Graph Theory and Optimization Examples of (Integer) Linear Programming

Nicolas Nisse
Inria, France
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France
October 2018

Outline

2 First examples of modelling
(3) Exercises: understand a LP

4 More Examples

Linear Programme (reminder)

Linear programmes can be written under the standard form:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { Subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } 1 \leq i \leq m \\
& x_{j} \geq 0 \quad \text { for all } 1 \leq j \leq n .
\end{array}
$$

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_{1}, \cdots, x_{n} are non-negative.

Linear Programme (reminder)

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_{1}, \cdots, x_{n} are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

Outline

2 First examples of modelling
(3) Exercises: understand a LP

4 More Examples

LP Example: Maximum Flow

$D=(V, A)$ be a graph with capacity $c: A \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

LP Example: Maximum Flow

$D=(V, A)$ be a graph with capacity $c: A \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

Solution: $f: A \rightarrow \mathbb{R}^{+}$
\Rightarrow variables f_{a}, for each $a \in A$

LP Example: Maximum Flow

$D=(V, A)$ be a graph with capacity $c: A \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

Solution: $f: A \rightarrow \mathbb{R}^{+}$ \Rightarrow variables f_{a}, for each $a \in A$ Objective function: maximize value of the flow

$$
\sum_{u \in N^{+}(s)} f(s u)
$$

LP Example: Maximum Flow

$D=(V, A)$ be a graph with capacity $c: A \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

Solution: $f: A \rightarrow \mathbb{R}^{+}$ \Rightarrow variables f_{a}, for each $a \in A$ Objective function: maximize value of the flow

$$
\sum_{u \in N^{+}(s)} f(s u)
$$

Constraints:

- capacity constraints:
- flow conservation: $\sum_{u \in N^{+}(v)} f(v u)=\sum_{u \in N^{-}(v)} f(u v), \forall v \in V \backslash\{s, t\}$

LP Example: Maximum Flow

$D=(V, A)$ be a graph with capacity $c: A \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a maximum flow from s to t.

Solution: $f: A \rightarrow \mathbb{R}^{+}$
\Rightarrow variables f_{a}, for each $a \in A$

Maximize $\sum_{u \in N^{+}(s)} f(s u)$
Subject to:

$$
\begin{array}{rlrr}
f(a) & \leq & c(a) & \text { for all } a \in A \\
\sum_{u \in N^{+}(v)} f(v u) & = & \sum_{u \in N^{-}(v)} f(u v) & \text { for all } v \in V \backslash\{s, t\} \\
f(a) & \geq & 0 & \text { for all } a \in A
\end{array}
$$

Integer Programme Example: Shortest path

$G=(V, E)$ be a graph with length $\ell: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a shortest path from s to t.

Integer Programme Example: Shortest path

$G=(V, E)$ be a graph with length $\ell: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$. Problem: Compute a shortest path from s to t.

Solution: A path P from s to t
\Rightarrow variables x_{e} for each $e \in E$ $x_{e}=1$ if $e \in E(P), x_{e}=0$ otherwise.

Integer Programme Example: Shortest path

$G=(V, E)$ be a graph with length $\ell: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$.
Problem: Compute a shortest path from s to t.
Solution: A path P from s to $t \quad \Rightarrow$ variables x_{e} for each $e \in E$ $x_{e}=1$ if $e \in E(P), x_{e}=0$ otherwise.

Minimize $\begin{array}{rlr}\sum_{e \in E} \ell(e) x_{e} & & \\ \text { Subject to: } & =1 & \\ \sum_{u \in N(s)}^{u \in N} x(s u) & = & 1 \\ \sum_{u \in N(t)}^{u(t u)} & = & \\ \sum_{u \in N(v)} x(v u) & = & \text { for all } v \in V \backslash\{s, t\} \\ x(e) & \in\{0,1\} & \text { for all } e \in E\end{array}$

Integer Programme Example: Minimum Cut

$G=(V, E)$ be a graph with capacity $c: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$.
Problem: Compute a minimum s, t-cut
Solution: A partition (S, T) of V with $s \in S$ and $t \in T$
\Rightarrow variables x_{v} for each $v \in V$
$x_{v}=1$ if $v \in S, x_{v}=0$ otherwise.

Minimize

$$
\sum_{\{u, v\} \in E} c(\{u, v\})\left|x_{u}-x_{v}\right|
$$

Subject to:

$$
\begin{array}{rlrl}
x_{s} & = & 1 & \\
x_{t} & = & 0 & \\
x_{v} & \in\{0,1\} & \text { for all } v \in V
\end{array}
$$

Integer Programme Example: Minimum Spanning Tree

$G=(V, E)$ be a graph with weight $w: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$.
Problem: Compute a minimum spanning tree
Solution: A spanning tree T
\Rightarrow variables x_{e} for each $e \in E$

$$
x_{E}=1 \text { if } e \in E(T), x_{e}=0 \text { otherwise. }
$$

Minimize
Subject to:

$$
\begin{array}{rlrl}
\sum_{e \in E} w(e) x_{e} & & \\
\sum_{e=\{u, v\} \in E, u \in S, v \notin S} & \geq & 1 & \text { for all } S \subseteq V \\
x_{e} & \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

Remark: The number of constraints is exponential

Outline

2 First examples of modelling
(3) Exercises: understand a LP

4 More Examples

(Integer) Linear Programme Example: Exercises

$G=(V, E)$ be a graph with weight $w: E \rightarrow \mathbb{R}^{+}$, and $s, t \in V$.
What compute the following programmes?

Subject to:

$$
\begin{array}{rr}
\sum_{P, e \in E(P)} x_{P} \leq w(e) & \text { for all } e \in E \\
x_{P} \in\{0,1\} & \text { for all paths } P \\
\text { from s to } t
\end{array}
$$

Maximize x_{t}
Subject to: $x_{s}=$

$$
\begin{array}{lrr}
x_{v} \leq x_{u}+w(\{u, v\}) & \text { for all }\{v, u\} \in E \tag{0}\\
x_{v} \geq & 0 & \text { for all } v \in V
\end{array}
$$

Outline

2 First examples of modelling
(3) Exercises: understand a LP

4 More Examples

Integer Programme Example: Maximum Matching

$G=(V, E)$ be a graph
Problem: Compute a maximum matching
Solution: a set $M \subseteq E$ of pairwise disjoint edges
\Rightarrow variables x_{e} for each $e \in E$

$$
x_{e}=1 \text { if } e \in M, x_{e}=0 \text { otherwise. }
$$

