Graph Theory and Optimization Integer Linear Programming

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Outline

- 2 Some examples
- Integrality gap
- Polynomial Cases
- 5 More Examples

Linear Programme (reminder)

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

Linear Programme (reminder)

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

Integer Linear Programme

Integer Linear programmes:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are Integers.

Integer Linear Programme is NP-complete in general!

Outline

- 2 Some examples
- Integrality gap
- Polynomial Cases
- 5 More Examples

Knapsack Problem

• Data:

- a knapsack with maximum weight 15 Kg
- 12 objects with
 - a weight w_i
 - a value v_i
- Objective: which objects should be chosen to maximize the value carried while not exceeding 15 Kg?

(Weakly NP-hard)

Knapsack Problem

• Data:

- a knapsack with maximum weight 15 Kg
- 12 objects with
 - a weight w_i
 - a value v_i
- Objective: which objects should be chosen to maximize the value carried while not exceeding 15 Kg?

Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Solution: $K \subseteq V$

 \Rightarrow variables x_v , for each $v \in V$

$$x_v = 1$$
 if $v \in K$, $x_v = 0$ otherwise.

Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Solution: $K \subseteq V$

 \Rightarrow variables x_v , for each $v \in V$ $x_v = 1$ if $v \in K$, $x_v = 0$ otherwise. minimize $\sum x_v$ **Objective function**: minimize |K|

Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Solution: $K \subseteq V$ \Rightarrow variables x_v , for each $v \in V$ $x_v = 1$ if $v \in K$, $x_v = 0$ otherwise.Objective function: minimize |K|Constraint: $\forall \{u, v\} \in E, u \in K$ or $v \in K$ $x_u + x_v \ge 1$

COATI

Minimum Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$ set of vertices that "touch" every edge

Solution: $K \subseteq V$ \Rightarrow variables x_v , for each $v \in V$ $x_v = 1$ if $v \in K$, $x_v = 0$ otherwise.Objective function: minimize |K|minimize $\sum_{v \in V} x_v$ Constraint: $\forall \{u, v\} \in E, u \in K \text{ or } v \in K$ $x_u + x_v \ge 1$

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Solution: $c: V \to \{1, \dots, n\}$ \Rightarrow variables y_j , is color $j \in \{1, \dots, n\}$ used? variable c_v^j for color j and vertex $v: c_v^j = 1$ if v colored $j, c_v^j = 0$ otherwise

Vertex Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Solution: $c: V \to \{1, \dots, n\}$ \Rightarrow variables y_j , is color $j \in \{1, \dots, n\}$ used? variable c_v^j for color j and vertex $v: c_v^j = 1$ if v colored $j, c_v^j = 0$ otherwise **Objective function**: minimize # of used colors minimize $\sum_{1 \le i \le n} y_j$

Vertex Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Solution: $c: V \to \{1, \dots, n\}$ \Rightarrow variables y_j , is color $j \in \{1, \dots, n\}$ used? variable c_v^j for color j and vertex $v: c_v^j = 1$ if v colored $j, c_v^j = 0$ otherwise **Objective function**: minimize # of used colors minimize $\sum_{1 \le j \le n} y_j$

Constraints: each vertex v has 1 color

ends of each edge $\{u, v\} \in E$ have \neq colors: $c_v^j + c_u^j \leq 1$ for all $j \in \{1, \dots, n\}$ color j used if ≥ 1 vertex colored with j $c_v^j \leq y_j$ for all $v \in V$

 $\sum c_v^j = 1$

 $1 \le i \le n$

Graph Theory and applications 8/23

Vertex Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices s ($\leq k$ colors) s.t. adjacent vertices receive \neq colors

Outline

- 2 Some examples
- Integrality gap
- Polynomial Cases
- 5 More Examples

Integer Linear programme (ILP):

NP-hard in general

Integer Linear programme (*ILP*): Max. $\sum_{j=1}^{n} c_{j} x_{j}$ s.t.: $\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \forall 1 \leq i \leq m$ $x_{j} \in \mathbb{N} \quad \forall 1 \leq j \leq n.$

NP-hard in general

Fractional Relaxation: Linear Programme

Max.	$\sum_{j=1}^{n} c_j x_j$			
s.t.:	$\sum_{i=1}^{\prime\prime}a_{ij}x_j$	\leq	bi	$\forall 1 \leq i \leq m$
	y_1 x _j	\geq	0	$\forall 1 \leq j \leq n.$

Polynomial-time solvable

Integer Linear programme (*ILP*): Max. $\sum_{\substack{j=1\\n}}^{n} c_j x_j$ s.t.: $\sum_{\substack{j=1\\j=1}}^{n} a_{ij} x_j \leq b_i \quad \forall 1 \leq i \leq m$ $x_j \in \mathbb{N} \quad \forall 1 \leq j \leq n.$

NP-hard in general

Fractional Relaxation: Linear Programme

Polynomial-time solvable

What is the difference between Optimal solutions of *LP* and of *ILP*?

Integer Linear programme (ILP):

Fractional Relaxation: Linear Programme

Max.
$$\sum_{j=1}^{n} c_j x_j$$

s.t.:
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \forall 1 \leq i \leq m$$
$$x_j \geq 0 \quad \forall 1 \leq j \leq n.$$

Polynomial-time solvable

NP-hard in general

What is the difference between Optimal solutions of LP and of ILP?

OPT(LP) > OPT(ILP) (for a maximization problem)

OPT(LP) < OPT(ILP) (for a minimization problem)

If OPT(LP) is "closed" to OPT(ILP), then solving the Fractional Relaxation (in polynomial-time) gives a good bound for the ILP

Fractional Relaxation of Vertex Coloring

Integer Linear programme (ILP):							
Minimize	$\sum_{1 \le j \le n} y_j$						
Subject to:	$\sum_{1 \le i \le n}^{-j-} c_v^j$	=	1				
	$\vec{c_v^j} + c_u^j$	\leq	1				
	c_v^j	\leq	Уj				
	Уj	\in	{0,1}				
	c_v^j	\in	$\{0, 1\}$				

Fractional Relaxation (LP):

$$\begin{aligned} y_{red} &= y_{blue} = 1/2, y_{green} = 0 \\ c_a^{red} &= c_b^{red} = c_c^{red} = 1/2 \\ c_a^{blue} &= c_b^{blue} = c_c^{blue} = 1/2 \\ OPT(LP) &= \sum_c y_c = 1 \end{aligned}$$

N. Nisse

COATI

Inría

Graph Theory and applications 11/23

Fractional Relaxation of Vertex Coloring

Fractional Relaxation (LP):

.i35

 $y_{red} = y_{blue} = y_{green} = 1$ $c_a^{red} = c_b^{blue} = c_c^{green} = 1$ $OPT(ILP) = \sum_{c} y_{c} = 3$

 $\begin{array}{l} y_{red} = y_{blue} = 1/2, \, y_{green} = 0 \\ c_a^{red} = c_b^{red} = c_c^{red} = 1/2 \\ c_a^{blue} = c_b^{blue} = c_c^{blue} = 1/2 \end{array}$ $OPT(LP) = \sum_{c} y_{c} = 1$

N. Nisse

COATI

Graph Theory and applications 11/23

Fractional Relaxation of Knapsac

Example:

- Sac: *W* = *n*
- Objects:
 - one object (O_1) of weight n + 0, 1 and value n
 - n-1 objects (O_2, \dots, O_n) of weight 1 and value 1/n

```
x_1 = 0, x_2 = \dots = x_n = 1 \qquad x_1 = \frac{n}{n+0,1}, x_2 = \dots = x_n = 0

OPT(ILP) = \sum_c v_i x_i = (n-1)/n \qquad OPT(LP) = \sum_c v_i x_i = \frac{n^2}{n+0,1}
```

 \Rightarrow the ratio between the LP optimal solution and the Integral opt. solution may be arbitrary large

Innia

Graph Theory and applications 12/23

Fractional Relaxation of Knapsac

Example:

- Sac: *W* = *n*
- Objects:
 - one object (O_1) of weight n + 0, 1 and value n
 - n-1 objects (O_2, \dots, O_n) of weight 1 and value 1/n

 $x_1 = 0, x_2 = \dots = x_n = 1$ $PT(ILP) = \sum_c v_i x_i = (n-1)/n$ $x_1 = \frac{n}{n+0,1}, x_2 = \dots = x_n = 0$ $OPT(LP) = \sum_c v_i x_i = \frac{n^2}{n+0,1}$

 \Rightarrow the ratio between the LP optimal solution and the Integral opt. solution may be arbitrary larg

Innia

Fractional Relaxation of Knapsac

Example:

- Sac: *W* = *n*
- Objects:
 - one object (O_1) of weight n + 0, 1 and value n
 - n-1 objects (O_2, \dots, O_n) of weight 1 and value 1/n

 $x_1 = 0, x_2 = \dots = x_n = 1$ $PT(ILP) = \sum_c v_i x_i = (n-1)/n$ $x_1 = \frac{n}{n+0,1}, x_2 = \dots = x_n = 0$ $OPT(LP) = \sum_c v_i x_i = \frac{n^2}{n+0,1}$

Harrist Average

135

 \Rightarrow the ratio between the LP optimal solution and the Integral opt. solution may be arbitrary large

COATI

cirs

Innia

Graph Theory and applications 12/23

Outline

- 2 Some examples
- Integrality gap
- Polynomial Cases
- 5 More Examples

No integrality gap

Fractional Relaxation: Linear Programme

NP-hard in general

Polynomial-time solvable

In some cases: OPT(ILP) = OPT(LP).

 \Leftrightarrow there exists an integral solution with value OPT(LP). In such case, Polynomial-time solvable: solve the Fractional Relaxation

Integer Programme Example: Shortest path

D = (V, A) be a digraph with length $\ell : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest directed path from *s* to *t*.

Integer Programme Example: Shortest path

COATI

D = (V, A) be a digraph with length $\ell : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest directed path from *s* to *t*.

Solution: A path *P* from *s* to *t*

⇒ variables x_a for each $a \in A$ $x_a = 1$ if $a \in A(P)$, $x_a = 0$ otherwise.

nia

Graph Theory and applications 15/23

Integer Programme Example: Shortest path

D = (V, A) be a digraph with length $\ell : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest directed path from *s* to *t*.

COATI

Innia

Graph Theory and applications 15/23

OPT(LP)=4

J35 Remit

OPT(ILP)=4

Inita Graph Theory and applications 15/23

Integer Programme Example: Shortest path

Exercise: Prove that this LP always admits an integral optimal solution COATI

CITS

Integer Programme Example: Maximum Matching

G = (V, E) be a graph **Problem:** Compute a maximum matching

Solution: a set $M \subseteq E$ of pairwise disjoint edges

 \Rightarrow variables x_e for each $e \in E$

 $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise.

Exercise: Prove that the fractional relaxation of this ILP always admits an integral optimal solution

Totally unimodular matrices

unimodular matrix: square matrix with determinant +1 or -1 totally unimodular matrix: every square non-singular submatrix is unimodular

Integer Linear programme (ILP):

Fractional Relaxation: Linear Programme

$$\begin{array}{rll} \text{Max.} & \sum_{j=1}^n c_j x_j \\ \text{s.t.:} & \sum_{j=1}^n a_{ij} x_j &\leq b_i \quad \forall 1 \leq i \leq m \\ & x_j &\geq 0 \quad \forall 1 \leq j \leq n. \end{array}$$

Polynomial-time solvable

NP-hard in general

Theorem

[Hoffman,Kruskal, 1956]

If the matrix $A = [a_{ij}]$ is totally unimodular then every *basic* feasible solution (the "corner" of the polytope) is integral

- \Rightarrow exist integral optimal solution of the LP
- \Rightarrow OPT(ILP) can be computed by solving the Fractional relaxation

Outline

- 2 Some examples
- Integrality gap
- Polynomial Cases
- 5 More Examples

Integer Programme Example: Minimum Spanning Tree

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a minimum spanning tree

Solution: A spanning tree T \Rightarrow variables x_e for each $e \in E$ $x_E = 1$ if $e \in E(T)$, $x_e = 0$ otherwise.

Remark: The number of constraints is exponential

Optical Networks (WDM)

Optical network: optical fiber connecting e.g. routers

Wavelength-division Multiplexing (WDM): technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light [Wikipedia]

 \Rightarrow : different signals on the same link must have different wavelengths (colors)

Optical Networks (WDM)

Optical network: optical fiber connecting e.g. routers

Wavelength-division Multiplexing (WDM): technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light [Wikipedia]

 \Rightarrow : different signals on the same link must have different wavelengths (colors)

N. Nisse

Optical Networks (WDM) RWA problem

RWA: Routing and Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a traffic-demand matrix T, where T[u, v] is the amount of traffic that must transit from u to v, for any $u, v \in V$. Find a set of paths and one wavelength assignment for each path such that:

- all demands are routed
- capacity of each link cannot be exceeded
- total number of wavelength is as small as possible

demand matrix:

25

Optical Networks (WDM) RWA problem

RWA: Routing and Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a traffic-demand matrix T, where T[u, v] is the amount of traffic that must transit from u to v, for any $u, v \in V$. Find a set of paths and one wavelength assignment for each path such that:

- all demands are routed
- capacity of each link cannot be exceeded
- total number of wavelength is as small as possible

demand matrix:

Optical Networks (WDM)

 \Rightarrow consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Let us simplify the problem

Given a graph G = (V, E) with capacity on links, and a set of paths Give One color to each path s.t. no two paths with the same color cross a same link Minimize the number of colors

Optical Networks (WDM)

Let us simplify the problem \Rightarrow consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths Give One color to each path s.t. no two paths with the same color cross a same link Minimize the number of colors

COATI

It is the problem of PROPER COLORING in graphs !!

125

the "simplified" problem is already NP-complete :(

Inría

Optical Networks (WDM)

Let us simplify the problem \Rightarrow consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths Give One color to each path s.t. no two paths with the same color cross a same link Minimize the number of colors

COATI

It is the problem of PROPER COLORING in graphs !!

125

the "simplified" problem is already NP-complete :(

Inría

Optical Networks (WDM)

Let us simplify the problem \Rightarrow consider only Wavelength assignment

nnia

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths Give One color to each path s.t. no two paths with the same color cross a same link Minimize the number of colors

Exercise: Write a (Integer) Linear Programme that solves the RWA problem

COATI

Summary: To be remembered

- ILP allow to model many problems
- there may be a huge integrality gap (between OPT(LP) and OPT(ILP)).
- if no integrality gap (e.g., totally unimodular matrices)
 ⇒ Fractional Relaxation gives Optimal Integral Solution

