V}\) be an optimal solution obtained by LP
- If optimal fractional solution > \(\ell \), Return FALSE
- Else let \(V_1 = \{v \in V \mid x_v > 1/2\} \).
 - If \(V_1 \neq \emptyset \) then Return Alg4\((G \setminus V_1, \ell - |V_1|)\).
 - Else Apply Alg2\((G, \ell)\)

While possible, apply LP and add to the solution the vertices \(w \) with \(x_w > 1/2 \).
When it is not possible anymore, then all vertices \(v \) are such that \(x_v = 1/2 \) (check it).
Hence \(|V| \leq 2k \) (Linear kernel).
Then, apply brute force algorithm (e.g., Alg2) to the remaining “small” graph.
Alg4: Linear Kernel for $vc(G) \leq k$

input: graph $G = (V, E)$, integer $\ell \leq k$.

- If $|E| = 0$, Return TRUE
- Remove isolated vertices
- Let $(x_v)_{v \in V}$ be an optimal solution obtained by LP
- If optimal fractional solution $> \ell$, Return FALSE
- Else let $V_1 = \{v \in V \mid x_v > 1/2\}$.
 - If $V_1 \neq \emptyset$ then Return $Alg4(G \setminus V_1, \ell - |V_1|)$.
 - Else Apply $Alg2(G, \ell)$

While possible, apply LP and add to the solution the vertices w with $x_w > 1/2$. When it is not possible anymore, then all vertices v are such that $x_v = 1/2$ (check it). Hence $|V| \leq 2k$ (**Linear kernel**). Then, apply brute force algorithm (e.g., $Alg2$) to the remaining “small” graph
Outline

1. Vertex Cover: from exponential to polynomial
2. Vertex Cover: a first FPT Algorithm
3. Parameterized Complexity
4. Vertex Cover: a first Kernelization Algorithm
5. Kernelization
6. Linear kernel for Vertex Cover via Linear Programming
7. Conclusion
Take Aways

• Parameterized Problem: input (size n) + parameter k
• FPT algorithm: in time $f(k)n^{O(1)}$
• Kernelization: Data reduction
• Kernelization \iff FPT
• Linear Kernel for Vertex Cover