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Motivation

e Goal:
e Find “good” solutions for difficult problems (NP-hard).

o Be able to quantify the “goodness” of the given solution.

e Presentation of a technique to get approximation algorithms:
fractional relaxation of integer linear programs.
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Q Approximation algorithms using Fractional Relaxation
@ Vertex Cover
@ Set Cover
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Approximation Algorithms

1 a maximization Problem

c-Approximation for 1 1 < ¢ constant or depends on input length

e deterministic polynomial-time algorithm .o/

e for any input /, & returns a solution with value at least OPT(/)/c.

1 a minimization Problem

c-Approximation for 1 1 < ¢ constant or depends on input length

e deterministic polynomial-time algorithm .o/

e for any input /, & returns a solution with value at most c- OPT (/).
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Approximation Algorithms

Definition: An approximation algorithm produces
e in polynomial time
e a feasible solution

e whose objective function value is close to the optimal OPT, by
close we mean within a guaranteed factor of the optimal.

Example: a factor 2 approximation algorithm for the cardinality vertex
cover problem, i.e. an algorithm that finds a cover of cost < 2- OPT in
time polynomial in | V/|.
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Approx: Max. Matching vs. Min. Vertex Cover
Let G=(V,E) be a graph

Matching: set M of pairwise disjoint edges in a graph (M C E)J
Compute a Max. Matching is polynomial-time solvable [Edmonds 1965]
Vertex Cover: set K C V suchthatVe € E, eNK # 0

set of vertices that “touch"” every edgeJ

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]
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N. Nisse

Approx: Max. Matching vs. Min. Vertex Cover
Let G=(V,E) be a graph

Matching: set M of pairwise disjoint edges in a graph (M C E)J
Compute a Max. Matching is polynomial-time solvable [Edmonds 1965]
Vertex Cover: set K C V suchthatVe € E, eNK # 0

set of vertices that “touch"” every edgeJ

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]
Exercise: Prove that for any graph G,
maxMatching(G) < minCover(G) < 2- maxMatching(G)

Deduce a (polynomial-time) 2-approximation algorithm for computing
minCover(G)
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Approx: Max. Matching vs. Min. Vertex Cover

Solution of previous exercise

Theorem: for any graph G

maxMatching(G) < minCover(G) < 2 - maxMatching(G)

Proof: Let K C V be a cover of G and M C E be a matching of G.
By definition of K: KNe # 0 forany e e M
Moreover, by definition of M, eNf =0 for any e,f € M
= M| < |K].

Let M C E be a maximum matching of G
Then K = {v | 3e € M, v € e} is a cover of G (if not, M is not maximum)
= minCover(G) < |K| =2- |M|

)
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Approximation via Fractional Relaxation

e Reminder:
e Integer Linear Programs often hard to
solve (NP-hard). y
e Linear Programs (with real numbers)
easier to solve (polynomial-time
algorithms).

e |dea:
e 1- Relax the integrality constraints;
e 2- Solve the (fractional) linear program and
then;
e 3- Round the solution to obtain an integral
solution.
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2-Approximation for Vertex Cover using LP
Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK # 0
set of vertices that “touch"” every edgeJ

Integer Linear programme (/LP): Fractional relaxation (LP):

Min. Y x, Min. Y x,
veV veV
st: xy+x, > 1 WuvleE st xy+Xxy

1 YuvleE
x, € {0,1} YveV Xy 0

YveVv

IV IV
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2-Approximation for Vertex Cover using LP
Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK # 0
set of vertices that “touch"” every edgeJ
Integer Linear programme (/LP): Fractional relaxation (LP):
Min. Y x, Min. Y x,
veV veV
st: xy+x, > 1 WuvleE st: x+x, > 1 Yuv}leE
x, € {01} YveV x, > 0 YvevVv
Exercise: Prove that the LP has an half-integral optimal solution
(i.e., x, €{0,1/2,1 })J
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2-Approximation for Vertex Cover using LP
Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK # 0
set of vertices that “touch"” every edgeJ
Integer Linear programme (/LP): Fractional relaxation (LP):
Min. Y x, Min. Y x,
veV veV
st: xy+x, > 1 WuvleE st: x+x, > 1 Yuv}leE
x, € {01} YveV x, > 0 YvevVv
Exercise: Prove that the LP has an half-integral optimal solution
(i.e., x, €{0,1/2,1 })J

Exercise: Deduce a 2-approximation algorithm for Min. Vertex Cover )
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2-Approximation for Vertex Cover using LP

Theorem: Fractional Vertex Cover has an optimal solution

Proof: y: optimal solution with the largest number of coordinates in {0,1/2,1}.
For purpose of contradiction: y not half-integral: Set

e=min{y,,[yy— 3[,1—w|veVandy, ¢{0,1/2,1}}.

Consider y’ and y”, feasible solutions, defined as follows:

y—g, f0<y <3, wte, o<y <3,
=25 wte, i<y <1, andy/=< y,—g ifl<y <1,
Yv, otherwise. Yv, otherwise.

Yoeviv = % (Evevyi+Yvevyl). ¥y andy” are also optimal solutions.
By choice of €, y’ and y” has more coordinates in {0,1/2,1} than y, a contradiction.

| \

Theorem: 2-Approximation of Vertex Cover

Proof: First solve FRACTIONAL VERTEX COVER and derive an half-integral optimal
solution y' to it. Define y by y, = 1 if and only if y/ € {1/2;1},i.e., y, = [y/]
Clearly, y is an admissible solution of VERTEX COVER. Moreover, by definition

Y w<2Y yi=2-vI(G)<2-v(aQ).
veVv vev
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Set Cover

e Problem: Given a universe U of n elements, a collection of
subsets of U, § = Sy, ..., Sk, and a cost function ¢ : S — Q™ find
a minimum cost subcollection of S that covers all elements of U.

e Model numerous classical problems as special cases of set
cover: vertex cover, minimum cost shortest path...

e Definition: The frequency of an element is the number of sets it is
in. The frequency of the most frequent element is denoted by f.

e Various approximation algorithms for set cover achieve one of the
two factors O(logn) or f.
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Fractional relaxation

Write a linear program to solve set cover.
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Fractional relaxation

Write a linear program to solve set cover.

Var.. xs=1if Spickedin &,
Xxs = 0 otherwise

min  Yses ¢(S)xs

YsecsXs > 1 (Vee V)
xs €{0,1} (vsej)
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Fractional relaxation

Write a linear program to solve set cover.

Var.. xs=1if Spickedin &, Var.: 1>x5>0
Xxs = 0 otherwise

min  Yses ¢(S)xs min  Yses 6(S)xs

s. t. s. t
YseesXs =1 (Vee U) Yseesxs>1 (VeeU)
xs €{0,1} (Vvse§) Xxs >0 (Vses)
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Fractional relaxation

e The (fractional) optimal solution of the relaxation is a lower bound
of the optimal solution of the original integer linear program.

e Example in which a fractional set cover may be cheaper than the
optimal integral set cover:
Input: U = {e,f, g} and the specified sets Sy = {e, f},
S, ={f,g}, S3 = {e, g}, each of unit cost.
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Fractional relaxation

e The (fractional) optimal solution of the relaxation is a lower bound
of the optimal solution of the original integer linear program.

e Example in which a fractional set cover may be cheaper than the
optimal integral set cover:
Input: U = {e,f, g} and the specified sets Sy = {e, f},
S, ={f,g}, S3 = {e, g}, each of unit cost.
e An integral cover of cost 2 (must pick two of the sets).
e A fractional cover of cost 3/2 (each set picked to the extent of 1/2).
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A simple rounding algorithm

Algorithm:
e 1- Find an optimal solution to the LP-relaxation.

e 2- (Rounding) Pick all sets S for which xs > 1/f in this solution.
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e Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

e Proof:
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e Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

e Proof: To be proved:

e 1) All elements are covered.
e 2) The cover returned by the algorithm is of cost at most f- OPT

=5
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e Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

e Proof: To be proved:
e 1) All elements are covered.
e 2) The cover returned by the algorithm is of cost at most f- OPT
Proofs:
e proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.
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e Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

e Proof: To be proved:

e 1) All elements are covered.

e 2) The cover returned by the algorithm is of cost at most f- OPT
Proofs:

e proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.

e proof of 2) The rounding process increases xs by a factor of at
most f. Therefore, the cost of & is at most f times the cost of the
fractional cover.

OPT; < OPT < f- OPT;
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Randomized rounding

e Idea: View the optimal fractional solutions as probabilities.

e Algorithm:
e Flip coins with biases and round accordingly (S is in the cover with
probability xg).
e Repeat the rouding O(log n) times.

e This leads to an O(log n) factor randomized approximation
algorithm. That is

e The set is covered with high probability.
e The cover has expected cost: O(logn) OPT.
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Take Aways

e Fractional relaxation is a method to obtain for some problems:
e Lower bounds on the optimal solution of an integer linear program
(minimization).
Remark: Used in Branch & Bound algorithms to cut branches.
e Polynomial approximation algorithms (with rounding).

e Complexity:
e Integer linear programs are often hard.
e (Fractional) linear programs are quicker to solve (polynomial time).
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