Graph Theory and Optimization Examples of (Integer) Linear Programming

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

October 2018

- Pirst examples of modelling
- Exercises: understand a LP

Linear Programme (reminder)

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

Linear Programme (reminder)

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

- Pirst examples of modelling
- Exercises: understand a LP

LP Example: Maximum Flow

D = (V, A) be a graph with capacity $c : A \rightarrow \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f: A
ightarrow \mathbb{R}^+$

 \Rightarrow variables f_a , for each $a \in A$

LP Example: Maximum Flow

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f : A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$ Objective function: maximize value of the flow $\sum_{u \in N^+(s)} f(su)$

Constraints:

• capacity constraints: $f(a) \le c(a)$ for each $a \in A$

• flow conservation:

$$\sum_{u\in N^+(v)} f(vu) = \sum_{u\in N^-(v)} f(uv), \forall v \in V \setminus \{s,t\}$$

Graph Theory and applications 5/12

LP Example: Maximum Flow

D = (V, A) be a graph with capacity $c : A \rightarrow \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f : A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$ **Objective function**: maximize value of the flow $\sum_{u \in N^+(s)} f(su)$

Constraints:

• capacity constraints: $f(a) \le c(a)$ for each $a \in A$ • flow conservation: $\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv), \forall v \in V \setminus \{s, t\}$

COATI

LP Example: Maximum Flow

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

Solution: $f : A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$ $\sum f(su)$ Objective function: maximize value of the flow $u \in N^+(s)$

Constraints:

f(a) < c(a) for each $a \in A$ capacity constraints:

COATI

flow conservation: U

$$\sum_{e\in N^+(v)} f(vu) = \sum_{u\in N^-(v)} f(uv), \forall v \in V \setminus \{s, t\}$$

nala

Innia

LP Example: Maximum Flow

D = (V, A) be a graph with capacity $c : A \rightarrow \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f : A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$

 $\begin{array}{lll} \text{Maximize} & \sum_{u \in N^+(s)} f(su) \\ \text{Subject to:} & f(a) \leq c(a) & \text{for all } a \in A \\ & \sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv) & \text{for all } v \in V \setminus \{s,t\} \\ & f(a) \geq 0 & \text{for all } a \in A \end{array}$

Register COATI

Integer Programme Example: Shortest path

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest path from *s* to *t*.

Solution: A path P from s to t

⇒ variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

Integer Programme Example: Shortest path

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest path from *s* to *t*.

Solution: A path *P* from *s* to *t* \Rightarrow variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

Integer Programme Example: Shortest path

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest path from *s* to *t*.

Solution: A path *P* from *s* to *t* \Rightarrow variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

COATI

Innia

Graph Theory and applications 6/12

Integer Programme Example: Minimum Cut

G = (V, E) be a graph with capacity $c : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a minimum s, t-cut

Solution: A partition (S, T) of *V* with $s \in S$ and $t \in T$

 \Rightarrow variables x_v for each $v \in V$

 $x_v = 1$ if $v \in S$, $x_v = 0$ otherwise.

nría

Minimize
$$\sum_{\{u,v\}\in E} c(\{u,v\})|x_u - x_v|$$

Subject to:
$$x_s = 1$$
$$x_t = 0$$
$$x_v \in \{0,1\} \text{ for all } v \in V$$

COATI

Integer Programme Example: Minimum Spanning Tree

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a minimum spanning tree

Solution: A spanning tree T \Rightarrow variables x_e for each $e \in E$ $x_E = 1$ if $e \in E(T)$, $x_e = 0$ otherwise.

COATI

nría

Graph Theory and applications 8/12

Remark: The number of constraints is exponential

- Pirst examples of modelling
- Exercises: understand a LP

135

More Examples

(Integer) Linear Programme Example: Exercises

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$. What compute the following programmes?

Maximize
Subject to:
$$\sum_{P,e \in E(P)} x_P$$

 $x_P \leq w(e)$ for all $e \in E$
 $x_P \in \{0,1\}$ Maximize
Subject to: x_t
 $x_s = 0$
 $x_v \leq x_u + w(\{u,v\})$
for all $\{v,u\} \in E$
 $x_v \geq 0$

COATI

Inría

Graph Theory and applications 10/12

- Pirst examples of modelling
- Exercises: understand a LP

Integer Programme Example: Maximum Matching

G = (V, E) be a graph **Problem:** Compute a maximum matching

Solution: a set $M \subseteq E$ of pairwise disjoint edges

 $\Rightarrow \text{ variables } x_e \text{ for each } e \in E$ $x_e = 1 \text{ if } e \in M, x_e = 0 \text{ otherwise.}$ Maximize $\sum_{e \in E, v \in e} x_e$ Subject to: $\sum_{e \in E, v \in e} x_e \leq 1 \text{ for all } v \in V$ $x_e \in \{0,1\} \text{ for all } e \in E$

COATI

Innia

Graph Theory and applications 12/12