Graph Theory and Optimization Approximation Algorithms

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Thank you to F. Giroire for some of the slides

N. Nisse

Motivation

- Goal:
 - Find "good" solutions for difficult problems (NP-hard).
 - Be able to quantify the "goodness" of the given solution.
- Presentation of a technique to get approximation algorithms: fractional relaxation of integer linear programs.

2 Example: Max. Matching vs. Min. Vertex Cover

3 Approximation algorithms using Fractional Relaxation

- Vertex Cover
- Set Cover

Approximation Algorithms

Π a maximization Problem

c-Approximation for Π

1 < *c* constant or depends on input length

- deterministic polynomial-time algorithm A
- for any input I, \mathscr{A} returns a solution with value at least OPT(I)/c.

Π a minimization Problem

c-Approximation for Π

1 < c constant or depends on input length

nnia

Graph Theory and applications 4/19

- deterministic polynomial-time algorithm A
- for any input *I*, \mathscr{A} returns a solution with value at most $c \cdot OPT(I)$.

COATI

Approximation Algorithms

Definition: An approximation algorithm produces

- in polynomial time
- a feasible solution
- whose objective function value is close to the optimal OPT, by close we mean within a guaranteed factor of the optimal.

Example: a factor 2 approximation algorithm for the cardinality vertex cover problem, i.e. an algorithm that finds a cover of cost $\leq 2 \cdot OPT$ in time polynomial in |V|.

2 Example: Max. Matching vs. Min. Vertex Cover

3 Approximation algorithms using Fractional Relaxation

- Vertex Cover
- Set Cover

Approx: Max. Matching vs. Min. Vertex Cover

Let G = (V, E) be a graph

Matching: set <i>M</i> of pairwise disjoint edges in a graph	$(M \subseteq E)$
Compute a Max. Matching is polynomial-time solvabl	e [Edmonds 1965]
Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq 0$ set of vertices) s that "touch" every edge
Compute a Min. Vertex Cover is NP-complete	[Garey,Johnson 1979]

Approx: Max. Matching vs. Min. Vertex Cover

Let G = (V, E) be a graph

Matching: set <i>M</i> of pairwise disjoint edges in a graph	$(M \subseteq E)$	
Compute a Max. Matching is polynomial-time solvable	[Edmonds 1965]	
Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge		
Compute a Min. Vertex Cover is NP-complete	[Garey,Johnson 1979]	
Exercise: Prove that for any graph G,		
$maxMatching(G) \leq minCover(G) \leq 2 \cdot maxMatching(G)$		
Deduce a (polynomial-time) 2-approximation algorithm for computing <i>minCover</i> (<i>G</i>)		

125

Approx: Max. Matching vs. Min. Vertex Cover

Solution of previous exercise

Theorem: for any graph G

 $maxMatching(G) \le minCover(G) \le 2 \cdot maxMatching(G)$

Proof: Let $K \subseteq V$ be a cover of G and $M \subseteq E$ be a matching of G. By definition of $K: K \cap e \neq \emptyset$ for any $e \in M$ Moreover, by definition of M, $e \cap f = \emptyset$ for any $e, f \in M$

$$\Rightarrow |M| \leq |K|.$$

Let $M \subseteq E$ be a maximum matching of GThen $K = \{v \mid \exists e \in M, v \in e\}$ is a cover of G (if not, M is not maximum) $\Rightarrow minCover(G) \leq |K| = 2 \cdot |M|$

COATI

2 Example: Max. Matching vs. Min. Vertex Cover

3 Approximation algorithms using Fractional Relaxation

- Vertex Cover
- Set Cover

Approximation via Fractional Relaxation

- Reminder:
 - Integer Linear Programs often hard to solve (NP-hard).
 - Linear Programs (with real numbers) easier to solve (polynomial-time algorithms).
- Idea:
 - 1- Relax the integrality constraints;
 - 2- Solve the (fractional) linear program and then;
 - 3- Round the solution to obtain an integral solution.

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Integer Linear programme (*ILP*):
Min.
$$\sum_{v \in V} x_v$$

s.t.: $x_v + x_u \ge 1 \quad \forall \{u, v\} \in E$
 $x_v \in \{0, 1\} \quad \forall v \in V$

Fractional relaxation (LP):

nría

Min.	$\sum_{v \in V} x_v$			
s.t.:	$x_v + x_u$	\geq	1	$\forall \{u, v\} \in E$
	X_V	≥	0	$\forall v \in V$

Graph Theory and applications 11/19

Exercise: Prove that the LP has an half-integral optimal solution (i.e., $x_v \in \{0, 1/2, 1\}$)

COATI

Exercise: Deduce a 2-approximation algorithm for Min. Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Integer Linear programme (ILP):Fractional relaxation (LP):Min.
$$\sum_{v \in V} x_v$$
 $\sum_{v \in V} x_v$ Min. $\sum_{v \in V} x_v$ s.t.: $x_v + x_u \ge 1$ $\forall \{u, v\} \in E$ s.t.: $x_v + x_u \ge x_v$ $x_v \in \{0, 1\}$ $\forall v \in V$ $x_v \ge x_v$

 $\sum_{v\in V} x_v$ $\begin{array}{rcl} x_{\nu} + x_{u} & \geq & 1 & \forall \{u, v\} \in E \\ x_{\nu} & > & 0 & \forall v \in V \end{array}$

Exercise: Prove that the LP has an half-integral optimal solution (i.e., $x_v \in \{0, 1/2, 1\}$)

COATI

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Integer Linear programme (ILP):FractionMin.
$$\sum_{v \in V} x_v$$
s.t.: $x_v + x_u \ge 1$ $\forall \{u, v\} \in E$ $x_v \in \{0, 1\}$ $\forall v \in V$

Fractional relaxation (*LP*):

nría

Min.	$\sum_{v \in V} x_v$			
s.t.:	$x_v + x_u$	≥	1	$\forall \{u, v\} \in E$ $\forall v \in V$
	λγ	~	U	

Exercise: Prove that the LP has an half-integral optimal solution (i.e., $x_v \in \{0, 1/2, 1\}$)

COATI

Exercise: Deduce a 2-approximation algorithm for Min. Vertex Cover

Theorem: Fractional Vertex Cover has an half-integral optimal solution

Proof: y: optimal solution with the largest number of coordinates in $\{0, 1/2, 1\}$. For purpose of contradiction: y not half-integral: Set $\varepsilon = \min\{y_v, |y_v - \frac{1}{2}|, 1 - y_v | v \in V \text{ and } y_v \notin \{0, 1/2, 1\}\}.$ Consider y' and y", feasible solutions, defined as follows: $y'_v = \begin{cases} y_v - \varepsilon, & \text{if } 0 < y_v < \frac{1}{2}, \\ y_v + \varepsilon, & \text{if } \frac{1}{2} < y_v < 1, \\ y_v, & \text{otherwise.} \end{cases} \begin{cases} y_v - \varepsilon, & \text{if } \frac{1}{2} < y_v < 1, \\ y_v, & \text{otherwise.} \end{cases} \begin{cases} y_v - \varepsilon, & \text{if } \frac{1}{2} < y_v < 1, \\ y_v, & \text{otherwise.} \end{cases}$ $\sum_{v \in V} y_v = \frac{1}{2} (\sum_{v \in V} y'_v + \sum_{v \in V} y''_v). y' \text{ and } y'' \text{ are also optimal solutions.} \end{cases}$ By choice of ε , y' and y" has more coordinates in $\{0, 1/2, 1\}$ than y, a contradiction.

Theorem: 2-Approximation of Vertex Cover

Proof: First solve FRACTIONAL VERTEX COVER and derive an half-integral optimal solution \mathbf{y}^f to it. Define \mathbf{y} by $y_v = 1$ if and only if $y_v^f \in \{1/2; 1\}$, i.e., $y_v = \lceil y_v^f \rceil$ Clearly, \mathbf{y} is an admissible solution of VERTEX COVER. Moreover, by definition

$$\sum_{v\in V} y_v \leq 2 \sum_{v\in V} y_v^f = 2 \cdot v^f(G) \leq 2 \cdot v(G).$$

COATI

Innía

Set Cover

- Problem: Given a universe U of n elements, a collection of subsets of U, § = S₁,..., S_k, and a cost function c : S → Q⁺, find a minimum cost subcollection of S that covers all elements of U.
- Model numerous classical problems as special cases of set cover: vertex cover, minimum cost shortest path...
- Definition: The frequency of an element is the number of sets it is in. The frequency of the most frequent element is denoted by *f*.
- Various approximation algorithms for set cover achieve one of the two factors $O(\log n)$ or f.

Fractional relaxation

Write a linear program to solve set cover.

Fractional relaxation

COATI

Write a linear program to solve set cover.

Var.:	$x_S = 1$ if <i>S</i> picked in \mathscr{C} , $x_S = 0$ otherwise	
min	$\sum_{S\in \S} c(S) x_S$	
s. t.	$\frac{\sum_{S:e\in S} x_S \ge 1}{x_S \in \{0,1\}}$	$(orall e \in U) \ (orall S \in \S)$

Innía

Fractional relaxation

COATI

Write a linear program to solve set cover.

Var.:	$x_S = 1$ if <i>S</i> picked in \mathscr{C} , $x_S = 0$ otherwise	
min	$\sum_{S\in\S} c(S) x_S$	
s. t.	$\frac{\sum_{S:e \in S} x_S \ge 1}{x_S \in \{0,1\}}$	$(orall e \in U)$ $(orall S \in \S)$

Var.:	$1 \ge x_S \ge 0$	
min	$\sum_{S\in \S} c(S) x_S$	
s. t.	$\frac{\sum_{S:e\in S} x_S \ge 1}{x_S \ge 0}$	(∀e ∈ U) (∀S ∈ §)

Innía

Fractional relaxation

- The (fractional) optimal solution of the relaxation is a lower bound of the optimal solution of the original integer linear program.
- Example in which a fractional set cover may be cheaper than the optimal integral set cover:

Input:
$$U = \{e, f, g\}$$
 and the specified sets $S_1 = \{e, f\}$, $\overline{S_2} = \{f, g\}, S_3 = \{e, g\}$, each of unit cost.

- An integral cover of cost 2 (must pick two of the sets).
- A fractional cover of cost 3/2 (each set picked to the extent of 1/2).

Fractional relaxation

- The (fractional) optimal solution of the relaxation is a lower bound of the optimal solution of the original integer linear program.
- Example in which a fractional set cover may be cheaper than the optimal integral set cover:

Input: $U = \{e, f, g\}$ and the specified sets $S_1 = \{e, f\}$, $\overline{S_2} = \{f, g\}$, $S_3 = \{e, g\}$, each of unit cost.

- An integral cover of cost 2 (must pick two of the sets).
- A fractional cover of cost 3/2 (each set picked to the extent of 1/2).

A simple rounding algorithm

Algorithm:

- 1- Find an optimal solution to the LP-relaxation.
- 2- (Rounding) Pick all sets *S* for which $x_S \ge 1/f$ in this solution.

- Theorem: The algorithm achieves an approximation factor of *f* for the set cover problem.
- Proof: To be proved:
 - 1) All elements are covered.
 - 2) The cover returned by the algorithm is of cost at most f · OPT

- proof of 1) All elements are covered. *e* is in at most *f* sets, thus one of this set must be picked to the extent of at least 1/f in the fractional cover.
- proof of 2) The rounding process increases x_S by a factor of at most *f*. Therefore, the cost of *C* is at most *f* times the cost of the fractional cover.

 $OPT_f \leq OPT \leq f \cdot OPT_f$

- Theorem: The algorithm achieves an approximation factor of *f* for the set cover problem.
- Proof: To be proved:
 - 1) All elements are covered.
 - 2) The cover returned by the algorithm is of cost at most $f \cdot OPT$

- proof of 1) All elements are covered. *e* is in at most *f* sets, thus one of this set must be picked to the extent of at least 1/f in the fractional cover.
- proof of 2) The rounding process increases x_S by a factor of at most *f*. Therefore, the cost of *C* is at most *f* times the cost of the fractional cover.

 $OPT_f \leq OPT \leq f \cdot OPT_f$

- Theorem: The algorithm achieves an approximation factor of *f* for the set cover problem.
- Proof: To be proved:
 - 1) All elements are covered.
 - 2) The cover returned by the algorithm is of cost at most $f \cdot OPT$

- proof of 1) All elements are covered. *e* is in at most *f* sets, thus one of this set must be picked to the extent of at least 1/f in the fractional cover.
- proof of 2) The rounding process increases x_S by a factor of at most *f*. Therefore, the cost of *C* is at most *f* times the cost of the fractional cover.

 $OPT_f \leq OPT \leq f \cdot OPT_f$

- Theorem: The algorithm achieves an approximation factor of f for the set cover problem.
- Proof: To be proved:
 - 1) All elements are covered.
 - 2) The cover returned by the algorithm is of cost at most f · OPT

- proof of 1) All elements are covered. e is in at most f sets, thus one of this set must be picked to the extent of at least 1/f in the fractional cover.
- proof of 2) The rounding process increases x_S by a factor of at most f. Therefore, the cost of \mathscr{C} is at most f times the cost of the fractional cover.

COATI

$$OPT_f \leq OPT \leq f \cdot OPT_f$$

Randomized rounding

- Idea: View the optimal fractional solutions as probabilities.
- Algorithm:
 - Flip coins with biases and round accordingly (*S* is in the cover with probability *x_S*).
 - Repeat the rouding $O(\log n)$ times.
- This leads to an *O*(log *n*) factor randomized approximation algorithm. That is
 - The set is covered with high probability.
 - The cover has expected cost: $O(\log n)OPT$.

Take Aways

- Fractional relaxation is a method to obtain for some problems:
 - Lower bounds on the optimal solution of an integer linear program (minimization).
 - Remark: Used in Branch & Bound algorithms to cut branches.
 - Polynomial approximation algorithms (with rounding).
- Complexity:
 - Integer linear programs are often hard.
 - (Fractional) linear programs are quicker to solve (polynomial time).

