Graph Theory and Optimization Parameterized Algorithms

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

CITS

What is it about?

- Goal:
 - Find "efficient" exact algorithms for difficult problems (NP-hard).
 - For some (NP-hard) problems, the difficulty is not due to the size of the input, but to... the structure of the input, the size of the solution...
- Introduction to Parameterized Algorithms through Vertex Cover

A very nice book:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555

Conclusion

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

N. Nisse

Reminder on Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Finding a Vertex Cover of minimum size is "difficult"

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]

Example of vertex cover of size 7 (in blue)

Reminder on Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Finding a Vertex Cover of minimum size is "difficult"

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]

Example of vertex cover of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

olexity 1^s

Kernel K

Linear Kernel via LF

Conclusion

Reminder on Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Finding a Vertex Cover of minimum size is "difficult"

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]

Example of vertex cover of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Naive Exact Algo. for Min. Vertex Cover input: graph G = (V, E)For k = 1 to |V| - 1 do For every set $S \subseteq V$ of size k do If S is a vertex cover of Gthen Return S

Reminder on Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Finding a Vertex Cover of minimum size is "difficult"

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]

Example of vertex cover of size 7 (in blue)

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph

Time-complexity: $O(2^{|V|}|E|)$

 $2^{|V|}$: number of subsets of vertices O(|E|): time to check if vertex cover

 \Rightarrow Exponential in the size of the graph.

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

cirs

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer Give an algorithm for deciding if a graph has a vertex cover of size kWhat is its complexity?

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer Give an algorithm for deciding if a graph has a vertex cover of size kWhat is its complexity?

Algorithm 1 for fixed k

fixed parameter: $k \in \mathbb{N}$

input: graph G = (V, E)

For every set $S \subseteq V$ of size k do

If S is a vertex cover of G

then Return S

Return "No vertex cover of size $\leq k$ "

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer Give an algorithm for deciding if a graph has a vertex cover of size kWhat is its complexity?

Algorithm 1 for fixed k

fixed parameter: $k \in \mathbb{N}$ input: graph G = (V, E)

For every set $S \subseteq V$ of size k do

If S is a vertex cover of G

then Return S

Return "No vertex cover of size $\leq k$ "

Time-complexity: $O(|V|^k|E|)$

 $|V|^k$: # of subsets of vertices of size k O(|E|): time to check if vertex cover

 \Rightarrow Polynomial in the size of the graph.

Complexity of deciding if a graph has a vertex cover of size 1? of size 2?...

Exercise: Let $k \in \mathbb{N}$ be a fixed integer Give an algorithm for deciding if a graph has a vertex cover of size kWhat is its complexity?

Algorithm 1 for fixed k

fixed parameter: $k \in \mathbb{N}$ input: graph G = (V, E)

For every set $S \subseteq V$ of size k do

If S is a vertex cover of G

then Return S

Return "No vertex cover of size $\leq k$ "

Time-complexity: $O(|V|^k|E|)$

Inia

Graph Theory and applications 5/22

 $|V|^k$: # of subsets of vertices of size k O(|E|): time to check if vertex cover

 \Rightarrow Polynomial in the size of the graph.

Remark: the algorithm is still exponential (in the size *k* of the solution)

cirs

COATI

Conclusior

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

Vertex Cover of size $\leq k$? Two simple Lemmas

G = (V, E) be a graph vc(G) = min. size of a vertex cover in G

Lemma 1: $vc(G) \le k \Rightarrow |E| \le k(|V|-1)$

small vertex cover \Rightarrow "few" edges

125

Conclusior

Vertex Cover of size $\leq k$? Two simple Lemmas

G = (V, E) be a graph vc(G) = min. size of a vertex cover in G

Lemma 1:
$$vc(G) \leq k \Rightarrow |E| \leq k(|V|-1)$$

small vertex cover \Rightarrow "few" edges

proof: Let $S \subseteq V$ be any vertex cover of size at most k. Each vertex of S covers at most |V| - 1 edges. Each edge must be covered.

Conclusion

Vertex Cover of size $\leq k$? Two simple Lemmas

G = (V, E) be a graph vc(G) = min. size of a vertex cover in G

Lemma 1:
$$vc(G) \le k \Rightarrow |E| \le k(|V|-1)$$

small vertex cover \Rightarrow "few" edges

proof: Let $S \subseteq V$ be any vertex cover of size at most k. Each vertex of S covers at most |V| - 1 edges. Each edge must be covered.

Lemma 2: Let $\{x, y\} \in E$. $vc(G) = \min\{vc(G \setminus x), vc(G \setminus y)\} + 1$ "for any edge *xy*, any minimum vertex cover contains at least one of *x* or *y*..."

Vertex Cover of size $\leq k$? Two simple Lemmas

G = (V, E) be a graph vc(G) = min. size of a vertex cover in G

$$\underline{\text{Lemma 1}}: vc(G) \le k \Rightarrow |E| \le k(|V| - 1)$$

small vertex cover \Rightarrow "few" edges

proof: Let $S \subseteq V$ be any vertex cover of size at most k. Each vertex of S covers at most |V| - 1 edges. Each edge must be covered.

Lemma 2: Let $\{x, y\} \in E$. $vc(G) = min\{vc(G \setminus x), vc(G \setminus y)\} + 1$ "for any edge *xy*, any minimum vertex cover contains at least one of *x* or *y*..."

proof:

- Let S ⊆ V be any vertex cover of G \ x. Then S ∪ {x} is a vertex cover of G. Hence vc(G) ≤ vc(G \ x) + 1 (symmetrically for G \ y)
- Let S ⊆ V be any vertex cover of G. At least one of x or y is in S.
 If x ∈ S then S \ x vertex cover of G \ x. Hence vc(G \ x) ≤ vc(G) 1.
 Otherwise, if y ∈ S, then S \ y vertex cover of G \ y and vc(G \ y) ≤ vc(G) 1.

Innia

Conclusior

Vertex Cover of size $\leq k$? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover input: graph G = (V, E)

If |E| = 0, Return 0. Else if |E| = 1, Return 1 Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return min $\{A, B\} + 1$

Conclusion

Vertex Cover of size $\leq k$? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover input: graph G = (V, E)

If |E| = 0, Return 0. Else if |E| = 1, Return 1 Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return min $\{A, B\} + 1$

Conclusior

Vertex Cover of size $\leq k$? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover input: graph G = (V, E)

If |E| = 0, Return 0. Else if |E| = 1, Return 1 Else Let $\{x, y\} \in E$, let $A = \text{Rec}(G \setminus x)$, $B = \text{Rec}(G \setminus y)$, Return min $\{A, B\} + 1$

Question: $vc(G) \le k$? limit recursion-depth + limit # of edges (Lemma 1)

Vertex Cover of size $\leq k$? First FPT algorithm Question: $vc(G) \leq k$? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if $vc(G) \le k$ input: graph G = (V, E), integer $\ell \le k$.If |E| > 0 and $\ell = 0$, Return ∞ .Else if |E| = 1, Return 1Else Let $\{x, y\} \in E$, let $A = Alg2(G \setminus x, \ell - 1)$, $B = Alg2(G \setminus y, \ell - 1)$, Returnmin $\{A, B\} + 1$

Graph Theory and applications 8/22

Conclusio

Vertex Cover of size $\leq k$? First FPT algorithm Question: $vc(G) \leq k$? limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if $vc(G) \le k$ input: graph G = (V, E), integer $\ell \le k$. If |E| > 0 and $\ell = 0$, Return ∞ . Else if |E| = 0, Return 0. Else if |E| = 1, Return 1 Else Let $\{x, y\} \in E$, let $A = Alg2(G \setminus x, \ell - 1)$, $B = Alg2(G \setminus y, \ell - 1)$, Return min $\{A, B\} + 1$

125

Binary tree of depth O(k): Complexity: $O(2^k|E|)$. By Lem. 1, |E| = O(k|V|),

Alg2 decides if $vc(G) \le k$ in time $O(2^k \cdot k |V|)$ (linear in |G|)|V| and k are "separated" \Rightarrow Fixed Parameterized Tractable (FPT)

COATI

Innia

Conclusior

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

Parameterized Complexity in brief

Parameterized Problem

A parameterized problem is a language $L \subseteq \Sigma^* \times \Sigma^*$, where Σ is a finite alphabet. The first component corresponds to the input. The second component is called the parameter of the problem.

Class FPT

A parameterized problem is fixed-parameter tractable (FPT) if it can be determined in time $f(k) \cdot |x|^{O(1)}$ whether $(x, k) \in L$, where *f* is a computable function only depending on *k*.

The corresponding complexity class is called FPT.

In other words:

Given a (NP-hard) problem with input of size *n* and a parameter *k*, a **FPT** algorithm runs in time $f(k) \cdot n^{O(1)}$ for some computable function *f*.

COATI

Examples: *k*-Vertex Cover, *k*-Longest Path...

Outline

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

Conclusion

Vertex Cover of size < k? Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Innia

Vertex Cover of size $\leq k$? Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

|G'| < |G| and a solution for *G* can be deduced from a solution for *G'*.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to *k***-Vertex Cover:**

Lemma 3: Let G = (V, E) and $v \in V$ with degree > k. Then v belongs to any vertex cover S of size at most k

Rule: If G has a vertex v of degree > k, $vc(G) \le k \Leftrightarrow vc(G \setminus v) \le k-1$.

Lemma 4: G = (V, E). If $vc(G) \le k$ and no vertex of degree > kThen $|E| \le k^2$

Conclusion

Vertex Cover of size $\leq k$? Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

|G'| < |G| and a solution for *G* can be deduced from a solution for *G'*.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to k-Vertex Cover:

Lemma 3: Let G = (V, E) and $v \in V$ with degree > k. Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and |S| > k.

Rule: If G has a vertex v of degree > k, $vc(G) \le k \Leftrightarrow vc(G \setminus v) \le k-1$.

Lemma 4: G = (V, E). If $vc(G) \le k$ and no vertex of degree > k. Then $|E| \le k^2$

Inría

Vertex Cover of size $\leq k$? Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

|G'| < |G| and a solution for *G* can be deduced from a solution for *G'*.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to *k***-Vertex Cover:**

Lemma 3: Let G = (V, E) and $v \in V$ with degree > k. Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and |S| > k.

Rule: If G has a vertex v of degree > k, $vc(G) \le k \Leftrightarrow vc(G \setminus v) \le k-1$.

Lemma 4: G = (V, E). If $vc(G) \le k$ and no vertex of degree > kThen $|E| \le k^2$

COATI

Inría

Vertex Cover of size $\leq k$? Data Reduction

A general GOOD idea: Data reduction

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G' s.t.

|G'| < |G| and a solution for *G* can be deduced from a solution for *G'*.

Hence, it is sufficient to solve the problem on the (smaller) instance G'

Back to *k***-Vertex Cover:**

Lemma 3: Let G = (V, E) and $v \in V$ with degree > k. Then v belongs to any vertex cover S of size at most k

proof: Indeed, if $v \notin S$, all its neighbors must belong to it and |S| > k.

Rule: If G has a vertex v of degree > k, $vc(G) \le k \Leftrightarrow vc(G \setminus v) \le k-1$.

COATI

proof: Each of the $\leq k$ vertices of a Vertex Cover covers at most *k* edges.

_**135**

Vertex Cover of size < k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if $vc(G) \le k$

input: graph G = (V, E), integer $\ell \leq k$.

Remove isolated vertices If |E| = 0, Return TRUE. Else if $\ell = 0$, Return FALSE **Else if** no vertex of degree $> \ell$ and $|V| > \ell^2$, *Return FALSE* **Else if** no vertex of degree $> \ell$, Apply $Alg2(G, \ell)$ **Else** Let *v* be a vertex of degree $> \ell$. Apply Alg3($G \setminus v, \ell - 1$).

While there is a "high" degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Alg2) to the remaining "small" graph

N Nisse

Vertex Cover of size < k? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if $vc(G) \le k$

input: graph G = (V, E), integer $\ell \leq k$.

Remove isolated vertices If |E| = 0, Return TRUE. Else if $\ell = 0$, Return FALSE **Else if** no vertex of degree $> \ell$ and $|V| > \ell^2$, *Return FALSE* **Else if** no vertex of degree $> \ell$, Apply $Alg2(G, \ell)$ **Else** Let *v* be a vertex of degree $> \ell$. Apply $Alg3(G \setminus v, \ell - 1)$.

While there is a "high" degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Alg2) to the remaining "small" graph

Time-complexity: $O(2^k \cdot k^2 + |V| \cdot k)$ (It is a FPT algorithm!!)

 $O(|V| \cdot k)$: find at most k vertices of "high" degree **Reduction Rule** $O(2^k \cdot k^2)$: application of Alg2 to a graph with $O(k^2)$ edges "Brute Force"

Vertex Cover of size $\leq k$? First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if $vc(G) \le k$

input: graph G = (V, E), integer $\ell \leq k$.

Remove isolated vertices If |E| = 0, *Return TRUE*. Else if $\ell = 0$, *Return FALSE* Else if no vertex of degree $> \ell$ and $|V| > \ell^2$, *Return FALSE* Else if no vertex of degree $> \ell$, Apply $Alg2(G, \ell)$ Else Let v be a vertex of degree $> \ell$. Apply $Alg3(G \setminus v, \ell - 1)$.

While there is a "high" degree node, add it to the solution. When there are no such nodes, either it remains too much edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., *Alg2*) to the remaining "small" graph

Time-complexity: $O(2^k \cdot k^2 + |V| \cdot k)$ (It is a FPT algorithm!!)

 $O(|V| \cdot k)$: find at most *k* vertices of "high" degree **Reduction Rule** $O(2^k \cdot k^2)$: application of *Alg*2 to a graph with $O(k^2)$ edges "**Brute Force**"

Kernelization: Apply reduction rule(s) until the instance has constant (only dependent on k) size. Then apply "brute force"

COATI

Vertex Cover Comparison of previous algorithms

Problem: Let $k \in \mathbb{N}$ be a fixed integer. Given G = (V, E), $vc(G) \le k$?

	time-complexity	numerical example $ V = 10^4$ and $k = 10$
brute-force for Min. Vertex Cover	$O(E \cdot 2^{ V })$	>> 10 ³⁰⁰⁰
brute-force, <i>k</i> fixed (<i>Alg</i> 1)	$O(E V ^k)$	10 ⁴⁸
bounded Branch & Bound (<i>Alg</i> 2)	$O(2^k \cdot k V)$	10 ⁸
first kernelization (<i>Alg</i> 3)	$O(2^k \cdot k^2 + k V)$	2 · 10 ⁵

cirs

Conclusior

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

Kernelization

Problem Kernel

Let *L* be a parameterized problem, that is, *L* consists of (I, k), where *I* is the problem instance and *k* is the parameter.

Reduction to a problem kernel then means to replace instance (I, k) by a "reduced" instance (I', k') (called problem kernel) such that

- $k' \leq k$, $|l'| \leq g(k)$ for some function g only depending on k,
- 2 $(I,k) \in L$ if and only if $(I',k') \in L$, and

Solution from (I, k) to (I', k') has to be computable in polynomial time.

A Kernelization algorithm consists in

- **)** reduce the size of the instance *I* in time polynomial in |I| = n
-) solve the problem on the reduced instance I' with size O(g(k))

Time-complexity: $O(f(g(k)) + n^{O(1)})$

where function \emph{f} is the time-complexity for solving the problem on \emph{I}' (e.g., brute force)

It is a FPT algorithm!

Conclusion

Kernelization

Problem Kernel

Let *L* be a parameterized problem, that is, *L* consists of (I, k), where *I* is the problem instance and *k* is the parameter.

Reduction to a problem kernel then means to replace instance (I, k) by a "reduced" instance (I', k') (called problem kernel) such that

- $k' \leq k$, $|l'| \leq g(k)$ for some function g only depending on k,
- 2 $(I,k) \in L$ if and only if $(I',k') \in L$, and

Solution from (I, k) to (I', k') has to be computable in polynomial time.

A Kernelization algorithm consists in

- **(**) reduce the size of the instance *I* in time polynomial in |I| = n
- 2 solve the problem on the reduced instance l' with size O(g(k))

Time-complexity: $O(f(g(k)) + n^{O(1)})$

where function f is the time-complexity for solving the problem on I' (e.g., brute force)

COATI

It is a FPT algorithm!!

Innia

FPT vs. Kernelization

Theorem:

[Bodlaender et al. 2009]

A parameterized problem is FPT if and only if

it is decidable and has a kernelization algorithm.

proof: \leftarrow see previous slide ("decidable" implies that function *f* exists) \Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{YES, NO^{-1}\}$

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
- quadratic kernel

g(k) = O(k) $g(k) = O(k^2)$ **mple:** *A/a*3 for Vertex Cover

n what follows: kernelization algorithm for Vertex Cover with linear kerne

FPT vs. Kernelization

Theorem:

[Bodlaender et al. 2009]

A parameterized problem is FPT if and only if

it is decidable and has a kernelization algorithm.

proof: \Leftarrow see previous slide ("decidable" implies that function *f* exists) \Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{YES, NO\}$.

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
- quadratic kernel

g(k) = O(k) $g(k) = O(k^2)$ nple: *Ala*3 for Vertex Cover

n what follows: kernelization algorithm for Vertex Cover with linear kern

Conclusion

FPT vs. Kernelization

Theorem:

[Bodlaender et al. 2009]

A parameterized problem is FPT if and only if

it is decidable and has a kernelization algorithm.

proof: \Leftarrow see previous slide ("decidable" implies that function *f* exists) \Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{YES, NO\}$.

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
- quadratic kernel

g(k)=O(k)

 $g(k) = O(k^2)$

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

FPT vs. Kernelization

Theorem:

[Bodlaender et al. 2009]

A parameterized problem is FPT if and only if

it is decidable and has a kernelization algorithm.

proof: \Leftarrow see previous slide ("decidable" implies that function *f* exists) \Rightarrow Kernelization: Apply the FPT algorithm. The kernel is the answer $\in \{YES, NO\}$.

It is desirable (if possible) to compute "small" kernel, e.g.,

- linear kernel
 - quadratic kernel

g(k)=O(k)

 $g(k) = O(k^2)$

Example: Alg3 for Vertex Cover

• ...

In what follows: kernelization algorithm for Vertex Cover with linear kernel

Innia

Conclusion

Outline

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

Conclusior

Back to Fractional Relaxation for Vertex Cover

Let G = (V, E) be a graph

Integer Linear programme (*ILP*) for Vertex Cover:

$$\begin{array}{rcl} \text{Min.} & \sum_{v \in V} x_v \\ \text{s.t.:} & x_v + x_u & \geq & 1 & \forall \{u, v\} \in E \\ & x_v & \in & \{0, 1\} & \forall v \in V \end{array}$$

Fractional relaxation (LP) for Vertex Cover:

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution. $V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$ There exists a Minimum (Integral) vertex cover *S* such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution. Then $vc(G) \le k$ if and only if $vc(G \setminus V_1) \le k - |V_1|$

Back to Fractional Relaxation for Vertex Cover

Let G = (V, E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

$$\begin{array}{rcl} \text{Min.} & \sum_{v \in V} x_v \\ \text{s.t.:} & x_v + x_u & \geq & 1 & \forall \{u, v\} \in E \\ & x_v & \in & \{0, 1\} & \forall v \in V \end{array}$$

Fractional relaxation (LP) for Vertex Cover:

$$\begin{array}{rcl} \text{Min.} & \sum_{v \in V} x_v \\ \text{s.t.:} & x_v + x_u & \geq & 1 \quad \forall \{u, v\} \in E \\ & x_v & \geq & \mathbf{0} \quad \forall v \in V \end{array}$$

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution. $V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$ There exists a Minimum (Integral) vertex cover *S* such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution. Then $vc(G) \le k$ if and only if $vc(G \setminus V_1) \le k - |V_1|$

Back to Fractional Relaxation for Vertex Cover Let G = (V, E) be a graph

Integer Linear programme (ILP) for Vertex Cover:

$$\begin{array}{rcl} \text{Min.} & \sum_{v \in V} x_v \\ \text{s.t.:} & x_v + x_u & \geq & 1 \quad \forall \{u, v\} \in E \\ & x_v & \in & \{0, 1\} \quad \forall v \in V \end{array}$$

Fractional relaxation (LP) for Vertex Cover:

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution. $V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$ There exists a Minimum (Integral) vertex cover S such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

proof: S^* be an optimal (integral) solution of Vertex Cover. Let $S = (S^* \setminus V_0) \cup V_1$. Clearly S is a vertex cover. By contradiction, if S is not optimal, $|S^* \cap V_0| < |V_1 \setminus S^*|$. Let $v \in V_1 \cup V_0$ be a vertex with x_v as close as possible from 1/2 (exists by assumption). Let $\varepsilon = |x_v - 1/2|$. Remove ε to x_w for any $w \in V_1 \setminus S^*$ and add ε to x_w for any $w \in V_0 \cap S^*$. We get a smaller feasible fractional solution, a contradiction.

CITS

COATI

Back to Fractional Relaxation for Vertex Cover

Let G = (V, E) be a graph

Integer Linear programme (*ILP*) for Vertex Cover:

Fractional relaxation (LP) for Vertex Cover:

Min.	$\sum_{v \in V} x_v$			
s.t.:	$x_v + x_u$	\geq	1	$\forall \{u, v\} \in E$
	X_V	\geq	0	$\forall v \in V$

Theorem: From Fractional to Integral Solution

Let $(x_v)_{v \in V}$ be a fractional optimal solution. $V_0 = \{v \in V \mid x_v < 1/2\}$, $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}$ There exists a Minimum (Integral) vertex cover *S* such that $V_1 \subseteq S \subseteq V_1 \cup V_{1/2}$

Corollary: reduction Rule using LP for Vertex Cover

Let $(x_v)_{v \in V}$ be a fractional optimal solution. Then $vc(G) \le k$ if and only if $vc(G \setminus V_1) \le k - |V_1|$.

Linear Kernel for Vertex Cover

Alg4: Linear Kernel for $vc(G) \le k$ input: graph G = (V, E), integer $\ell \le k$.If |E| = 0, Return TRUERemove isolated verticesLet $(x_v)_{v \in V}$ be an optimal solution obtained by LPIf optimal fractional solution $> \ell$, Return FALSEElse let $V_1 = \{v \in V \mid x_v > 1/2\}$.If $V_1 \ne \emptyset$ then Return Alg4 $(G \setminus V_1, \ell - |V_1|)$.Else Apply Alg2 (G, ℓ)

While possible, apply LP and add to the solution the vertices w with $x_w > 1/2$. When it is not possible anymore, then all vertices v are such that $x_v = 1/2$ (check it). Hence $|V| \le 2k$ (Linear kernel).

Then, apply brute force algorithm (e.g., *Alg*2) to the remaining "small" graph

Linear Kernel for Vertex Cover

Alg4: Linear Kernel for $vc(G) \le k$ input: graph G = (V, E), integer $\ell \le k$.If |E| = 0, Return TRUERemove isolated verticesLet $(x_v)_{v \in V}$ be an optimal solution obtained by LPIf optimal fractional solution $> \ell$, Return FALSEElse let $V_1 = \{v \in V \mid x_v > 1/2\}$.If $V_1 \ne \emptyset$ then Return Alg4 $(G \setminus V_1, \ell - |V_1|)$.Else Apply Alg2 (G, ℓ)

While possible, apply LP and add to the solution the vertices *w* with $x_w > 1/2$. When it is not possible anymore, then all vertices *v* are such that $x_v = 1/2$ (check it). Hence $|V| \le 2k$ (Linear kernel).

COATI

Then, apply brute force algorithm (e.g., *Alg*2) to the remaining "small" graph

Conclusior

- Vertex Cover: from exponential to polynomial
- 2 Vertex Cover: a first FPT Algorithm
- Parameterized Complexity
- 4 Vertex Cover: a first Kernelization Algorithm

5 Kernelization

6 Linear kernel for Vertex Cover via Linear Programming

7 Conclusion

Take Aways

- Parameterized Problem: input (size *n*) + parameter *k*
- FPT algorithm: in time $f(k)n^{O(1)}$
- Kernelization: Data reduction
- Kernelization ⇔ FPT
- Linear Kernel for Vertex Cover

