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Motivation

• Goal:
• Find “good” solutions for difficult problems (NP-hard).

• Be able to quantify the “goodness” of the given solution.

• Presentation of a technique to get approximation algorithms:
fractional relaxation of integer linear programs.
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Approximation Algorithms

Π a maximization Problem

c-Approximation for Π 1 < c constant or depends on input length

• deterministic polynomial-time algorithm A

• for any input I, A returns a solution with value at least OPT (I)/c.

Π a minimization Problem

c-Approximation for Π 1 < c constant or depends on input length

• deterministic polynomial-time algorithm A

• for any input I, A returns a solution with value at most c ·OPT (I).
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Approximation Algorithms

Definition: An approximation algorithm produces

• in polynomial time

• a feasible solution

• whose objective function value is close to the optimal OPT, by
close we mean within a guaranteed factor of the optimal.

Example: a factor 2 approximation algorithm for the cardinality vertex
cover problem, i.e. an algorithm that finds a cover of cost ≤ 2 ·OPT in
time polynomial in |V |.
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Approx: Max. Matching vs. Min. Vertex Cover
Let G = (V ,E) be a graph

Matching: set M of pairwise disjoint edges in a graph (M ⊆ E)

Compute a Max. Matching is polynomial-time solvable [Edmonds 1965]

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Compute a Min. Vertex Cover is NP-complete [Garey,Johnson 1979]

Exercise: Prove that for any graph G,

maxMatching(G)≤minCover(G)≤ 2 ·maxMatching(G)

Deduce a (polynomial-time) 2-approximation algorithm for computing
minCover(G)
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Approx: Max. Matching vs. Min. Vertex Cover

Solution of previous exercise

Theorem: for any graph G

maxMatching(G)≤minCover(G)≤ 2 ·maxMatching(G)

Proof: Let K ⊆ V be a cover of G and M ⊆ E be a matching of G.
By definition of K : K ∩e 6= /0 for any e ∈M
Moreover, by definition of M, e∩ f = /0 for any e, f ∈M

⇒ |M| ≤ |K |.

Let M ⊆ E be a maximum matching of G
Then K = {v | ∃e ∈M,v ∈ e} is a cover of G (if not, M is not maximum)

⇒minCover(G)≤ |K |= 2 · |M|
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Approximation via Fractional Relaxation

• Reminder:
• Integer Linear Programs often hard to

solve (NP-hard).
• Linear Programs (with real numbers)

easier to solve (polynomial-time
algorithms).

• Idea:
• 1- Relax the integrality constraints;
• 2- Solve the (fractional) linear program and

then;
• 3- Round the solution to obtain an integral

solution.
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2-Approximation for Vertex Cover using LP
Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Integer Linear programme (ILP):

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ∈ {0,1} ∀v ∈ V

Fractional relaxation (LP):

Min. ∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u,v} ∈ E
xv ≥ 0 ∀v ∈ V

Exercise: Prove that the LP has an half-integral optimal solution
(i.e., xv ∈ {0,1/2,1})

Exercise: Deduce a 2-approximation algorithm for Min. Vertex Cover
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2-Approximation for Vertex Cover using LP
Theorem: Fractional Vertex Cover has an half-integral optimal solution

Proof: y: optimal solution with the largest number of coordinates in {0,1/2,1}.
For purpose of contradiction: y not half-integral: Set
ε = min{yv , |yv − 1

2 |,1− yv | v ∈ V and yv /∈ {0,1/2,1}}.
Consider y′ and y′′, feasible solutions, defined as follows:

y ′v =


yv − ε, if 0 < yv < 1

2 ,
yv + ε, if 1

2 < yv < 1,
yv , otherwise.

and y ′′v =


yv + ε, if 0 < yv < 1

2 ,
yv − ε, if 1

2 < yv < 1,
yv , otherwise.

∑v∈V yv = 1
2 (∑v∈V y ′v +∑v∈V y ′′v ). y′ and y′′ are also optimal solutions.

By choice of ε , y′ and y′′ has more coordinates in {0,1/2,1} than y, a contradiction.

Theorem: 2-Approximation of Vertex Cover

Proof: First solve FRACTIONAL VERTEX COVER and derive an half-integral optimal
solution yf to it. Define y by yv = 1 if and only if y f

v ∈ {1/2;1}, i.e., yv = dy f
ve

Clearly, y is an admissible solution of VERTEX COVER. Moreover, by definition

∑
v∈V

yv ≤ 2 ∑
v∈V

y f
v = 2 ·ν f (G)≤ 2 ·ν(G).
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Set Cover

• Problem: Given a universe U of n elements, a collection of
subsets of U, § = S1, ...,Sk , and a cost function c : S→ Q+, find
a minimum cost subcollection of S that covers all elements of U.

• Model numerous classical problems as special cases of set
cover: vertex cover, minimum cost shortest path...

• Definition: The frequency of an element is the number of sets it is
in. The frequency of the most frequent element is denoted by f .

• Various approximation algorithms for set cover achieve one of the
two factors O(logn) or f .

N. Nisse Graph Theory and applications 13/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

Fractional relaxation

Write a linear program to solve set cover.

Var.: xS = 1 if S picked in C ,
xS = 0 otherwise

min ∑S∈§ c(S)xS

s. t.
∑S:e∈S xS ≥ 1 (∀e ∈ U)
xS ∈ {0,1} (∀S ∈ §)

Var.: 1≥ xS ≥ 0

min ∑S∈§ c(S)xS

s. t.
∑S:e∈S xS ≥ 1 (∀e ∈ U)
xS ≥ 0 (∀S ∈ §)
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Fractional relaxation

• The (fractional) optimal solution of the relaxation is a lower bound
of the optimal solution of the original integer linear program.

• Example in which a fractional set cover may be cheaper than the
optimal integral set cover:
Input: U = {e, f ,g} and the specified sets S1 = {e, f},
S2 = {f ,g}, S3 = {e,g}, each of unit cost.

• An integral cover of cost 2 (must pick two of the sets).
• A fractional cover of cost 3/2 (each set picked to the extent of 1/2).
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A simple rounding algorithm

Algorithm:

• 1- Find an optimal solution to the LP-relaxation.

• 2- (Rounding) Pick all sets S for which xS ≥ 1/f in this solution.

N. Nisse Graph Theory and applications 16/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

• Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

• Proof: To be proved:
• 1) All elements are covered.
• 2) The cover returned by the algorithm is of cost at most f ·OPT

Proofs:
• proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.

• proof of 2) The rounding process increases xS by a factor of at
most f . Therefore, the cost of C is at most f times the cost of the
fractional cover.

OPTf ≤ OPT ≤ f ·OPTf

N. Nisse Graph Theory and applications 17/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

• Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

• Proof: To be proved:
• 1) All elements are covered.
• 2) The cover returned by the algorithm is of cost at most f ·OPT

Proofs:
• proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.

• proof of 2) The rounding process increases xS by a factor of at
most f . Therefore, the cost of C is at most f times the cost of the
fractional cover.

OPTf ≤ OPT ≤ f ·OPTf

N. Nisse Graph Theory and applications 17/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

• Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

• Proof: To be proved:
• 1) All elements are covered.
• 2) The cover returned by the algorithm is of cost at most f ·OPT

Proofs:
• proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.

• proof of 2) The rounding process increases xS by a factor of at
most f . Therefore, the cost of C is at most f times the cost of the
fractional cover.

OPTf ≤ OPT ≤ f ·OPTf

N. Nisse Graph Theory and applications 17/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

• Theorem: The algorithm achieves an approximation factor of f for
the set cover problem.

• Proof: To be proved:
• 1) All elements are covered.
• 2) The cover returned by the algorithm is of cost at most f ·OPT

Proofs:
• proof of 1) All elements are covered. e is in at most f sets, thus

one of this set must be picked to the extent of at least 1/f in the
fractional cover.

• proof of 2) The rounding process increases xS by a factor of at
most f . Therefore, the cost of C is at most f times the cost of the
fractional cover.

OPTf ≤ OPT ≤ f ·OPTf

N. Nisse Graph Theory and applications 17/19



Approximation Algorithms Example: Max. Matching vs. Min. Vertex Cover Approximation algorithms using Fractional Relaxation

Randomized rounding

• Idea: View the optimal fractional solutions as probabilities.

• Algorithm:
• Flip coins with biases and round accordingly (S is in the cover with

probability xS).
• Repeat the rouding O(logn) times.

• This leads to an O(logn) factor randomized approximation
algorithm. That is

• The set is covered with high probability.
• The cover has expected cost: O(logn)OPT .
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Take Aways

• Fractional relaxation is a method to obtain for some problems:
• Lower bounds on the optimal solution of an integer linear program

(minimization).
Remark: Used in Branch & Bound algorithms to cut branches.

• Polynomial approximation algorithms (with rounding).

• Complexity:
• Integer linear programs are often hard.
• (Fractional) linear programs are quicker to solve (polynomial time).
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