Graph Theory and Optimization Introduction on Duality in LP

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Thank you to F. Giroire for his slides

Motivation

- Finding bounds on the optimal solution. Provides a measure of the "goodness" of a solution.
- Provide certificate of optimality.
- Economic interpretation of the dual problem.

Outline

- 2 Building the dual programme
- 3 Duality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Maximize Subject to :	4 <i>x</i> ₁	+	<i>x</i> 2	+	5 <i>x</i> 3	+	3 <i>x</i> 4		
	<i>x</i> ₁	_	<i>x</i> ₂	_	<i>X</i> 3	+	3 <i>x</i> 4	\leq	1
	5 <i>x</i> 1	+	<i>x</i> ₂	+	3 <i>x</i> 3	+	8 <i>x</i> ₄	\leq	55
	$-x_{1}$	+	2 <i>x</i> ₂	+	3 <i>x</i> 3	_	5 <i>x</i> ₄	\leq	3
					x_1 ,	, x ₂ , x	x ₃ , x ₄	\geq	0.

Lower bound: a feasible solution, e.g. $(0,0,1,0) \Rightarrow z^* \ge 5$.

What if we want an upper bound?

Maximize Subject to :	4 <i>x</i> ₁	+	<i>x</i> ₂	+	5 <i>x</i> 3	+	3 <i>x</i> 4		
	<i>x</i> 1	_	<i>x</i> 2	_	<i>x</i> 3	+	3 <i>x</i> 4	\leq	1
	$5x_1$	+	X2	+	$3x_3$	+	8 <i>x</i> ₄	\leq	55
	$-x_1$	+	$2x_2$	+	$3x_3$	_	5 <i>x</i> 4	\leq	3
						x ₁ , x ₂ ,	<i>x</i> ₃ , <i>x</i> ₄	\geq	0.

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}.$$

Maximize Subject to :	4 <i>x</i> 1	+	<i>x</i> ₂	+	5 <i>x</i> 3	+	3 <i>x</i> 4		
	<i>x</i> 1	_	<i>x</i> 2	_	<i>x</i> 3	+	3 <i>x</i> 4	\leq	1
	$5x_1$	+	X2	+	$3x_3$	+	8 <i>x</i> ₄	\leq	55
	$-x_1$	+	$2x_2$	+	3 <i>x</i> 3	_	$5x_4$	\leq	3
						<i>x</i> ₁ , <i>x</i> ₂ ,	x ₃ , x ₄	\geq	0.

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}.$$

Maximize Subject to :	4 <i>x</i> 1	+	<i>x</i> ₂	+	5 <i>x</i> 3	+	3 <i>x</i> 4		
	<i>x</i> 1	_	<i>x</i> 2	_	<i>x</i> 3	+	3 <i>x</i> 4	\leq	1
	$5x_1$	+	X2	+	$3x_3$	+	8 <i>x</i> ₄	\leq	55
	$-x_1$	+	$2x_2$	+	3 <i>x</i> 3	_	$5x_4$	\leq	3
						<i>x</i> ₁ , <i>x</i> ₂ ,	x ₃ , x ₄	\geq	0.

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}.$$

Maximize Subject to :	4 <i>x</i> ₁	+	<i>x</i> ₂	+	5 <i>x</i> 3	+	3 <i>x</i> 4		
	<i>x</i> 1	_	<i>x</i> 2	_	<i>x</i> 3	+	3 <i>x</i> 4	\leq	1
	5x ₁	+	x ₂	+	3x3	+	8 <i>x</i> 4	\leq	55
	$-x_1$	+	$2x_2$	+	3 <i>x</i> 3	-	5 <i>x</i> 4	\leq	3
						x ₁ , x ₂ ,	x ₃ , x ₄	\geq	0.

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58.$$

Hence, a second bound:

 $z^* \le 58.$

 \rightarrow need for a systematic strategy.

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58.$$

Hence, a second bound:

 $z^* \leq 58.$

 \rightarrow need for a systematic strategy.

Outline

- 2 Building the dual programme
- 3 Duality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Maximize Subject to :	4 <i>x</i> ₁	+	<i>x</i> ₂	+	5 <i>x</i> 3	+	3 <i>x</i> 4			
	<i>x</i> ₁	-	<i>x</i> ₂	-	<i>x</i> 3	+	3 <i>x</i> 4	\leq	1	$\times y_1$
	5 <i>x</i> 1	+	<i>x</i> ₂	+	3 <i>x</i> 3	+	8 <i>x</i> 4	\leq	55	× <i>y</i> ₂
	$-x_{1}$	$^+$	2 <i>x</i> ₂	$^+$	3 <i>x</i> 3	_	5 <i>x</i> 4	\leq	3	$\times y_3$
						<i>x</i> ₁ , <i>x</i> ₂ ,	<i>x</i> ₃ , <i>x</i> ₄	\geq	0.	

Build linear combinations of the constraints. Summing:

$$(y_1+5y_2-y_3)x_1+(-y_1+y_2+2y_3)x_2+(-y_1+3y_2+3y_3)x_3 +(3y_1+8y_2-5y_3)x_4 \leq y_1+55y_2+3y_3.$$

We want left part upper bound of *z*. We need coefficient of $x_j \ge$ coefficient in *z*:

Build linear combinations of the constraints. Summing:

$$(y_1+5y_2-y_3)x_1+(-y_1+y_2+2y_3)x_2+(-y_1+3y_2+3y_3)x_3\\+(3y_1+8y_2-5y_3)x_4\leq y_1+55y_2+3y_3.$$

We want left part upper bound of *z*. We need coefficient of $x_j \ge$ coefficient in *z*:

y 1	+	5 <i>y</i> 2	_	y 3	\geq	4
- <i>y</i> 1	+	y 2	+	2 <i>y</i> ₃	\geq	1
$-y_{1}$	+	3 <i>y</i> 2	+	3 <i>y</i> 3	\geq	5
3 <i>y</i> 1	+	8 <i>y</i> 2	—	5 <i>y</i> 3	\geq	3.

If the $y_i \ge 0$ and satisfy theses inequations, then

$$4x_1 + x_2 + 5x_3 + 3x_4 \le y_1 + 55y_2 + 3y_3.$$

In particular,

$$z^* \le y_1 + 55y_2 + 3y_3.$$

N. Nisse

Objective: smallest possible upper bound. Hence, we solve the following PL:

Minimize	y 1	+	55 <i>y</i> 2	+	3 <i>y</i> ₃		
Subject to:							
	<i>Y</i> 1	+	5 <i>y</i> 2	—	y 3	\geq	4
	$-y_1$	+	y 2	+	2 <i>y</i> ₃	\geq	1
	$-y_1$	+	3 <i>y</i> 2	+	3 <i>y</i> ₃	\geq	5
	3 <i>y</i> 1	+	8 <i>y</i> 2	_	5 <i>y</i> ₃	\geq	3
				y_1, y_2	y_2, y_3	>	0.

It is the dual problem of the problem.

Outline

- 2 Building the dual programme
- 3 Duality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Graph Theory and applications 11/28

The Dual Problem

Primal problem:

Its dual problem is defined by the LP problem:

125

$$\begin{array}{rcl} \text{Minimize} & \sum_{i=1}^{m} b_i y_i \\ \text{Subject to:} & \sum_{i=1}^{m} a_{ij} y_i \geq c_j & (j=1,2,\cdots,n) \\ & y_i \geq 0 & (i=1,2,\cdots,m) \end{array}$$

COATI

Innía

Weak Duality Theorem

Theorem

Weak Duality

Graph Theory and applications 12/28

If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_m)$ is feasible for the dual, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Proof:

$$\begin{array}{ll} \sum_{j} c_{j} x_{j} & \leq \sum_{j} (\sum_{i} y_{i} a_{ij}) x_{j} & \text{dual definition: } \sum_{i} y_{i} a_{ij} \geq c_{j} \\ & = \sum_{i} (\sum_{j} a_{ij} x_{j}) y_{i} \\ & \leq \sum_{i} b_{i} y_{i} & \text{primal definition: } \sum_{i} x_{i} a_{ij} \leq b_{j} \end{array}$$

Corollary:

The optimal value of the dual is an upper bound for the optimal value of the primal.

COATI

Innia

Innia

Weak Duality Theorem

Theorem

Weak Duality

Graph Theory and applications 12/28

If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_m)$ is feasible for the dual, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Proof:

$$\begin{array}{ll} \sum_{j} c_{j} x_{j} &\leq \sum_{j} (\sum_{i} y_{i} a_{ij}) x_{j} & \text{dual definition: } \sum_{i} y_{i} a_{ij} \geq c_{j} \\ &= \sum_{i} (\sum_{j} a_{ij} x_{j}) y_{i} \\ &\leq \sum_{i} b_{i} y_{i} & \text{primal definition: } \sum_{i} x_{i} a_{ij} \leq b_{i} \end{array}$$

Corollary:

The optimal value of the dual is an upper bound for the optimal value of the primal.

$$\max_{(x_1,\cdots,x_n) \text{ feasible}} \sum_j c_j x_j \leq \min_{(y_1,\cdots,y_m) \text{ feasible}} \sum_i b_i y_i.$$

Gap or No Gap?

An important question:

Is there a gap between the largest primal value and the smallest dual value?

Strong Duality Theorem

Theorem

Strong duality

If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*)$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Relationship between the Primal and Dual Problems

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) \Rightarrow Primal has an optimal solution iff dual has an optimal solution. Weak duality: Primal unbounded \Rightarrow dual unfeasible.

Relationship between the Primal and Dual Problems

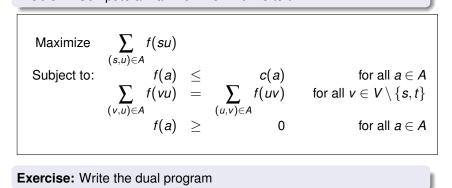
Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) \Rightarrow Primal has an optimal solution iff dual has an optimal solution.

Weak duality: Primal unbounded \Rightarrow dual unfeasible.

			Dual	
		Optimal	Unfeasible	Unbounded
	Optimal	Х		
Primal	Unfeasible		Х	Х
	Unbounded		Х	

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.



Exercise: Write the dual program

Application of Duality to Maximum flow

Variable y_a per edge constraint; Variable z_v per vertex-constraint

_**i35**

$$R = \sum_{a \in A} f(a) y_a + \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv) \right) z_v \le \sum_{a \in A} c(a) y_a$$

COATI

Inría

Harrist and the second

Variable y_a per edge constraint; Variable z_v per vertex-constraint

135

$$R = \sum_{a \in A} f(a)y_a + \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv)\right)z_v \le \sum_{a \in A} c(a)y_a$$

that can be rewritten:

$$R = f(st)y_{st} + \sum_{(s,v)\in A, v\neq t} f(sv)(y_{sv} + z_v) + \sum_{(v,t)\in A, v\neq s} f(vt)(y_{vt} - z_v) + \sum_{(u,v)\in A, u\neq s, v\neq t} f(uv)(y_{uv} + z_v - z_u) \le \sum_{a\in A} c(a)y_a$$

COATI

cirs

Inría

Variable y_a per edge constraint; Variable z_v per vertex-constraint

135

$$R = \sum_{a \in A} f(a)y_a + \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv)\right)z_v \le \sum_{a \in A} c(a)y_a$$

that can be rewritten:

$$R = f(st)y_{st} + \sum_{(s,v)\in A, v\neq t} f(sv)(y_{sv} + z_v) + \sum_{(v,t)\in A, v\neq s} f(vt)(y_{vt} - z_v) + \sum_{(u,v)\in A, u\neq s, v\neq t} f(uv)(y_{uv} + z_v - z_u) \le \sum_{a\in A} c(a)y_a$$

So, to have $\sum_{(s,u)\in A} f(su) \le R \le \sum_{a\in A} c(a)y_a$:
 $y_a \ge 1 \qquad \text{if } a = (s,t)$
 $y_a + z_v \ge 1 \qquad \text{if } a = (s,v), v \neq t$
 $y_a + z_v \ge 0 \qquad \text{if } a = (v,t), v \neq s$
 $y_a + z_v - z_u \ge 0 \qquad \text{if } a = (u,v), u \neq s, v \neq t$

COATI

cirs

Inría

The dual of the previous formulation of Max-Flow

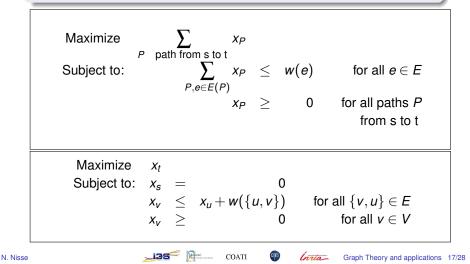
Minimize	$\sum_{a \in A} c(a) y_a$			
Subject to:	исл Уа	\geq	1	if $a = (s, t)$
	$y_a + z_v$	\geq	1	if $a = (s, v), v \neq t$
	$y_a + z_v$	\geq	0	if $a = (v, t), v \neq s$
	$y_a + z_v - z_u$	\geq	0	if $a = (u, v), u \neq s, v \neq t$
	Уа	\geq	0	for all $a \in A$
	Z_V	\geq	0	for all $v \in V$

Exercise: Prove it is a LP for the Min-Cut Problem Deduce the MaxFlow-MinCut Theorem

Exercises

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$.

What compute the following programmes? Give their dual Programme



Outline

- 2 Building the dual programme
- 3 Duality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Complementary Slackness

Theorem

Complementary Slackness

Let $x_1^*, ..., x_n^*$ be a feasible solution of the primal and $y_1^*, ..., y_n^*$ be a feasible solution of the dual. Then,

$$\sum_{i=1}^{m} a_{ij} y_i^* = c_j$$
 or $x_j^* = 0$ or both $(j = 1, 2, ..., n)$

$$\sum_{i=1}^{n} a_{ij} x_{j}^{*} = b_{i} \text{ or } y_{i}^{*} = 0 \text{ or both}(i = 1, 2, ...m)$$

are necessary and sufficient conditions to have the optimality of x^* and y^* .

 x^* feasible $\Rightarrow b_i - \sum_j a_{ij} x_j \ge 0$. y^* dual feasible, hence non negative.

Thus

$$(b_i-\sum_j a_{ij}x_j)y_i\geq 0.$$

Similarly,

$$y^*$$
 dual feasible $\Rightarrow \sum_i a_{ij} y_i - c_j \ge 0$.

 x^* feasible, hence non negative.

$$(\sum_i a_{ij}y_i-c_j)x_j\geq 0.$$

$$(b_i - \sum_j a_{ij}x_j)y_i \ge 0$$
 and $(\sum_i a_{ij}y_i - c_j)x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \quad \text{and} \quad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities:

$$orall i, (b_i - \sum_j a_{ij} x_j) y_i = 0$$
 and $orall j (\sum_j a_{ij} y_i - c_j) x_j = 0.$

XY = 0 if X = 0 or Y = 0. Done.

N. Nisse

$$(b_i - \sum_j a_{ij}x_j)y_i \ge 0$$
 and $(\sum_i a_{ij}y_i - c_j)x_j \ge 0$

By summing, we get:

$$\sum_{i}(b_i-\sum_{j}a_{ij}x_j)y_i\geq 0$$
 and $\sum_{j}(\sum_{i}a_{ij}y_i-c_j)x_j\geq 0$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities:

$$\forall i, (b_i - \sum_j a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_j a_{ij} x_j) y_i = 0$

XY = 0 if X = 0 or Y = 0. Done.

$$(b_i - \sum_j a_{ij}x_j)y_i \ge 0$$
 and $(\sum_j a_{ij}y_i - c_j)x_j \ge 0$

By summing, we get:

$$\sum_{i}(b_i-\sum_{j}a_{ij}x_j)y_i\geq 0$$
 and $\sum_{j}(\sum_{i}a_{ij}y_i-c_j)x_j\geq 0$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities:

$$\forall i, (b_i - \sum_j a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j$

XY = 0 if X = 0 or Y = 0. Done.

$$(b_i - \sum_j a_{ij}x_j)y_i \ge 0$$
 and $(\sum_i a_{ij}y_i - c_j)x_j \ge 0$

By summing, we get:

$$\sum_{i}(b_i-\sum_{j}a_{ij}x_j)y_i\geq 0$$
 and $\sum_{j}(\sum_{i}a_{ij}y_i-c_j)x_j\geq 0$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

cirs

Implies: inequalities must be equalities:

$$\forall i, (b_i - \sum_j a_{ij} x_j) y_i = 0$$
 and $\forall j \in V$

LISS Remain COATI

$$\forall j(\sum_i a_{ij}y_i-c_j)x_j=0.$$

Inría

XY = 0 if X = 0 or Y = 0. Done.

Duality (

nría

Theorem

Optimality Certificate

A feasible solution $x_1^*, ..., x_n^*$ of the primal is optimal if there exist numbers $y_1^*, ..., y_n^*$ such that

they satisfy the complementary slackness condition:

$$\sum_{i=1}^m a_{ij} y_i^* = c_j \qquad ext{when } x_j^* > 0 \ y_j^* = 0 \qquad ext{when } \sum_{j=1}^n a_{ij} x_j^* < b$$

and y_1^*, \dots, y_n^* feasible solution of the dual, that is

$$\begin{array}{ll} \sum_{i=1}^{m} a_{ij} y_i^* & \geq c_j \qquad \forall j = 1, \dots n \\ y_i^* & \geq 0 \qquad \forall i = 1, \dots, m. \end{array}$$

Example: Verify that (2,4,0,0,7,0) optimal solution of

Max	18 <i>x</i> 1	-	$7x_2$	+	12 <i>x</i> 3	+	5 <i>x</i> 4			+	8 <i>x</i> 6		
st:	2 <i>x</i> 1	-	6 <i>x</i> 2	+	$2x_3$	+	7 <i>x</i> 4	+	3 <i>x</i> 5	$^+$	8 <i>x</i> ₆	\leq	1
	$-3x_{1}$	-	<i>x</i> ₂	+	4 <i>x</i> ₃	-	3 <i>x</i> 4	+	<i>x</i> 5	$^+$	2 <i>x</i> 6	\leq	-2
	8 <i>x</i> 1	_	3 <i>x</i> 2	+	5 <i>x</i> 3	_	$2x_4$			+	2 <i>x</i> 6	\leq	4
	4 <i>x</i> ₁			+	8 <i>x</i> 3	+	7 <i>x</i> 4	_	<i>x</i> 5	$^+$	3 <i>x</i> 6	\leq	1
	5 <i>x</i> 1	+	$2x_2$	-	3 <i>x</i> 3	+	6 <i>x</i> 4	-	2 <i>x</i> 5	-	<i>x</i> 6	\leq	5
									x	x_{1}, x_{2}, \cdot	···, <i>x</i> ₆	\geq	0

First step: Existence of y_1^*, \dots, y_5^* , such as

125

Herensee

 $\begin{array}{ll} \sum_{i=1}^m a_{ij} y_i^* &= c_j \qquad \quad \text{when } x_j^* > 0 \\ y_i^* &= 0 \qquad \quad \text{when } \sum_{j=1}^n a_{ij} x_j^* < b_i \end{array}$

That is

COATI

 $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is solution.

Inia

Example: Verify that (2,4,0,0,7,0) optimal solution of

Max	18 <i>x</i> 1	-	7 <i>x</i> 2	+	12 <i>x</i> 3	+	5 <i>x</i> 4			+	8 <i>x</i> 6		
st:	2 <i>x</i> ₁	-	6 <i>x</i> 2	+	2 <i>x</i> 3	+	7 <i>x</i> 4	+	3 <i>x</i> 5	$^+$	8 <i>x</i> 6	\leq	1
	$-3x_{1}$	-	<i>x</i> 2	+	4 <i>x</i> ₃	-	3 <i>x</i> 4	+	<i>x</i> 5	$^+$	2 <i>x</i> 6	\leq	-2
	8 <i>x</i> 1	-	3 <i>x</i> 2	+	5 <i>x</i> 3	-	2 <i>x</i> ₄			+	2 <i>x</i> ₆	\leq	4
	4 <i>x</i> ₁			+	8 <i>x</i> 3	+	7 <i>x</i> 4	_	<i>x</i> 5	$^+$	3 <i>x</i> 6	\leq	1
	5x1	+	$2x_2$	-	3 <i>x</i> 3	+	6 <i>x</i> 4	-	2 <i>x</i> 5	-	<i>x</i> 6	\leq	5
									x	x_1, x_2, \cdot	···, <i>x</i> 6	\geq	0

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\sum_{i=1}^{m} a_{ij} y_i^* \geq c_j \quad \forall j = 1, ..., n$$

 $y_j^* \geq 0 \quad \forall i = 1, ..., m.$

COATI

Inia

Example: Verify that (2,4,0,0,7,0) optimal solution of

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ll} \sum_{i=1}^{m} a_{ij} y_i^* & \geq c_j & \forall j = 1, \dots n \\ y_j^* & \geq 0 & \forall i = 1, \dots, m. \end{array}$$

That is, we check

COATI

Innia

Example: Verify that (2, 4, 0, 0, 7, 0) optimal solution of

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ll} \sum_{i=1}^{m} a_{ij} y_i^* & \geq c_j & \forall j = 1, \dots n \\ y_j^* & \geq 0 & \forall i = 1, \dots, m \end{array}$$

That is, we check

Only three equations to check.

Example: Verify that (2,4,0,0,7,0) optimal solution of

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ll} \sum_{i=1}^m a_{ij} y_i^* &\geq c_j \qquad \forall j=1,...n\\ y_j^* &\geq 0 \qquad \forall i=1,...,m. \end{array}$$

That is, we check

$2y_1^* \\ -6y_1^* \\ 2y_1^* \\ 7y_1^* \\ 3y_1^* \\ 8y_1^*$	-	$3y_2^*$	+	8 <i>y</i> 3*	+	$4y_{4}^{*}$	+	$5y_{5}^{*}$	\geq	18	OK
$-6y_{1}^{*}$	-	<i>y</i> ₂ *	-	3v*			+	$2y_{5}^{*}$	\geq	-7	OK
$2y_{1}^{*}$	+	$4y_{2}^{+}$	+	$5y_3^*$	+	8 <i>y</i> 4*	+	$3y_{5}^{*}$	\geq	12	
$7y_{1}^{*}$	-	4y2* 3y2*	_	$5y_3^*$ $2y_3^*$	+	8y ₄ 7y ₄	+	6y5*	\geq	5	
3y1*	+	<i>y</i> 2 [*]			-	У4 [*]	-	$2y_5^*$	\geq	0	OK
8y1*	+	y_2^* 2 y_2^*	+	2 <i>y</i> _3*	+	y ₄ 3y ₄	1	<i>y</i> ₅ *	\geq	8	

Only three equations to check.

OK. The solution
$$(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$$
 is optimal.

Innia

Outline

- 2 Building the dual programme
- 3 Duality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Signification of Dual Variables

Signification can be given to variables of the dual problem (dimension analysis):

- x_j: production of a product j (chair, ...)
- *b_i*: available quantity of resource *i* (wood, metal, ...)
- a_{ij}: unit of resource i per unit of product j
- c_j: net benefit of the production of a unit of product j

Graph Theory and applications 26/28

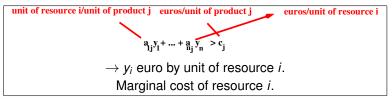
Signification of Dual Variables

Signification can be given to variables of the dual problem (dimension analysis):

- x_j: production of a product j (chair, ...)
- *b_i*: available quantity of resource *i* (wood, metal, ...)
- a_{ij}: unit of resource i per unit of product j

135

• c_j: net benefit of the production of a unit of product j



COATI

Innia

Signification of Dual Variables

Theorem: If the LP admits at least one optimal solution, then there exists $\varepsilon > 0$, with the property: If $|t_i| \le \varepsilon \quad \forall i = 1, 2, \dots, m$, then the LP

$$\begin{array}{rcl} \text{Max} & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{Subject to:} & \sum_{j=1}^{n} a_{ij} x_{j} &\leq b_{i} + t_{i} \quad (i = 1, 2, \cdots, m) \\ & x_{j} &\geq 0 \quad (j = 1, 2, \cdots, n). \end{array}$$

has an optimal solution and the optimal value of the objective is

$$z^* + \sum_{i=1}^m y_i^* t_i$$

with z^* the optimal solution of the initial LP and $(y_1^*, y_2^*, \dots, y_m^*)$ the optimal solution of its dual.

COATI

Innia

Summary: To be remembered

- How to compute a Dual Programme.
- Weak/Strong duality Theorem.
- Optimality certificate (Complementary Slackness).

