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Linear Programme (reminder)

Linear programmes can be written under the standard form:

n
Maximize Z ciXj
=

IN

n
Subjectto: Y a;x b forall1<i<m
j=1

X = 0 forall1 <j<n.
e the problem is a maximization;

e all constraints are inequalities (and not equations);

e all variables xq,-- -, X, are non-negative.
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Linear Programme (reminder)

Linear programmes can be written under the standard form:

n
Maximize Z ciXj
=

IN

n
Subjectto: Y a;x b forall1<i<m
j=1

X = 0 forall1 <j<n.

e the problem is a maximization;
e all constraints are inequalities (and not equations);

e all variables xq,-- -, X, are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time
in the number of variables and constraints (e.g., ellipsoid method) J
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Integer Linear Programme
Integer Linear programmes:
n
Maximize ) ¢x;
/n=1
Subjectto: Y ajx; < b forall1 <i<m

Jj=1
x € N forall1 <j<n.

e the problem is a maximization;
e all constraints are inequalities (and not equations);

e all variables xi,--- , x, are Integers.

Integer Linear Programme is NP-complete in general!
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Knapsack Problem (Weakly NP-hard)

e Data:

e a knapsack with
maximum weight 15 Kg

e 12 objects with ” @
e aweight w; " .

e avalue v;

e Objective: which objects
should be chosen to
maximize the value carried
while not exceeding 15 Kg?
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Knapsack Problem (Weakly NP-hard)

e Data:
e a knapsack with

maximum weight 15 Kg
e 12 objects with ” @ .@
e aweight w; Eﬁ" .'

e avalue v;

e Objective: which objects
should be chosen to max Z ViXi

maximize the value carried biect t 1<i<12
while not exceeding 15 Kg? subject to
Wi X S 15
1<i<12
Xi € {0, 1 }
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Minimum Vertex Cover (NP-hard)

Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK #£ 0
set of vertices that “touch" every edgeJ
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Minimum Vertex Cover (NP-hard)

Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Solution: K C V => variables x,, foreach v e V
x, =1if v € K, x, = 0 otherwise.
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Minimum Vertex Cover (NP-hard)

Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Solution: K C V => variables x,, foreach v e V

x, =1if v € K, x, = 0 otherwise.

Objective function: minimize | K| minimize Y x,
veV
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Minimum Vertex Cover (NP-hard)

Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Solution: K C V => variables x,, foreach v e V

x, =1if v € K, x, = 0 otherwise.

Objective function: minimize |K| minimize Z Xy
veV

Constraint: V{u,v} e E,ue Korve K Xu+Xxy > 1
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Minimum Vertex Cover (NP-hard)

Let G=(V,E) be a graph

Vertex Cover: set K C V such that Ve € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Solution: K C V => variables x,, foreach v e V

x, =1if v € K, x, = 0 otherwise.

Objective function: minimize |K| minimize Z Xy
veV

Constraint: V{u,v} e E,ue Korve K Xu+Xxy > 1

Minimize Z Xy
veVv
Subjectto: x, +x, > 1 forall {u,v} € E

x, € {01} forallv e V

N. Nisse _izs— [B- COATI @ Cinta= Graph Theory and applications  7/23



Vertex Coloring (NP-hard)

Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. ¢(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # colors
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Vertex Coloring (NP-hard)

Let G=(V,E) be agraph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. ¢(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # colors

Solution: ¢c: V — {1,---,n} = variables y;, is color j € {1,---,n} used?
variable ¢}, for color j and vertex v: ¢/, = 1 if v colored j, ¢, = 0 otherwise
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Vertex Coloring (NP-hard)

Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. c(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # colors

Solution: ¢: V — {1,--- ,n} = variables y;, is color j € {1,---,n} used?

variable ¢}, for color j and vertex v: ¢, = 1 if v colored j, ¢, = 0 otherwise

Objective function: minimize # of used colors minimize Z Y
1<j<n
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Vertex Coloring (NP-hard)

Let G=(V,E) be agraph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. ¢(u) # c(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # colors

Solution: ¢: V — {1,--- ,n} = variables y;, is color j € {1,---,n} used?
variable c’; for color j and vertex v: C{/ =1 if v colored j, c{, = 0 otherwise
Objective function: minimize # of used colors minimize Z Y
1<j<n
Constraints: each vertex v has 1 color Z c{, =1
1<j<n
ends of each edge {u, v} € E have # colors: c+d, <1for alje{1,---,n}
color j used if > 1 vertex colored with j c’.', <yjforallveV
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Vertex Coloring (NP-hard)

Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. c(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # co/ors}

Minimize )
155<n

Subjectto: ) o = 1 forall v e V
1550

ctoy < 1 forallj€ {1,---,n},{u,v} € E

c, < ¥ forallje {1,---,n},veV

yi € {0,1} forallje {1,---,n}

c € {0,1} forallje {1,---,n},ve Vv
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Integer Programme vs. Linear Programme

Integer Linear programme (/ILP):

n
Max. Z CiXj
J=1

n
st: Y apx
/=

Xj

<

€

bj

NP-hard in general
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Integer Programme vs. Linear Programme

Integer Linear programme (ILP): Fractional Relaxation: Linear Programme
n n
Max. Z CiXj Max. Z GiX;j

j=1 j=1
n n

st: Yax < b Vi<i<m st: Yax < b Vi<i<m
=1 j=1

xi € N Vi<j<n x > 0 Vi<j<n

NP-hard in general Polynomial-time solvable
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Integer Programme vs. Linear Programme

Integer Linear programme (/ILP):

Fractional Relaxation: Linear Programme

n
Max. Z CiXj
J=1

n
s.t.: Z ajjXj
=

Xj €

IN

b Vi<i<m

N Vvi<j<n

n
Max. Y cx
=

n
st: Y apx
=1

Xj >

IN

b Vi<i<m

0 vi<j<n.

NP-hard in general

Polynomial-time solvable

What is the difference between Optimal solutions of LP and of ILP?

OPT(LP) > OPT(ILP)

OPT(LP) < OPT(ILP)

(for a maximization problem)

(for a minimization problem)

If OPT(LP) is “closed" to OPT(ILP), then solving the Fractional Relaxation (in polynomial-time)

gives a good bound for the ILP

@ ‘o
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Fractional Relaxation of Vertex Coloring

Integer Linear programme (/ILP):

Fractional Relaxation (LP):

Minimize Z Y

15<n
Subjectto: ) ¢ = 1
tsjsn
ot < 1
o < ¥
Y € {0,1}
cd, ¢ {01}

COATI

Minimize

Subject to:

Yy

1<j<n

Y d = 1

1sjsn

chtey < 1
C/v < Yy
vz 0
¢, > 0
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Fractional Relaxation of Vertex Coloring

Integer Linear programme (/ILP):

Fractional Relaxation (LP):

Minimize Z Y
1<5<n

Subjectto: ) ¢ = 1
1<j<n

c+c, < 1

o < ¥

Y € {0,1}

cd, ¢ {01}

Yred = Yblue = Ygreen =1
C;ed Cglue green =1

OPT(ILP) =Y y: =3

N. Nisse

COATI

Minimize Y y
15920

Subjectto: Y ¢, = 1
1sjsn

citay <1

C/v < Yy

o= 0

d > 0

Yred = Yblue = 1/2 Ygreen = 0

Cred Cred red =1 /2
Cblue — Cglue — Cblue =1 /2
OPT(LP) Yeve=1
o G Graph Theory and applications 11/23




Fractional Relaxation of Knapsac

Integer Linear programme (/LP):

Fractional Relaxation (LP):

N. Nisse

max Y vixi max Y vixi
1<i<n 1<i<n
subject to subject to
Z W;X;SW Z W,'X,'<W
1<i<n 1<i<n
x € {0,1} xi >0
Example:

® Sac: W=n
® Objects:

e one object (Oy) of weight n+0,1 and value n
e n—1objects (O, -, Op) of weight 1 and value 1/n
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Fractional Relaxation of Knapsac

Integer Linear programme (/LP):

Fractional Relaxation (LP):

max Y vixi max Z ViX;
1<i<n 1<i<n
subject to subject to
Z W;X;SW Z W,'X,'<W
1<i<n 1<i<n
x;i €40, 1} X;i >0
Example:

® Sac: W=n
® Objects:

e one object (Oy) of weight n+0,1 and value n
e n—1objects (O, -, Op) of weight 1 and value 1/n

Xq :07)(2:--.:)(":1
OPT(ILP) =Y vixi=(n—1)/n
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Xp="--=Xxp=0
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n+0,1

n+er,1 ’
OPT(LP) = Zc ViXi =
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Fractional Relaxation of Knapsac

Integer Linear programme (/LP):

Fractional Relaxation (LP):

max Y vixi max Z ViX;
1<i<n 1<i<n
subject to subject to
Z W;X;SW Z W,'X,'<W
1<i<n 1<i<n
x;i €40, 1} X;i >0
Example:

® Sac: W=n
® Objects:

e one object (Oy) of weight n+0,1 and value n
e n—1objects (O, -, Op) of weight 1 and value 1/n

Xq :07)(2:--.:)(":1
OPT(ILP) =Y vixi=(n—1)/n

= the ratio between the LP optimal solution and the Integral opt. solution may be arbitrary large J

X4 =

Xp=":=X,=0
P
n+0,1

n+er,1 ’
OPT(LP) = Zc ViXi =

N. Nisse i3 ,’? “
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No integrality gap

Integer Linear programme (/ILP): Fractional Relaxation: Linear Programme
n n
Max. Z CiXj Max. Z CiXj
j=1 j=1
n
st: Yax < b VI<i<m st Yaxy < b Vi<i<m
J=1 J=1
xi € N Vvi1<j<n X, > 0 Yi<j<n.
NP-hard in general Polynomial-time solvable

In some cases: OPT(ILP) = OPT(LP).

< there exists an integral solution with value OPT(LP).
In such case, Polynomial-time solvable: solve the Fractional Relaxation

)
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Integer Programme Example: Shortest path

D = (V,A) be a digraph with length £: A— R™, and s,t € V.
Problem: Compute a shortest directed path from s to t.
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Integer Programme Example: Shortest path

D = (V,A) be a digraph with length /: A— R™, and s,t € V.
Problem: Compute a shortest directed path from s to t.

Solution: A path P from sto ¢ = variables x; foreachac A
Xz =1if a€ A(P), xa = 0 otherwise.
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N. Nisse

Integer Programme Example: Shortest path

D = (V,A) be a digraph with length £ : A— R™, and s,t € V.
Problem: Compute a shortest directed path from s to t.

Solution: A path Pfrom sto t

= variables x, foreacha€ A

Xz =1if a€ A(P), x, = 0 otherwise.

Minimize Y Ua)xa
acA

Subject to: Y x(sv)
ueN*(s)

Y x(tw)
ueN=(t)

Z x(uv)

ueN+(v)
x(a)

1

1

Y x(w)

ueN=(v)

{0,1}

forallve V\{s,t}

forallac A

|
x)

COATI @
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Integer Programme Example: Shortest path

Minimize Y d(a)xa
ach
Subject to: Y x(su) = 1
ueNt(s)
Y x(w) = 1
ueN—(t)
Y x(w) = Y x(w) forallve V\{s,t}
ueNT(v) ueN=(v)
x(a) > 0 forallac A

O

0,2

Example: all edges

025 5
0,25 -O. 025 have length 1
05 05

a fractional solution an integral solution
OPT(LP)=4 OPT(ILP)=4

Exercise: Prove that this LP always admits an integral optimal squtionJ
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Integer Programme Example: Maximum Matching

G=(V,E) be a graph
Problem: Compute a maximum matching J

Solution: a set M C E of pairwise disjoint edges
= variables x, foreach e € E
Xe = 1if e € M, xo = 0 otherwise.

Maximize Y xe
ecE
Subjectto: )Xo < 1 forallve Vv
ecE,vce

xe € {0,1} forallec E

Exercise: Prove that the fractional relaxation of this ILP always admits
an integral optimal solution J

=5
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Totally unimodular matrices

unimodular matrix: square matrix with determinant +1 or —1
totally unimodular matrix: every square non-singular submatrix is unimodular

Integer Linear programme (/ILP): Fractional Relaxation: Linear Programme
n n
Max. Z GiX; Max. Z GjXj

j=1 J=1
n n

st: Yaxy < b Vi<i<m st Yay < b Vi<i<m
J=1 j=1

xi € N Vv1<j<n x > 0 Vi<j<n

NP-hard in general Polynomial-time solvable

N. Nisse

Theorem [Hoffman,Kruskal, 1956]

If the matrix A = [a;] is totally unimodular then every basic feasible solution (the
“corner" of the polytope) is integral

= exist integral optimal solution of the LP

= OPT(ILP) can be computed by solving the Fractional relaxation

)
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Integer Programme Example: Minimum Spanning Tree

G = (V,E) be a graph with weight w : E — R, and s,t € V.
Problem: Compute a minimum spanning tree

Solution: A spanning tree T = variables x, foreach e € E
xge =1if e € E(T), xe = 0 otherwise.

Minimize Y w(e)xe
ecE
Subject to: Y Xe > 1 foralSCV

e={u,v}€E,ueS,v¢S
Xxe € {0,1} forallec E

Remark: The number of constraints is exponential

=
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Optical Networks (WDM)

Optical network: optical fiber connecting e.g. routers

nrmm

é" "1'

Hesdguarters B _\_u,

Branchafi
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Optical Networks (WDM)

Optical network: optical fiber connecting e.g. routers

Wavelength-division Multiplexing (WDM): technology which multiplexes a number of
optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of
laser light [Wikipedia]

=>: different signals on the same link must have different wavelengths (colors)

WOM Transmitters WDM Receivers
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Optical Networks (WDM) RWA problem
RWA: Routing and Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a traffic-demand matrix T,
where T[u, v] is the amount of traffic that must transit from u to v, for any u,v € V.
Find a set of paths and one wavelength assignment for each path such that:

® all demands are routed

® capacity of each link cannot be exceeded

® total number of wavelength is as small as possible

demand matrix:

Rre!
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Optical Networks (WDM) RWA problem

RWA: Routing and Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a traffic-demand matrix T,
where T[u, v] is the amount of traffic that must transit from u to v, for any u,v € V.
Find a set of paths and one wavelength assignment for each path such that:

® all demands are routed

® capacity of each link cannot be exceeded

® total number of wavelength is as small as possible

demand matrix:

- O O O O O O|T
O O O U1 ©O O Oo|Q

O OO OO O0O =0
O O OO OO =Q
O O O OO oo
O OO O ON =|—

Q -0 QO O T o
O OO OO OO oL
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Optical Networks (WDM) RWA problem

Let us simplify the problem = consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors
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Optical Networks (WDM) RWA problem

Let us simplify the problem = consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

It is the problem of PROPER COLORING in graphs !!
the “simplified" problem is already NP-complete :(
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Optical Networks (WDM) RWA problem

Let us simplify the problem = consider only Wavelength assignment

WA: Wavelentgh Assignment Problem

Given a graph G = (V, E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

Exercise: Write a (Integer) Linear Programme that solves the RWA problem J
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Summary: To be remembered

e |LP allow to model many problems

e there may be a huge integrality gap
(between OPT(LP) and OPT(ILP)).

e if no integrality gap (e.g., totally unimodular matrices)
= Fractional Relaxation gives Optimal Integral Solution
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