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Motivation

• Finding bounds on the optimal solution. Provides a measure of
the "goodness" of a solution.

• Provide certificate of optimality.

• Economic interpretation of the dual problem.
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Duality Theorem: introduction

Maximize 4x1 + x2 + 5x3 + 3x4

Subject to :
x1 − x2 − x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55
−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1,x2,x3,x4 ≥ 0.

Lower bound: a feasible solution, e.g. (0,0,1,0)⇒ z∗ ≥ 5.

What if we want an upper bound?
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Duality Theorem: introduction
Maximize 4x1 + x2 + 5x3 + 3x4
Subject to :

x1 − x2 − x3 + 3x4 ≤ 1
5x1 + x2 + 3x3 + 8x4 ≤ 55
−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1 ,x2 ,x3 ,x4 ≥ 0.

Second Inequation ×5/3:

25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 ≤
275

3
.

Note that (all variables are positive),

4x1 + x2 +5x3 +3x4 ≤
25
3

x1 +
5
3

x2 +5x3 +
40
3

x4

Hence, a first bound:

z∗ ≤ 275
3

.
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Duality Theorem: introduction

Maximize 4x1 + x2 + 5x3 + 3x4
Subject to :

x1 − x2 − x3 + 3x4 ≤ 1
5x1 + x2 + 3x3 + 8x4 ≤ 55
−x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1 ,x2 ,x3 ,x4 ≥ 0.

Similarly, 2d +3d constraints:

4x1 +3x2 +6x3 +3x4 ≤ 58.

Hence, a second bound:
z∗ ≤ 58.

→ need for a systematic strategy.
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Duality Theorem: introduction
Maximize 4x1 + x2 + 5x3 + 3x4
Subject to :

x1 − x2 − x3 + 3x4 ≤ 1 ×y1

5x1 + x2 + 3x3 + 8x4 ≤ 55 ×y2

−x1 + 2x2 + 3x3 − 5x4 ≤ 3 ×y3

x1 ,x2 ,x3 ,x4 ≥ 0.

Build linear combinations of the constraints. Summing:

(y1 +5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3

+(3y1 +8y2−5y3)x4 ≤ y1 +55y2 +3y3.

We want left part upper bound of z. We need coefficient of xj ≥
coefficient in z:

y1 + 5y2 − y3 ≥ 4
−y1 + y2 + 2y3 ≥ 1
−y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 − 5y3 ≥ 3.
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(y1 +5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3

+(3y1 +8y2−5y3)x4 ≤ y1 +55y2 +3y3.

We want left part upper bound of z. We need coefficient of xj ≥
coefficient in z:

y1 + 5y2 − y3 ≥ 4
−y1 + y2 + 2y3 ≥ 1
−y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 − 5y3 ≥ 3.

If the yi ≥ 0 and satisfy theses inequations, then

4x1 + x2 +5x3 +3x4 ≤ y1 +55y2 +3y3.

In particular,
z∗ ≤ y1 +55y2 +3y3.
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Duality Theorem: introduction

Objective: smallest possible upper bound. Hence, we solve the
following PL:

Minimize y1 + 55y2 + 3y3

Subject to:
y1 + 5y2 − y3 ≥ 4
−y1 + y2 + 2y3 ≥ 1
−y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 − 5y3 ≥ 3

y1,y2,y3 ≥ 0.

It is the dual problem of the problem.
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The Dual Problem

Primal problem:

Maximize ∑
n
j=1 cjxj

Subject to: ∑
n
j=1 aijxj ≤ bi (i = 1,2, · · · ,m)

xj ≥ 0 (j = 1,2, · · · ,n)

Its dual problem is defined by the LP problem:

Minimize ∑
m
i=1 biyi

Subject to: ∑
m
i=1 aijyi ≥ cj (j = 1,2, · · · ,n)

yi ≥ 0 (i = 1,2, · · · ,m)
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Weak Duality Theorem
Theorem Weak Duality
If (x1,x2, ...,xn) is feasible for the primal and (y1,y2, ...ym) is feasible
for the dual, then

∑
j

cjxj ≤∑
i

biyi .

Proof:

∑j cjxj ≤ ∑j(∑i yiaij)xj dual definition: ∑i yiaij ≥ cj

= ∑i(∑j aijxj)yi

≤ ∑i biyi primal definition: ∑i xiaij ≤ bj

Corollary:
The optimal value of the dual is an upper bound for the optimal value
of the primal.

max
(x1,··· ,xn) feasible

∑
j

cjxj ≤ min
(y1,··· ,ym) feasible

∑
i

biyi .
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Gap or No Gap?

An important question:
Is there a gap between the largest primal value and the smallest dual
value?
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Strong Duality Theorem

Theorem Strong duality
If the primal problem has an optimal solution,

x∗ = (x∗1 , ...,X
∗
n ),

then the dual also has an optimal solution,

y∗ = (y∗1 , ...,y
∗
n ),

and

∑
j

cjx
∗
j = ∑

i
biy
∗
i .
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Relationship between the Primal and Dual Problems

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem)⇒ Primal has an optimal
solution iff dual has an optimal solution.
Weak duality: Primal unbounded⇒ dual unfeasible.

Dual
Optimal Unfeasible Unbounded

Optimal X
Primal Unfeasible X X

Unbounded X
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Application of Duality to Maximum flow

D = (V ,A) be a graph with capacity c : A→ R+, and s, t ∈ V .
Problem: Compute a maximum flow from s to t .

Maximize ∑
(s,u)∈A

f (su)

Subject to: f (a) ≤ c(a) for all a ∈ A

∑
(v ,u)∈A

f (vu) = ∑
(u,v)∈A

f (uv) for all v ∈ V \{s, t}

f (a) ≥ 0 for all a ∈ A

Exercise: Write the dual program
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Application of Duality to Maximum flow

Variable ya per edge constraint; Variable zv per vertex-constraint

R = ∑
a∈A

f (a)ya + ∑
v∈V\{s,t}

( ∑
(v ,u)∈A

f (vu)− ∑
(u,v)∈A

f (uv))zv ≤ ∑
a∈A

c(a)ya
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( ∑
(v ,u)∈A

f (vu)− ∑
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f (uv))zv ≤ ∑
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Application of Duality to Maximum flow

Variable ya per edge constraint; Variable zv per vertex-constraint

R = ∑
a∈A

f (a)ya + ∑
v∈V\{s,t}

( ∑
(v ,u)∈A

f (vu)− ∑
(u,v)∈A

f (uv))zv ≤ ∑
a∈A

c(a)ya

that can be rewritten:

R = f (st)yst + ∑
(s,v)∈A,v 6=t

f (sv)(ysv + zv )+ ∑
(v ,t)∈A,v 6=s

f (vt)(yvt − zv )+

∑
(u,v)∈A,u 6=s,v 6=t

f (uv)(yuv + zv − zu)≤ ∑
a∈A

c(a)ya

So, to have ∑
(s,u)∈A

f (su)≤ R ≤ ∑
a∈A

c(a)ya:

ya ≥ 1 if a = (s, t)
ya + zv ≥ 1 if a = (s,v),v 6= t
ya + zv ≥ 0 if a = (v , t),v 6= s
ya + zv − zu ≥ 0 if a = (u,v),u 6= s,v 6= t
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Application of Duality to Maximum flow

The dual of the previous formulation of Max-Flow

Minimize ∑
a∈A

c(a)ya

Subject to: ya ≥ 1 if a = (s, t)
ya + zv ≥ 1 if a = (s,v),v 6= t
ya + zv ≥ 0 if a = (v , t),v 6= s

ya + zv − zu ≥ 0 if a = (u,v),u 6= s,v 6= t
ya ≥ 0 for all a ∈ A
zv ≥ 0 for all v ∈ V

Exercise: Prove it is a LP for the Min-Cut Problem
Deduce the MaxFlow-MinCut Theorem
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Exercises
G = (V ,E) be a graph with weight w : E → R+, and s, t ∈ V .

What compute the following programmes? Give their dual Programme

Maximize ∑
P path from s to t

xP

Subject to: ∑
P,e∈E(P)

xP ≤ w(e) for all e ∈ E

xP ≥ 0 for all paths P
from s to t

Maximize xt

Subject to: xs = 0
xv ≤ xu +w({u,v}) for all {v ,u} ∈ E
xv ≥ 0 for all v ∈ V
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Complementary Slackness

Theorem Complementary Slackness
Let x∗1 , ...x

∗
n be a feasible solution of the primal and y∗1 , ...y

∗
n be a

feasible solution of the dual. Then,

m

∑
i=1

aijy
∗
i = cj or x∗j = 0 or both(j = 1,2, ...n)

n

∑
j=1

aijx
∗
j = bi or y∗i = 0 or both(i = 1,2, ...m)

are necessary and sufficient conditions to have the optimality of x∗

and y∗.
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Complementary Slackness - Proof

x∗ feasible⇒ bi −∑j aijxj ≥ 0.
y∗ dual feasible, hence non negative.

Thus
(bi −∑

j
aijxj)yi ≥ 0.

Similarly,
y∗ dual feasible⇒ ∑i aijyi − cj ≥ 0.
x∗ feasible, hence non negative.

(∑
i

aijyi − cj)xj ≥ 0.
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Complementary Slackness - Proof

(bi −∑
j

aijxj)yi ≥ 0 and (∑
i

aijyi − cj)xj ≥ 0

By summing, we get:

∑
i
(bi −∑

j
aijxj)yi ≥ 0 and ∑

j
(∑

i
aijyi − cj)xj ≥ 0

Summing + strong duality theorem:

∑
i

biyi −∑
i,j

aijxjyi +∑
j,i

aijyixj −∑
j

cjxj = ∑
i

biyi −∑cjxj = 0.

Implies: inequalities must be equalities:

∀i,(bi −∑
j

aijxj)yi = 0 and ∀j(∑
i

aijyi − cj)xj = 0.

XY = 0 if X = 0 or Y = 0. Done.
N. Nisse Graph Theory and applications 21/28
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Theorem Optimality Certificate
A feasible solution x∗1 , ...x

∗
n of the primal is optimal iif there exist

numbers y∗1 , ...y
∗
n such that

1 they satisfy the complementary slackness condition:

∑
m
i=1 aijy∗i = cj when x∗j > 0

y∗j = 0 when ∑
n
j=1 aijx∗j < bi

2 and y∗1 , ...y
∗
n feasible solution of the dual, that is

∑
m
i=1 aijy∗i ≥ cj ∀j = 1, ...n

y∗i ≥ 0 ∀i = 1, ...,m.

N. Nisse Graph Theory and applications 22/28
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Example: Verify that (2,4,0,0,7,0) optimal solution of

Max 18x1 − 7x2 + 12x3 + 5x4 + 8x6
st: 2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2
8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4
4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1
5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1 ,x2, · · · ,x6 ≥ 0

First step: Existence of y∗1 , ...,y
∗
5 , such as

∑
m
i=1 aij y∗i = cj when x∗j > 0

y∗i = 0 when ∑
n
j=1 aij x∗j < bi

That is
2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 = 18
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 = −7

3y∗1 + y∗2 − y∗4 − 2y∗5 = 0
y∗2 = 0

y∗5 = 0

(1
3 ,0,

5
3 ,1,0) is solution.
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3 ,0,

5
3 ,1,0) is a solution of the dual.
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Second step: Verify (1
3 ,0,

5
3 ,1,0) is a solution of the dual.

∑
m
i=1 aijy∗i ≥ cj ∀j = 1, ...n

y∗j ≥ 0 ∀i = 1, ...,m.

That is, we check

2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 ≥ 18
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 ≥ −7

2y∗1 + 4y∗2 + 5y∗3 + 8y4 + 3y∗5 ≥ 12
7y∗1 − 3y∗2 − 2y∗3 + 7y4 + 6y∗5 ≥ 5
3y∗1 + y∗2 − y∗4 − 2y∗5 ≥ 0
8y∗1 + 2y∗2 + 2y∗3 + 3y4 1 y∗5 ≥ 8
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4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1
5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1 ,x2, · · · ,x6 ≥ 0

Second step: Verify (1
3 ,0,

5
3 ,1,0) is a solution of the dual.

∑
m
i=1 aijy∗i ≥ cj ∀j = 1, ...n

y∗j ≥ 0 ∀i = 1, ...,m.

That is, we check

2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 ≥ 18 OK
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 ≥ −7 OK

2y∗1 + 4y∗2 + 5y∗3 + 8y∗4 + 3y∗5 ≥ 12
7y∗1 − 3y∗2 − 2y∗3 + 7y∗4 + 6y∗5 ≥ 5
3y∗1 + y∗2 − y∗4 − 2y∗5 ≥ 0 OK
8y∗1 + 2y∗2 + 2y∗3 + 3y∗4 1 y∗5 ≥ 8

Only three equations to check.
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∑
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i=1 aijy∗i ≥ cj ∀j = 1, ...n
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2y∗1 + 4y∗2 + 5y∗3 + 8y∗4 + 3y∗5 ≥ 12
7y∗1 − 3y∗2 − 2y∗3 + 7y∗4 + 6y∗5 ≥ 5
3y∗1 + y∗2 − y∗4 − 2y∗5 ≥ 0 OK
8y∗1 + 2y∗2 + 2y∗3 + 3y∗4 1 y∗5 ≥ 8

Only three equations to check.

OK. The solution (1
3 ,0,

5
3 ,1,0) is optimal.
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Signification of Dual Variables

Maximize ∑
n
j=1 cj xj

Subject to: ∑
n
j=1 aij xj ≤ bi (i = 1,2, · · · ,m)

xj ≥ 0 (j = 1,2, · · · ,n)

Minimize ∑
m
i=1 bi yi

Subject to: ∑
m
i=1 aij yi ≥ cj (j = 1,2, · · · ,n)

yi ≥ 0 (i = 1,2, · · · ,m)

Signification can be given to variables of the dual problem (dimension
analysis):

• xj : production of a product j (chair, ...)

• bi : available quantity of resource i (wood, metal, ...)

• aij : unit of resource i per unit of product j

• cj : net benefit of the production of a unit of product j
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Signification of Dual Variables

Maximize ∑
n
j=1 cj xj

Subject to: ∑
n
j=1 aij xj ≤ bi (i = 1,2, · · · ,m)

xj ≥ 0 (j = 1,2, · · · ,n)

Minimize ∑
m
i=1 bi yi

Subject to: ∑
m
i=1 aij yi ≥ cj (j = 1,2, · · · ,n)

yi ≥ 0 (i = 1,2, · · · ,m)

Signification can be given to variables of the dual problem (dimension
analysis):

• xj : production of a product j (chair, ...)

• bi : available quantity of resource i (wood, metal, ...)

• aij : unit of resource i per unit of product j

• cj : net benefit of the production of a unit of product j
euros/unit of product j

> c
jnn1j

a  y + ... + a  y
1 j

unit of resource i/unit of product j euros/unit of resource i

→ yi euro by unit of resource i .
Marginal cost of resource i .
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Signification of Dual Variables

Theorem: If the LP admits at least one optimal solution, then there
exists ε > 0, with the property: If |ti | ≤ ε ∀i = 1,2, · · · ,m, then the LP

Max ∑
n
j=1 cjxj

Subject to: ∑
n
j=1 aijxj ≤ bi + ti (i = 1,2, · · · ,m)

xj ≥ 0 (j = 1,2, · · · ,n).

has an optimal solution and the optimal value of the objective is

z∗+
m

∑
i=1

y∗i ti

with z∗ the optimal solution of the initial LP and (y∗1 ,y
∗
2 , · · · ,y∗m) the

optimal solution of its dual.
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Summary: To be remembered

• How to compute a Dual Programme.

• Weak/Strong duality Theorem.

• Optimality certificate (Complementary Slackness).
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