
Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Graph Theory and Optimization
Parameterized Algorithms

Nicolas Nisse

Université Côte d’Azur, Inria, CNRS, I3S, France

October 2018

N. Nisse Graph Theory and applications 1/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

What is it about?

• Goal:
• Find “efficient” exact algorithms for difficult problems (NP-hard).

• For some (NP-hard) problems, the difficulty is not due to the size
of the input, but to...
the structure of the input, the size of the solution...

• Introduction to Parameterized Algorithms through Vertex Cover

A very nice book:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555

N. Nisse Graph Theory and applications 2/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 3/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Reminder on Minimum Vertex Cover
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Finding a Vertex Cover of minimum size is “difficult"

Compute a Min. Vertex Cover is NP-complete
[Garey,Johnson 1979]

Example of vertex cover
of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover
input: graph G = (V ,E)

For k = 1 to |V |−1 do
For every set S ⊆ V of size k do

If S is a vertex cover of G
then Return S

Time-complexity: O(2|V ||E |)

2|V | : number of subsets of vertices
O(|E |): time to check if vertex cover

⇒ Exponential in the size of the graph.

N. Nisse Graph Theory and applications 4/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Reminder on Minimum Vertex Cover
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Finding a Vertex Cover of minimum size is “difficult"

Compute a Min. Vertex Cover is NP-complete
[Garey,Johnson 1979]

Example of vertex cover
of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover
input: graph G = (V ,E)

For k = 1 to |V |−1 do
For every set S ⊆ V of size k do

If S is a vertex cover of G
then Return S

Time-complexity: O(2|V ||E |)

2|V | : number of subsets of vertices
O(|E |): time to check if vertex cover

⇒ Exponential in the size of the graph.

N. Nisse Graph Theory and applications 4/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Reminder on Minimum Vertex Cover
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Finding a Vertex Cover of minimum size is “difficult"

Compute a Min. Vertex Cover is NP-complete
[Garey,Johnson 1979]

Example of vertex cover
of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover
input: graph G = (V ,E)

For k = 1 to |V |−1 do
For every set S ⊆ V of size k do

If S is a vertex cover of G
then Return S

Time-complexity: O(2|V ||E |)

2|V | : number of subsets of vertices
O(|E |): time to check if vertex cover

⇒ Exponential in the size of the graph.

N. Nisse Graph Theory and applications 4/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Reminder on Minimum Vertex Cover
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Finding a Vertex Cover of minimum size is “difficult"

Compute a Min. Vertex Cover is NP-complete
[Garey,Johnson 1979]

Example of vertex cover
of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover
input: graph G = (V ,E)

For k = 1 to |V |−1 do
For every set S ⊆ V of size k do

If S is a vertex cover of G
then Return S

Time-complexity: O(2|V ||E |)

2|V | : number of subsets of vertices
O(|E |): time to check if vertex cover

⇒ Exponential in the size of the graph.

N. Nisse Graph Theory and applications 4/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)

N. Nisse Graph Theory and applications 5/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)

N. Nisse Graph Theory and applications 5/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)

N. Nisse Graph Theory and applications 5/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)

N. Nisse Graph Theory and applications 5/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Toward “polynomial" algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let k ∈ N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k ∈ N
input: graph G = (V ,E)

For every set S ⊆ V of size k do

If S is a vertex cover of G

then Return S

Return “No vertex cover of size ≤ k"

Time-complexity: O(|V |k |E |)
|V |k : # of subsets of vertices of size k
O(|E |): time to check if vertex cover

⇒ Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size k of the solution)

N. Nisse Graph Theory and applications 5/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 6/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Two simple Lemmas

G = (V ,E) be a graph vc(G)= min. size of a vertex cover in G

Lemma 1: vc(G)≤ k ⇒ |E | ≤ k(|V |−1)
small vertex cover⇒ “few" edges

proof: Let S ⊆ V be any vertex cover of size at most k . Each vertex of S covers at
most |V |−1 edges. Each edge must be covered.

Lemma 2: Let {x ,y} ∈ E . vc(G) = min{vc(G \ x),vc(G \ y)}+ 1
“for any edge xy , any minimum vertex cover contains at least one of x or y ..."

proof:

• Let S ⊆ V be any vertex cover of G \ x . Then S∪{x} is a vertex cover of G.
Hence vc(G)≤ vc(G \ x)+1 (symmetrically for G \ y)

• Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.

If x ∈ S then S \ x vertex cover of G \ x . Hence vc(G \ x)≤ vc(G)−1.

Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y)≤ vc(G)−1.

N. Nisse Graph Theory and applications 7/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Two simple Lemmas

G = (V ,E) be a graph vc(G)= min. size of a vertex cover in G

Lemma 1: vc(G)≤ k ⇒ |E | ≤ k(|V |−1)
small vertex cover⇒ “few" edges

proof: Let S ⊆ V be any vertex cover of size at most k . Each vertex of S covers at
most |V |−1 edges. Each edge must be covered.

Lemma 2: Let {x ,y} ∈ E . vc(G) = min{vc(G \ x),vc(G \ y)}+ 1
“for any edge xy , any minimum vertex cover contains at least one of x or y ..."

proof:

• Let S ⊆ V be any vertex cover of G \ x . Then S∪{x} is a vertex cover of G.
Hence vc(G)≤ vc(G \ x)+1 (symmetrically for G \ y)

• Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.

If x ∈ S then S \ x vertex cover of G \ x . Hence vc(G \ x)≤ vc(G)−1.

Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y)≤ vc(G)−1.

N. Nisse Graph Theory and applications 7/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Two simple Lemmas

G = (V ,E) be a graph vc(G)= min. size of a vertex cover in G

Lemma 1: vc(G)≤ k ⇒ |E | ≤ k(|V |−1)
small vertex cover⇒ “few" edges

proof: Let S ⊆ V be any vertex cover of size at most k . Each vertex of S covers at
most |V |−1 edges. Each edge must be covered.

Lemma 2: Let {x ,y} ∈ E . vc(G) = min{vc(G \ x),vc(G \ y)}+ 1
“for any edge xy , any minimum vertex cover contains at least one of x or y ..."

proof:

• Let S ⊆ V be any vertex cover of G \ x . Then S∪{x} is a vertex cover of G.
Hence vc(G)≤ vc(G \ x)+1 (symmetrically for G \ y)

• Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.

If x ∈ S then S \ x vertex cover of G \ x . Hence vc(G \ x)≤ vc(G)−1.

Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y)≤ vc(G)−1.

N. Nisse Graph Theory and applications 7/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Two simple Lemmas

G = (V ,E) be a graph vc(G)= min. size of a vertex cover in G

Lemma 1: vc(G)≤ k ⇒ |E | ≤ k(|V |−1)
small vertex cover⇒ “few" edges

proof: Let S ⊆ V be any vertex cover of size at most k . Each vertex of S covers at
most |V |−1 edges. Each edge must be covered.

Lemma 2: Let {x ,y} ∈ E . vc(G) = min{vc(G \ x),vc(G \ y)}+ 1
“for any edge xy , any minimum vertex cover contains at least one of x or y ..."

proof:

• Let S ⊆ V be any vertex cover of G \ x . Then S∪{x} is a vertex cover of G.
Hence vc(G)≤ vc(G \ x)+1 (symmetrically for G \ y)

• Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.

If x ∈ S then S \ x vertex cover of G \ x . Hence vc(G \ x)≤ vc(G)−1.

Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y)≤ vc(G)−1.

N. Nisse Graph Theory and applications 7/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G = (V ,E)

If |E |= 0, Return 0. Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Rec(G\x), B = Rec(G\y), Return min{A,B}+1

Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)

N. Nisse Graph Theory and applications 8/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G = (V ,E)

If |E |= 0, Return 0. Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Rec(G\x), B = Rec(G\y), Return min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

FE
{A,B,C,F} {A,B,C,E}

DE

{A,B,C,F,D} {A,B,C,F,E}

DF
{A,B,C,E,D} {A,B,C,E,F}

DE
{A,B,F,D} {A,B,F,E}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}

FE
{D,B,C,F} {D,B,C,E}

Binary tree of depth O(|V |). Complexity: O(2|V ||E |).

Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)

N. Nisse Graph Theory and applications 8/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G = (V ,E)

If |E |= 0, Return 0. Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Rec(G\x), B = Rec(G\y), Return min{A,B}+1

Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)

N. Nisse Graph Theory and applications 8/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First FPT algorithm
Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)

N. Nisse Graph Theory and applications 8/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First FPT algorithm
Question: vc(G)≤ k? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |> 0 and `= 0, Return ∞. Else if |E |= 0, Return 0.
Else if |E |= 1, Return 1
Else Let {x ,y} ∈ E , let A = Alg2(G \ x , `−1), B = Alg2(G \ y , `−1), Return
min{A,B}+1

A

D

F

E

B

C

AD
{A} {D}

BF
{A,B} {A,F}

CF
{A,B,C} {A,B,F}

DE
{A,F,D} {A,F,E}

BF
{D,B} {D,F}

CF
{D,B,C} {D,B,F}vc(G)  k = 3vc(G)  k = 3 ?

depth
k=3

Binary tree of depth O(k): Complexity: O(2k |E |). By Lem. 1, |E |= O(k |V |),

Alg2 decides if vc(G)≤ k in time O(2k · k |V |) (linear in |G|)
|V | and k are “separated" ⇒ Fixed Parameterized Tractable (FPT)

N. Nisse Graph Theory and applications 8/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 9/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Parameterized Complexity in brief

Parameterized Problem
A parameterized problem is a language L⊆ Σ∗×Σ∗, where Σ is a finite
alphabet. The first component corresponds to the input. The second
component is called the parameter of the problem.

Class FPT
A parameterized problem is fixed-parameter tractable (FPT) if it can be
determined in time f (k) · |x |O(1) whether (x ,k) ∈ L, where f is a computable
function only depending on k .
The corresponding complexity class is called FPT.

In other words:
Given a (NP-hard) problem with input of size n and a parameter k , a FPT
algorithm runs in time f (k) ·nO(1) for some computable function f .

Examples: k -Vertex Cover, k -Longest Path...

N. Nisse Graph Theory and applications 10/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 11/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k

proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k

proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k
proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k
proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? Data Reduction
A general GOOD idea: Data reduction
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G′ s.t.

|G′|< |G| and a solution for G can be deduced from a solution for G′.

Hence, it is sufficient to solve the problem on the (smaller) instance G′

Back to k -Vertex Cover:

Lemma 3: Let G = (V ,E) and v ∈ V with degree > k .
Then v belongs to any vertex cover S of size at most k
proof: Indeed, if v /∈ S, all its neighbors must belong to it and |S|> k .

Rule: If G has a vertex v of degree > k , vc(G)≤ k ⇔ vc(G \ v)≤ k−1.

Lemma 4: G = (V ,E). If vc(G)≤ k and no vertex of degree > k
Then |E | ≤ k2

proof: Each of the ≤ k vertices of a Vertex Cover covers at most k edges.

N. Nisse Graph Theory and applications 12/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover of size ≤ k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

Remove isolated vertices
If |E |= 0, Return TRUE . Else if `= 0, Return FALSE
Else if no vertex of degree > ` and |V |> `2, Return FALSE
Else if no vertex of degree > `, Apply Alg2(G, `)
Else Let v be a vertex of degree > `. Apply Alg3(G \ v , `−1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2k · k2 + |V | · k) (It is a FPT algorithm!!)

O(|V | · k) : find at most k vertices of “high" degree Reduction Rule
O(2k · k2): application of Alg2 to a graph with O(k2) edges “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k) size. Then apply “brute force"

N. Nisse Graph Theory and applications 13/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Vertex Cover Comparison of previous algorithms

Problem: Let k ∈ N be a fixed integer. Given G = (V ,E), vc(G)≤ k?

time-complexity numerical example
|V |= 104 and k = 10

brute-force for Min. Vertex Cover O(|E | ·2|V |) >> 103000

brute-force, k fixed (Alg1) O(|E ||V |k) 1048

bounded Branch & Bound (Alg2) O(2k · k |V |) 108

first kernelization (Alg3) O(2k · k2 + k |V |) 2 ·105

N. Nisse Graph Theory and applications 14/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 15/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Kernelization

Problem Kernel
Let L be a parameterized problem, that is, L consists of (I,k), where I is the
problem instance and k is the parameter.
Reduction to a problem kernel then means to replace instance (I,k) by a
“reduced" instance (I′,k ′) (called problem kernel) such that

1 k ′ ≤ k , |I′| ≤ g(k) for some function g only depending on k ,

2 (I,k) ∈ L if and only if (I′,k ′) ∈ L, and

3 reduction from (I,k) to (I′,k ′) has to be computable in polynomial time.

A Kernelization algorithm consists in
1 reduce the size of the instance I in time polynomial in |I|= n

2 solve the problem on the reduced instance I′ with size O(g(k))

Time-complexity: O(f (g(k)) + nO(1)

where function f is the time-complexity for solving the problem on I′ (e.g., brute force)
It is a FPT algorithm!!

N. Nisse Graph Theory and applications 16/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Kernelization

Problem Kernel
Let L be a parameterized problem, that is, L consists of (I,k), where I is the
problem instance and k is the parameter.
Reduction to a problem kernel then means to replace instance (I,k) by a
“reduced" instance (I′,k ′) (called problem kernel) such that

1 k ′ ≤ k , |I′| ≤ g(k) for some function g only depending on k ,

2 (I,k) ∈ L if and only if (I′,k ′) ∈ L, and

3 reduction from (I,k) to (I′,k ′) has to be computable in polynomial time.

A Kernelization algorithm consists in
1 reduce the size of the instance I in time polynomial in |I|= n

2 solve the problem on the reduced instance I′ with size O(g(k))

Time-complexity: O(f (g(k)) + nO(1)

where function f is the time-complexity for solving the problem on I′ (e.g., brute force)
It is a FPT algorithm!!

N. Nisse Graph Theory and applications 16/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: ⇐ see previous slide (“decidable" implies that function f exists)
⇒ Kernelization: Apply the FPT algorithm. The kernel is the answer ∈ {YES,NO}.

It is desirable (if possible) to compute “small" kernel, e.g.,

• linear kernel g(k) = O(k)

• quadratic kernel g(k) = O(k2)

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

N. Nisse Graph Theory and applications 17/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: ⇐ see previous slide (“decidable" implies that function f exists)
⇒ Kernelization: Apply the FPT algorithm. The kernel is the answer ∈ {YES,NO}.

It is desirable (if possible) to compute “small" kernel, e.g.,

• linear kernel g(k) = O(k)

• quadratic kernel g(k) = O(k2)

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

N. Nisse Graph Theory and applications 17/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: ⇐ see previous slide (“decidable" implies that function f exists)
⇒ Kernelization: Apply the FPT algorithm. The kernel is the answer ∈ {YES,NO}.

It is desirable (if possible) to compute “small" kernel, e.g.,

• linear kernel g(k) = O(k)

• quadratic kernel g(k) = O(k2)

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

N. Nisse Graph Theory and applications 17/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: ⇐ see previous slide (“decidable" implies that function f exists)
⇒ Kernelization: Apply the FPT algorithm. The kernel is the answer ∈ {YES,NO}.

It is desirable (if possible) to compute “small" kernel, e.g.,

• linear kernel g(k) = O(k)

• quadratic kernel g(k) = O(k2)

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

N. Nisse Graph Theory and applications 17/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 18/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Back to Fractional Relaxation for Vertex Cover
Let G = (V ,E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: From Fractional to Integral Solution
Let (xv)v∈V be a fractional optimal solution.
V0 = {v ∈ V | xv < 1/2} , V1 = {v ∈ V | xv > 1/2} and V1/2 = {v ∈ V | xv = 1/2}
There exists a Minimum (Integral) vertex cover S such that V1 ⊆ S ⊆ V1∪V1/2

Corollary: reduction Rule using LP for Vertex Cover

Let (xv)v∈V be a fractional optimal solution.
Then vc(G)≤ k if and only if vc(G \V1)≤ k−|V1|.

N. Nisse Graph Theory and applications 19/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Back to Fractional Relaxation for Vertex Cover
Let G = (V ,E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: From Fractional to Integral Solution
Let (xv)v∈V be a fractional optimal solution.
V0 = {v ∈ V | xv < 1/2} , V1 = {v ∈ V | xv > 1/2} and V1/2 = {v ∈ V | xv = 1/2}
There exists a Minimum (Integral) vertex cover S such that V1 ⊆ S ⊆ V1∪V1/2

Corollary: reduction Rule using LP for Vertex Cover

Let (xv)v∈V be a fractional optimal solution.
Then vc(G)≤ k if and only if vc(G \V1)≤ k−|V1|.

N. Nisse Graph Theory and applications 19/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Back to Fractional Relaxation for Vertex Cover
Let G = (V ,E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: From Fractional to Integral Solution
Let (xv)v∈V be a fractional optimal solution.
V0 = {v ∈ V | xv < 1/2} , V1 = {v ∈ V | xv > 1/2} and V1/2 = {v ∈ V | xv = 1/2}
There exists a Minimum (Integral) vertex cover S such that V1 ⊆ S ⊆ V1∪V1/2

proof: S∗ be an optimal (integral) solution of Vertex Cover. Let S = (S∗ \V0)∪V1.
Clearly S is a vertex cover. By contradiction, if S is not optimal, |S∗∩V0|< |V1 \S∗|.
Let v ∈ V1∪V0 be a vertex with xv as close as possible from 1/2 (exists by
assumption). Let ε = |xv −1/2|. Remove ε to xw for any w ∈ V1 \S∗ and add ε to xw
for any w ∈ V0∩S∗. We get a smaller feasible fractional solution, a contradiction.

Corollary: reduction Rule using LP for Vertex Cover

Let (xv)v∈V be a fractional optimal solution.
Then vc(G)≤ k if and only if vc(G \V1)≤ k−|V1|.

N. Nisse Graph Theory and applications 19/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Back to Fractional Relaxation for Vertex Cover
Let G = (V ,E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP) for Vertex Cover:

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: From Fractional to Integral Solution
Let (xv)v∈V be a fractional optimal solution.
V0 = {v ∈ V | xv < 1/2} , V1 = {v ∈ V | xv > 1/2} and V1/2 = {v ∈ V | xv = 1/2}
There exists a Minimum (Integral) vertex cover S such that V1 ⊆ S ⊆ V1∪V1/2

Corollary: reduction Rule using LP for Vertex Cover

Let (xv)v∈V be a fractional optimal solution.
Then vc(G)≤ k if and only if vc(G \V1)≤ k−|V1|.

N. Nisse Graph Theory and applications 19/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Linear Kernel for Vertex Cover

Alg4: Linear Kernel for vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |= 0, Return TRUE
Remove isolated vertices
Let (xv)v∈V be an optimal solution obtained by LP
If optimal fractional solution > `, Return FALSE
Else let V1 = {v ∈ V | xv > 1/2}.

If V1 6= /0 then Return Alg4(G \V1, `−|V1|).
Else Apply Alg2(G, `)

While possible, apply LP and add to the solution the vertices w with xw > 1/2.
When it is not possible anymore, then all vertices v are such that xv = 1/2 (check it).
Hence |V | ≤ 2k (Linear kernel).
Then, apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

N. Nisse Graph Theory and applications 20/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Linear Kernel for Vertex Cover

Alg4: Linear Kernel for vc(G)≤ k
input: graph G = (V ,E), integer `≤ k .

If |E |= 0, Return TRUE
Remove isolated vertices
Let (xv)v∈V be an optimal solution obtained by LP
If optimal fractional solution > `, Return FALSE
Else let V1 = {v ∈ V | xv > 1/2}.

If V1 6= /0 then Return Alg4(G \V1, `−|V1|).
Else Apply Alg2(G, `)

While possible, apply LP and add to the solution the vertices w with xw > 1/2.
When it is not possible anymore, then all vertices v are such that xv = 1/2 (check it).
Hence |V | ≤ 2k (Linear kernel).
Then, apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

N. Nisse Graph Theory and applications 20/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Outline

1 Vertex Cover: from exponential to polynomial

2 Vertex Cover: a first FPT Algorithm

3 Parameterized Complexity

4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse Graph Theory and applications 21/22

Vertex Cover 1st FPT Parameterized Complexity 1st Kernel Kernelization Linear Kernel via LP Conclusion

Take Aways

• Parameterized Problem: input (size n) + parameter k

• FPT algorithm: in time f (k)nO(1)

• Kernelization: Data reduction

• Kernelization⇔ FPT

• Linear Kernel for Vertex Cover

N. Nisse Graph Theory and applications 22/22

	Vertex Cover: from exponential to polynomial
	Vertex Cover: a first FPT Algorithm
	Parameterized Complexity
	Vertex Cover: a first Kernelization Algorithm
	Kernelization
	Linear kernel for Vertex Cover via Linear Programming
	Conclusion

