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Linear Programme (reminder)
Linear programmes can be written under the standard form:

Maximize
n

∑
j=1

cjxj

Subject to:
n

∑
j=1

aijxj ≤ bi for all 1≤ i ≤m

xj ≥ 0 for all 1≤ j ≤ n.

• the problem is a maximization;

• all constraints are inequalities (and not equations);

• all variables x1, · · · ,xn are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time
in the number of variables and constraints (e.g., ellipsoid method)
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Integer Linear Programme

Integer Linear programmes:

Maximize
n

∑
j=1

cjxj

Subject to:
n

∑
j=1

aijxj ≤ bi for all 1≤ i ≤m

xj ∈ N for all 1≤ j ≤ n.

• the problem is a maximization;

• all constraints are inequalities (and not equations);

• all variables x1, · · · ,xn are Integers.

Integer Linear Programme is NP-complete in general!
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Knapsack Problem (Weakly NP-hard)

• Data:
• a knapsack with

maximum weight 15 Kg
• 12 objects with

• a weight wi
• a value vi

• Objective: which objects
should be chosen to
maximize the value carried
while not exceeding 15 Kg?

max ∑
1≤i≤12

vixi

subject to

∑
1≤i≤12

wixi ≤ 15

xi ∈ {0,1}
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Minimum Vertex Cover (NP-hard)

Let G = (V ,E) be a graph

Vertex Cover: set K ⊆ V such that ∀e ∈ E , e∩K 6= /0
set of vertices that “touch" every edge

Solution: K ⊆ V ⇒ variables xv , for each v ∈ V
xv = 1 if v ∈ K , xv = 0 otherwise.

Objective function: minimize |K | minimize ∑
v∈V

xv

Constraint: ∀{u,v} ∈ E , u ∈ K or v ∈ K xu + xv ≥ 1

Minimize ∑
v∈V

xv

Subject to: xv + xu ≥ 1 for all {u,v} ∈ E
xv ∈ {0,1} for all v ∈ V
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Vertex Coloring (NP-hard)

Let G = (V ,E) be a graph

k -Proper coloring: c : V →{1, · · · ,k} s.t. c(u) 6= c(v) for all {u,v} ∈ E .
color the vertices s (≤ k colors) s.t. adjacent vertices receive 6= colors
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k -Proper coloring: c : V →{1, · · · ,k} s.t. c(u) 6= c(v) for all {u,v} ∈ E .
color the vertices s (≤ k colors) s.t. adjacent vertices receive 6= colors
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v for color j and vertex v : c j
v = 1 if v colored j , c j
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Vertex Coloring (NP-hard)

Let G = (V ,E) be a graph

k -Proper coloring: c : V →{1, · · · ,k} s.t. c(u) 6= c(v) for all {u,v} ∈ E .
color the vertices s (≤ k colors) s.t. adjacent vertices receive 6= colors

Solution: c : V →{1, · · · ,n} ⇒ variables yj , is color j ∈ {1, · · · ,n} used?
variable c j

v for color j and vertex v : c j
v = 1 if v colored j , c j

v = 0 otherwise
Objective function: minimize # of used colors minimize ∑

1≤j≤n
yj

Constraints: each vertex v has 1 color ∑
1≤j≤n

c j
v = 1

ends of each edge {u,v} ∈ E have 6= colors: c j
v +c j

u ≤ 1 for all j ∈ {1, · · · ,n}
color j used if ≥ 1 vertex colored with j c j

v ≤ yj for all v ∈ V
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Vertex Coloring (NP-hard)

Let G = (V ,E) be a graph

k -Proper coloring: c : V →{1, · · · ,k} s.t. c(u) 6= c(v) for all {u,v} ∈ E .
color the vertices s (≤ k colors) s.t. adjacent vertices receive 6= colors

Minimize ∑
1≤j≤n

yj

Subject to: ∑
1≤j≤n

c j
v = 1 for all v ∈ V

c j
v + c j

u ≤ 1 for all j ∈ {1, · · · ,n},{u,v} ∈ E
c j

v ≤ yj for all j ∈ {1, · · · ,n},v ∈ V
yj ∈ {0,1} for all j ∈ {1, · · · ,n}
c j

v ∈ {0,1} for all j ∈ {1, · · · ,n},v ∈ V
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Integer Programme vs. Linear Programme
Integer Linear programme (ILP):

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ∈ N ∀1≤ j ≤ n.

NP-hard in general

Fractional Relaxation: Linear Programme

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ≥ 0 ∀1≤ j ≤ n.

Polynomial-time solvable

What is the difference between Optimal solutions of LP and of ILP?

OPT (LP)≥ OPT (ILP) (for a maximization problem)

OPT (LP)≤ OPT (ILP) (for a minimization problem)

If OPT (LP) is “closed" to OPT (ILP), then solving the Fractional Relaxation (in polynomial-time)
gives a good bound for the ILP

N. Nisse Graph Theory and applications 10/23
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Fractional Relaxation of Vertex Coloring
Integer Linear programme (ILP):

Minimize ∑
1≤j≤n

yj

Subject to: ∑
1≤j≤n

c j
v = 1

c j
v + c j

u ≤ 1
c j

v ≤ yj
yj ∈ {0,1}
c j

v ∈ {0,1}

Fractional Relaxation (LP):

Minimize ∑
1≤j≤n

yj

Subject to: ∑
1≤j≤n

c j
v = 1

c j
v + c j

u ≤ 1
c j

v ≤ yj
yj ≥ 0
c j

v ≥ 0

a

b

c

a

b

c

yred = yblue = ygreen = 1
cred

a = cblue
b = cgreen

c = 1
OPT (ILP) = ∑c yc = 3

yred = yblue = 1/2, ygreen = 0
cred

a = cred
b = cred

c = 1/2
cblue

a = cblue
b = cblue

c = 1/2
OPT (LP) = ∑c yc = 1

N. Nisse Graph Theory and applications 11/23
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Fractional Relaxation of Knapsac
Integer Linear programme (ILP):

max ∑
1≤i≤n

vi xi

subject to

∑
1≤i≤n

wi xi ≤W

xi ∈ {0,1}

Fractional Relaxation (LP):

max ∑
1≤i≤n

vi xi

subject to

∑
1≤i≤n

wi xi ≤W

xi ≥ 0

Example:

• Sac: W = n

• Objects:

• one object (O1) of weight n+0,1 and value n
• n−1 objects (O2, · · · ,On) of weight 1 and value 1/n

x1 = 0,x2 = · · ·= xn = 1
OPT (ILP) = ∑c vi xi = (n−1)/n

x1 =
n

n+0,1 ,x2 = · · ·= xn = 0

OPT (LP) = ∑c vi xi =
n2

n+0,1

⇒ the ratio between the LP optimal solution and the Integral opt. solution may be arbitrary large

N. Nisse Graph Theory and applications 12/23
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No integrality gap

Integer Linear programme (ILP):

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ∈ N ∀1≤ j ≤ n.

NP-hard in general

Fractional Relaxation: Linear Programme

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ≥ 0 ∀1≤ j ≤ n.

Polynomial-time solvable

In some cases: OPT (ILP) = OPT (LP).

⇔ there exists an integral solution with value OPT (LP).
In such case, Polynomial-time solvable: solve the Fractional Relaxation

N. Nisse Graph Theory and applications 14/23
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Integer Programme Example: Shortest path

D = (V ,A) be a digraph with length ` : A→ R+, and s, t ∈ V .
Problem: Compute a shortest directed path from s to t .
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D = (V ,A) be a digraph with length ` : A→ R+, and s, t ∈ V .
Problem: Compute a shortest directed path from s to t .

Solution: A path P from s to t ⇒ variables xa for each a ∈ A
xa = 1 if a ∈ A(P), xa = 0 otherwise.
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Integer Programme Example: Shortest path

D = (V ,A) be a digraph with length ` : A→ R+, and s, t ∈ V .
Problem: Compute a shortest directed path from s to t .

Solution: A path P from s to t ⇒ variables xa for each a ∈ A
xa = 1 if a ∈ A(P), xa = 0 otherwise.

Minimize ∑
a∈A

`(a)xa

Subject to: ∑
u∈N+(s)

x(su) = 1

∑
u∈N−(t)

x(tu) = 1

∑
u∈N+(v)

x(uv) = ∑
u∈N−(v)

x(vu) for all v ∈ V \{s, t}

x(a) ∈ {0,1} for all a ∈ A
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Integer Programme Example: Shortest path
Minimize ∑

a∈A
`(a)xa

Subject to: ∑
u∈N+(s)

x(su) = 1

∑
u∈N−(t)

x(tu) = 1

∑
u∈N+(v)

x(uv) = ∑
u∈N−(v)

x(vu) for all v ∈ V \{s, t}

x(a) ≥ 0 for all a ∈ A

s t s t

0,5

0,25

0,5 0,5 0,5 0,5

0,5

0,25

0,25 0,25

1 1 1 1

Example: all edges 
have length 1

a fractional solution
OPT(LP)=4

an integral solution
OPT(ILP)=4

Exercise: Prove that this LP always admits an integral optimal solution
N. Nisse Graph Theory and applications 15/23
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Integer Programme Example: Maximum Matching

G = (V ,E) be a graph
Problem: Compute a maximum matching

Solution: a set M ⊆ E of pairwise disjoint edges
⇒ variables xe for each e ∈ E

xe = 1 if e ∈M, xe = 0 otherwise.

Maximize ∑
e∈E

xe

Subject to: ∑
e∈E ,v∈e

xe ≤ 1 for all v ∈ V

xe ∈ {0,1} for all e ∈ E

Exercise: Prove that the fractional relaxation of this ILP always admits
an integral optimal solution

N. Nisse Graph Theory and applications 16/23
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Totally unimodular matrices
unimodular matrix: square matrix with determinant +1 or −1
totally unimodular matrix: every square non-singular submatrix is unimodular
Integer Linear programme (ILP):

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ∈ N ∀1≤ j ≤ n.

NP-hard in general

Fractional Relaxation: Linear Programme

Max.
n

∑
j=1

cj xj

s.t.:
n

∑
j=1

aij xj ≤ bi ∀1≤ i ≤m

xj ≥ 0 ∀1≤ j ≤ n.

Polynomial-time solvable

Theorem [Hoffman,Kruskal, 1956]
If the matrix A = [aij ] is totally unimodular then every basic feasible solution (the
“corner" of the polytope) is integral
⇒ exist integral optimal solution of the LP
⇒ OPT (ILP) can be computed by solving the Fractional relaxation

N. Nisse Graph Theory and applications 17/23
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Integer Programme Example: Minimum Spanning Tree

G = (V ,E) be a graph with weight w : E → R+, and s, t ∈ V .
Problem: Compute a minimum spanning tree

Solution: A spanning tree T ⇒ variables xe for each e ∈ E
xE = 1 if e ∈ E(T ), xe = 0 otherwise.

Minimize ∑
e∈E

w(e)xe

Subject to: ∑
e={u,v}∈E ,u∈S,v /∈S

xe ≥ 1 for all S ⊆ V

xe ∈ {0,1} for all e ∈ E

Remark: The number of constraints is exponential

N. Nisse Graph Theory and applications 19/23
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Optical Networks (WDM)
Optical network: optical fiber connecting e.g. routers

Wavelength-division Multiplexing (WDM): technology which multiplexes a number of

optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of

laser light [Wikipedia]

⇒: different signals on the same link must have different wavelengths (colors)
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Optical Networks (WDM) RWA problem
RWA: Routing and Wavelentgh Assignment Problem
Given a graph G = (V ,E) with capacity on links, and a traffic-demand matrix T ,
where T [u,v ] is the amount of traffic that must transit from u to v , for any u,v ∈ V .
Find a set of paths and one wavelength assignment for each path such that:

• all demands are routed

• capacity of each link cannot be exceeded

• total number of wavelength is as small as possible

demand matrix:

a b c d e f g
a 0 0 1 1 0 1 0
b 0 0 0 0 0 2 0
c 0 0 0 0 0 0 0
d 0 0 0 0 0 0 5
e 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0

a b

c

d

e

f

g

3
2

2
5

3

2

1

3 4
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Optical Networks (WDM) RWA problem

Let us simplify the problem ⇒ consider only Wavelength assignment

WA: Wavelentgh Assignment Problem
Given a graph G = (V ,E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

a b

c

d

e

f

g
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Optical Networks (WDM) RWA problem
Let us simplify the problem ⇒ consider only Wavelength assignment

WA: Wavelentgh Assignment Problem
Given a graph G = (V ,E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

a b

c

d

e

f

g

ac
af

ad

bf

dg

gb

It is the problem of PROPER COLORING in graphs !!
the “simplified" problem is already NP-complete :(

N. Nisse Graph Theory and applications 22/23



Integer Linear Programme Some examples Integrality gap Polynomial Cases More Examples

Optical Networks (WDM) RWA problem
Let us simplify the problem ⇒ consider only Wavelength assignment

WA: Wavelentgh Assignment Problem
Given a graph G = (V ,E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

a b

c

d

e

f

g

ac
af

ad

bf

dg

gb

It is the problem of PROPER COLORING in graphs !!
the “simplified" problem is already NP-complete :(

N. Nisse Graph Theory and applications 22/23



Integer Linear Programme Some examples Integrality gap Polynomial Cases More Examples

Optical Networks (WDM) RWA problem
Let us simplify the problem ⇒ consider only Wavelength assignment

WA: Wavelentgh Assignment Problem
Given a graph G = (V ,E) with capacity on links, and a set of paths
Give One color to each path s.t. no two paths with the same color cross a same link
Minimize the number of colors

a b

c

d

e

f

g

ac
af

ad

bf

dg

gb

Exercise: Write a (Integer) Linear Programme that solves the RWA problem
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Summary: To be remembered

• ILP allow to model many problems

• there may be a huge integrality gap
(between OPT (LP) and OPT (ILP)).

• if no integrality gap (e.g., totally unimodular matrices)
⇒ Fractional Relaxation gives Optimal Integral Solution
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