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What is it about?

e Goal:
e Find “efficient” exact algorithms for difficult problems (NP-hard).

e For some (NP-hard) problems, the difficulty is not due to the size

of the input, but to...
the structure of the input, the size of the solution...

¢ Introduction to Parameterized Algorithms through Vertex Cover

A very nice book:
M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555
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Reminder on Minimum Vertex Cover
Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK # 0
set of vertices that “touch"” every edgeJ

Finding a Vertex Cover of minimum size is “difficult"
Example of vertex cover

Compute a Min. Vertex Cover is NP-complete of size 7 (in biue)
[Garey,Johnson 1979]
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set of vertices that “touch"” every edgeJ

Finding a Vertex Cover of minimum size is “difficult"
Example of vertex cover

Compute a Min. Vertex Cover is NP-complete of size 7 (in biue)
[Garey,Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph )
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Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK # 0
set of vertices that “touch"” every edgeJ

Finding a Vertex Cover of minimum size is “difficult"
Example of vertex cover

Compute a Min. Vertex Cover is NP-complete of size 7 (in biue)
[Garey,Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph )

Naive Exact Algo. for Min. Vertex Cover
input: graph G= (V,E)
Fork=1to |V|—1do
For every set S C V of size k do
If S is a vertex cover of G
then Return S
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Reminder on Minimum Vertex Cover
Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK # 0
set of vertices that “touch"” every edgeJ

Finding a Vertex Cover of minimum size is “difficult"
Example of vertex cover

Compute a Min. Vertex Cover is NP-complete of size 7 (in biue)
[Garey,Johnson 1979]

Exercise: Give an algorithm for computing a min. Vertex Cover in a graph )

Naive Exact Algo. for Min. Vertex Cover Time-complexity: o(z\V\ |E])
input: graph G= (V,E)
Fork=1to|V|—1do

For every set S C V of size k do
If S is a vertex cover of G = Exponential in the size of the graph.
then Return S

2lVI': number of subsets of vertices
O(|E|): time to check if vertex cover
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Toward “polynomial” algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 27...
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Toward “polynomial” algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 27...

Exercise: Let k € N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?
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Toward “polynomial” algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 27...

Exercise: Let k € N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k € N
input: graph G = (V, E)
For every set S C V of size k do

If Sis a vertex cover of G

then Return S

Return “No vertex cover of size < k"
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Toward “polynomial” algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 27...

Exercise: Let k € N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k € N
input: graph G = (V, E)
For every set S C V of size k do

Time-complexity: O(|V|¥|E|)
|V|¥ : # of subsets of vertices of size k

O(|E|): time to check if vertex cover

It S'is a vertex cover of G = Polynomial in the size of the graph.

then Return S

Return “No vertex cover of size < k"
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Toward “polynomial” algorithms
Complexity of deciding if a graph has a vertex cover of size 1? of size 27...

Exercise: Let k € N be a fixed integer
Give an algorithm for deciding if a graph has a vertex cover of size k
What is its complexity?

Algorithm 1 for fixed k

fixed parameter: k € N
input: graph G = (V, E)
For every set S C V of size k do

Time-complexity: O(|V|¥|E|)
|V|¥ : # of subsets of vertices of size k

O(|E|): time to check if vertex cover

It S'is a vertex cover of G = Polynomial in the size of the graph.

then Return S

Return “No vertex cover of size < k"

Remark: the algorithm is still exponential (in the size k of the solution)
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Vertex Cover of size < k? Two simple Lemmas

G=(V,E) be agraph ve(G)= min. size of a vertex cover in G

Lemma 1: ve(G) < k= |E| < k(|V|—1)

small vertex cover = “few" edges
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Vertex Cover of size < k? Two simple Lemmas

G=(V,E) be agraph ve(G)= min. size of a vertex cover in G

Lemma 1: ve(G) < k= |E| < k(|V|—1)

small vertex cover = “few" edges

proof: Let S C V be any vertex cover of size at most k. Each vertex of S covers at
most | V| — 1 edges. Each edge must be covered.
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Vertex Cover of size < k? Two simple Lemmas

G=(V,E) be agraph ve(G)= min. size of a vertex cover in G

Lemma 1: ve(G) < k= |E| < k(|V|—1)

small vertex cover = “few" edges

proof: Let S C V be any vertex cover of size at most k. Each vertex of S covers at
most | V| — 1 edges. Each edge must be covered.

Lemma 2: Let {x,y} € E. ve(G) = min{ve(G\ x),ve(G\ y)} +1

“for any edge xy, any minimum vertex cover contains at least one of x or y..."
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Vertex Cover of size < k? Two simple Lemmas

G=(V,E) be agraph ve(G)= min. size of a vertex cover in G

Lemma 1: ve(G) < k= |E| < k(|V|—1)

small vertex cover = “few" edges

proof: Let S C V be any vertex cover of size at most k. Each vertex of S covers at
most | V| — 1 edges. Each edge must be covered.

Lemma 2: Let {x,y} € E. ve(G) = min{ve(G\ x),ve(G\ y)} +1

“for any edge xy, any minimum vertex cover contains at least one of x or y..."

proof:
® Let SC V be any vertex cover of G\ x. Then SU{x} is a vertex cover of G.
Hence ve(G) < ve(G\ x) + 1 (symmetrically for G\ y)
® Let SC V be any vertex cover of G. At least one of x or y isin S.
If x € Sthen S\ x vertex cover of G\ x. Hence vc(G\ x) < ve(G) —1.
Otherwise, if y € S, then S\ y vertex cover of G\ y and ve(G\ y) < ve(G) — 1.1
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Vertex Cover of size < k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G= (V,E)
If |E| =0, Return 0. Else if |E| =1, Return 1
Else Let {x,y} € E, let A= Rec(G\ x), B=Rec(G\ y), Return min{A, B} + 1
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Vertex Cover of size < k? First FPT algorithm
Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G= (V,E)
If |E| =0, Return 0. Else if |E| =1, Return 1
Else Let {x,y} € E, let A= Rec(G\ x), B=Rec(G\ y), Return min{A, B} + 1

{AI\) - B ©
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@ B)/ ~— AF B|F ~—
, . {D,B} {D,F}
/ \ i
DE CF
b ~— /7 \ |
{A,EIS,C) {A,B(F) {A,FD} {AFE} {D,Bi,C} {D,B,F}
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/ ~
DE DF
/O~ | >
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Binary tree of depth O(| V). Complexity: O(2!YI|E]).
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Vertex Cover of size < k? First FPT algorithm

Lemma 2 proves the correctness of the following algorithm

Rec: Branch & Bound Algorithm for computing Minimum size Vertex Cover
input: graph G= (V,E)
If |E| =0, Return 0. Else if |E| = 1, Return 1
Else Let {x,y} € E, let A= Rec(G\ x), B=Rec(G\ y), Return min{A, B} + 1

Question: vc(G) < k?  limit recursion-depth + limit # of edges (Lemma 1)
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Vertex Cover of size < k? First FPT algorithm

Question: vc(G) < k?  limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if ve(G) < k
input: graph G = (V, E), integer £ < k.
If |E| > 0 and ¢ =0, Return co. Else if |E| = 0, Return 0.
Else if |E| = 1, Return 1
Else Let {x,y} € E,let A= Alg2(G\ x,{ —1), B=Alg2(G\ y,{ —1), Return

min{A, B} + 1
AD
(A) % ® @ - i ©
BF BF
s~ depth
. © (AB {A,F\ o8 on kfs
(0)—E) / i -
_CF PE_ CF
'UC(G) <k=3 ? {A,B,C} {A,B,F} {AJFD} {AFE} {D,B,C} {D,B,F}
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Vertex Cover of size < k? First FPT algorithm

Question: vc(G) < k?  limit recursion-depth + limit # of edges (Lemma 1)

Alg2: Branch & Bound Algorithm for deciding if ve(G) < k
input: graph G = (V, E), integer £ < k.
If |E| > 0 and ¢ =0, Return co. Else if |E| = 0, Return 0.
Else if |E| = 1, Return 1
Else Let {x,y} € E,let A= Alg2(G\ x,{ —1), B=Alg2(G\ y,{ —1), Return

min{A, B} + 1
AD
(A) @ ® @ - i ©
BF BF
s~ depth
. e (AB} {A,F\ {D!B} \{D,F} kPS
(0)—E) / i =
_CF PE_ CF
'UC(G) < k=37 {A,B,C} {A,B,F} {AJFD} {AFE} {D,B,C} {D,B,F}

Binary tree of depth O(k): Complexity: O(2%|E|). By Lem. 1, |E| = O(k|V|),

Alg2 decides if ve(G) < k in time O(2% - k| V) (linearin |Gl)
|V| and k are “separated” = Fixed Parameterized Tractable (FPT)
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Parameterized Complexity in brief

Parameterized Problem

A parameterized problem is a language L C X* x X*, where X is a finite
alphabet. The first component corresponds to the input. The second
component is called the parameter of the problem.

Class FPT

A parameterized problem is fixed-parameter tractable (FPT) if it can be
determined in time f(k) - |x|°(") whether (x, k) € L, where f is a computable
function only depending on k.

The corresponding complexity class is called FPT.

| A

| A

In other words:

Given a (NP-hard) problem with input of size n and a parameter k, a FPT
algorithm runs in time f(k) - n°(") for some computable function f.

N

Examples: k-Vertex Cover, k-Longest Path...
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Vertex Cover of size < k? Data Reduction
A general GOOD idea:

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G’ s.t.
|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G’
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Vertex Cover of size < k? Data Reduction
A general GOOD idea:

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G’ s.t.
|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G’

Back to k-Vertex Cover:

Lemma 3: Let G= (V,E) and v € V with degree > k.

Then v belongs to any vertex cover S of size at most k
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A general GOOD idea:

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G’ s.t.
|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G’

Back to k-Vertex Cover:
Lemma 3: Let G= (V,E) and v € V with degree > k.

Then v belongs to any vertex cover S of size at most k

proof: Indeed, if v ¢ S, all its neighbors must belong to it and |S| > k.
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Vertex Cover of size < k? Data Reduction
A general GOOD idea:

Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G’ s.t.
|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G’

Back to k-Vertex Cover:

Lemma 3: Let G= (V,E) and v € V with degree > k.

Then v belongs to any vertex cover S of size at most k
proof: Indeed, if v ¢ S, all its neighbors must belong to it and |S| > k.

Rule: If G has a vertex v of degree > k, vc(G) < k < ve(G\ v) < k—1.
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Vertex Cover of size < k? Data Reduction

A general GOOD idea:
Find simple rules to reduce the size of the input

From input G, compute (in polynomial-time) another instance G’ s.t.
|G'| < |G| and a solution for G can be deduced from a solution for G'.

Hence, it is sufficient to solve the problem on the (smaller) instance G’

Back to k-Vertex Cover:
Lemma 3: Let G= (V,E) and v € V with degree > k.

Then v belongs to any vertex cover S of size at most k
proof: Indeed, if v ¢ S, all its neighbors must belong to it and |S| > k.

Rule: If G has a vertex v of degree > k, vc(G) < k < ve(G\ v) < k—1.

Lemma 4: G= (V,E). If ve(G) < k and no vertex of degree > k

Then |E| < k2

proof: Each of the < k vertices of a Vertex Cover covers at most k edges.
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Vertex Cover of size < k?  First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if ve(G) < k
input: graph G = (V, E), integer £ < k.
Remove isolated vertices
If |E| =0, Return TRUE.  Else if { = 0, Return FALSE
Else if no vertex of degree > ¢ and | V| > ¢2, Return FALSE
Else if no vertex of degree > ¢, Apply Alg2(G,¥)
Else Let v be a vertex of degree > ¢. Apply Alg3(G\ v,£—1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph
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Vertex Cover of size < k?  First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if ve(G) < k
input: graph G = (V, E), integer £ < k.
Remove isolated vertices
If |E| =0, Return TRUE.  Else if { = 0, Return FALSE
Else if no vertex of degree > ¢ and | V| > ¢2, Return FALSE
Else if no vertex of degree > ¢, Apply Alg2(G,¥)
Else Let v be a vertex of degree > ¢. Apply Alg3(G\ v,£—1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

Time-complexity: O(2K - k% + | V| - k) (Itis a FPT algorithm!!)

O(|V|- k) : find at most k vertices of “high" degree Reduction Rule
O(2% - k?): application of Alg2 to a graph with O(k?) edges  “Brute Force"
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Vertex Cover of size < k?  First Kernelization algorithm

Alg3: Kernelization Algorithm for deciding if ve(G) < k
input: graph G = (V, E), integer £ < k.
Remove isolated vertices
If |E| =0, Return TRUE.  Else if { = 0, Return FALSE
Else if no vertex of degree > ¢ and | V| > ¢2, Return FALSE
Else if no vertex of degree > ¢, Apply Alg2(G,¥)
Else Let v be a vertex of degree > ¢. Apply Alg3(G\ v,£—1).

While there is a “high" degree node, add it to the solution. When there are no such
nodes, either it remains too much edges to have a small vertex cover. Otherwise,
apply brute force algorithm (e.g., Alg2) to the remaining “small" graph
Time-complexity: O(2% - k? + | V|- k) (Itis a FPT algorithm!!)

O(|V|- k) : find at most k vertices of “high" degree Reduction Rule
O(2% - k?): application of Alg2 to a graph with O(k?) edges  “Brute Force"

Kernelization: Apply reduction rule(s) until the instance has constant (only
dependent on k) size. Then apply “brute force"
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Vertex Cover Comparison of previous algorithms

Problem: Let k € N be a fixed integer. Given G= (V, E), ve(G) < k?

time-complexity numerical example
|V|=10*and k=10
brute-force for Min. Vertex Cover O(|E| -2V >> 103000
brute-force, k fixed (Alg1) O(|E||IV[¥) 1048
bounded Branch & Bound (Alg2) o(2% - k| v|) 108
first kernelization (Alg3) O(2K - K2+ k|V|) 2-10°

x)
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Kernelization

Problem Kernel

Let L be a parameterized problem, that is, L consists of (/, k), where / is the
problem instance and k is the parameter.

Reduction to a problem kernel then means to replace instance (/,k) by a
“reduced" instance (I, k") (called problem kernel) such that

@ K <k, |l <g(k)for some function g only depending on k,
Q (/,k) € Litand onlyif (/,k") € L, and

© reduction from (/, k) to (', k") has to be computable in polynomial time.

N. Nisse _izs— [ COATI 0 Ciada= Graph Theory and applications 16/22



Kernelization

Problem Kernel

Let L be a parameterized problem, that is, L consists of (/, k), where / is the
problem instance and k is the parameter.

Reduction to a problem kernel then means to replace instance (/,k) by a
“reduced" instance (I, k") (called problem kernel) such that

@ K <k, |l <g(k)for some function g only depending on k,
Q (/,k) € Litand onlyif (/,k") € L, and

© reduction from (/, k) to (', k") has to be computable in polynomial time.

v

A Kernelization algorithm consists in
@ reduce the size of the instance /in time polynomial in |/| = n
@ solve the problem on the reduced instance /' with size O(g(k))
Time-complexity: O(f(g(k)) + n°()
where function f is the time-complexity for solving the problem on /' (e.g., brute force)
Itis a FPT algorithm!!
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FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.
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FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]

A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: < see previous slide (“decidable" implies that function f exists)
= Kernelization: Apply the FPT algorithm. The kernel is the answer € { YES, NO}. J
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FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]
A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: < see previous slide (“decidable" implies that function f exists)
= Kernelization: Apply the FPT algorithm. The kernel is the answer € { YES, NO}. J

It is desirable (if possible) to compute “small" kernel, e.g.,

e linear kernel g(k) = O(k)
e quadratic kernel g(k) = O(k?)
Example: Alg3 for Vertex Cover
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FPT vs. Kernelization

Theorem: [Bodlaender et al. 2009]
A parameterized problem is FPT if and only if
it is decidable and has a kernelization algorithm.

proof: < see previous slide (“decidable" implies that function f exists)
= Kernelization: Apply the FPT algorithm. The kernel is the answer € { YES, NO}. J

It is desirable (if possible) to compute “small" kernel, e.g.,

e linear kernel g(k) = O(k)
e quadratic kernel g(k) = O(k?)
Example: Alg3 for Vertex Cover

In what follows: kernelization algorithm for Vertex Cover with linear kernel
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Back to Fractional Relaxation for Vertex Cover
Let G=(V,E) be a graph

Integer Linear programme (/LP) for Vertex Cover: Fractional relaxation (LP) for Vertex Cover:

Min. Y x Min. Y x
veV veV
st: xy+x, > 1 Y{uv}eE st xy+Xxy

1 YuvleE
x, € {0,1} YveV Xy 0

YveVv

IV IV

=
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Back to Fractional Relaxation for Vertex Cover
Let G=(V,E) be a graph

Integer Linear programme (/LP) for Vertex Cover: Fractional relaxation (LP) for Vertex Cover:
Min. Y x, Min. Y x,
veV veV
st xe+x, > 1 WuvleE st x+x, > 1 WuvleE
x, € {01} YveV x, > 0 YveVv

Theorem: From Fractional to Integral Solution

Let (xv)vev be a fractional optimal solution.
Vo={veV|x <1/2},Vi={veV|x >1/2}and V; p ={veV|x, =1/2}
There exists a Minimum (Integral) vertex cover S such that V4 C S C V4 U V1/2
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Back to Fractional Relaxation for Vertex Cover
Let G=(V,E) be a graph

Integer Linear programme (/LP) for Vertex Cover: Fractional relaxation (LP) for Vertex Cover:

Min. Y x, Min. Y x,
veV veV
st xy+x, > 1 Y{uv}eE st Xy +Xxy

x, € {01} Yvev Xy

Theorem: From Fractional to Integral Solution

Let (xy)vev be a fractional optimal solution.
Vo={veV|x <1/2},Vi={veV|x >1/2}and V; , ={ve V|x, =1/2}
There exists a Minimum (Integral) vertex cover S such that V4 C S C V4 U V1/2

1 YuvleE
0 YveV

IV IV

proof: S* be an optimal (integral) solution of Vertex Cover. Let S= (S*\ Vo) U V4.
Clearly S'is a vertex cover. By contradiction, if S'is not optimal, |S* N Vp| < | V4 \ S¥|.
Let v € V4 U V be a vertex with x, as close as possible from 1/2 (exists by
assumption). Let € = |x, — 1/2|. Remove ¢ to x,, for any w € V4 \ S* and add € to xy,
for any w € Vo N S*. We get a smaller feasible fractional solution, a contradiction.
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Back to Fractional Relaxation for Vertex Cover
Let G=(V,E) be a graph

Integer Linear programme (/LP) for Vertex Cover: Fractional relaxation (LP) for Vertex Cover:
Min. Y x, Min. Y x,
veV veV
st xe+x, > 1 WuvleE st x+x, > 1 WuvleE
x, € {01} YveV x, > 0 YveV

Theorem: From Fractional to Integral Solution

Let (xv)vev be a fractional optimal solution.
Vo={veV|x <1/2},Vi={veV|x >1/2}and V; p ={veV|x, =1/2}
There exists a Minimum (Integral) vertex cover S such that V4 C S C V4 U V1/2

Corollary: reduction Rule using LP for Vertex Cover

Let (xv)vev be a fractional optimal solution.
Then ve(G) < k if and only if ve(G\ V1) < k—|V4].
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Linear Kernel for Vertex Cover

Alg4: Linear Kernel for ve(G) < k
input: graph G = (V, E), integer £ < k.
If |E| =0, Return TRUE
Remove isolated vertices
Let (xv)vev be an optimal solution obtained by LP
If optimal fractional solution > ¢, Return FALSE
Else let Vi = {ve V|x, > 1/2}.

If Vi # 0 then Return Alg4(G\ V4,4 — | V4]).
Else Apply Alg2(G,?)

)
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Linear Kernel for Vertex Cover

Alg4: Linear Kernel for ve(G) < k
input: graph G = (V, E), integer ¢ < k.
If |E| = 0, Return TRUE
Remove isolated vertices
Let (xy)vev be an optimal solution obtained by LP
If optimal fractional solution > ¢, Return FALSE
Else let Vi = {ve V|x, > 1/2}.

If Vi # 0 then Return Alg4(G\ V1,£— |V4)).
Else Apply Alg2(G,?)

While possible, apply LP and add to the solution the vertices w with x,, > 1/2.
When it is not possible anymore, then all vertices v are such that x, = 1/2 (check it).
Hence |V| < 2k (Linear kernel).

Then, apply brute force algorithm (e.g., Alg2) to the remaining “small" graph

x)

N. Nisse 25— [Hege COATI @ Cinta= Graph Theory and applications 20/22



Outline

a Vertex Cover: from exponential to polynomial

e Vertex Cover: a first FPT Algorithm

Q Parameterized Complexity

e Vertex Cover: a first Kernelization Algorithm

e Kernelization

G Linear kernel for Vertex Cover via Linear Programming

e Conclusion

N. Nisse i35 | = COATI 0 Uiwza=  Graph Theory and applications 21/22



Take Aways

Parameterized Problem: input (size n) 4 parameter k
FPT algorithm: in time f(k)n°(")

Kernelization: Data reduction

Kernelization < FPT

Linear Kernel for Vertex Cover

=
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