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Linear Programme (reminder)
Linear programmes can be written under the standard form:

Maximize
n

∑
j=1

cjxj

Subject to:
n

∑
j=1

aijxj ≤ bi for all 1≤ i ≤m

xj ≥ 0 for all 1≤ j ≤ n.

• the problem is a maximization;

• all constraints are inequalities (and not equations);

• all variables x1, · · · ,xn are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time
in the number of variables and constraints (e.g., ellipsoid method)
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LP Example: Maximum Flow

D = (V ,A) be a graph with capacity c : A→ R+, and s, t ∈ V .
Problem: Compute a maximum flow from s to t .

Solution: f : A→ R+ ⇒ variables fa, for each a ∈ A
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Integer Programme Example: Shortest path

G = (V ,E) be a graph with length ` : E → R+, and s, t ∈ V .
Problem: Compute a shortest path from s to t .

Solution: A path P from s to t ⇒ variables xe for each e ∈ E
xe = 1 if e ∈ E(P), xe = 0 otherwise.

Minimize ∑
e∈E

`(e)xe

Subject to: ∑
u∈N(s)

x(su) = 1

∑
u∈N(t)

x(tu) = 1

∑
u∈N(v)

x(vu) = 2 for all v ∈ V \{s, t}

x(e) ∈ {0,1} for all e ∈ E
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Integer Programme Example: Minimum Cut

G = (V ,E) be a graph with capacity c : E → R+, and s, t ∈ V .
Problem: Compute a minimum s, t-cut

Solution: A partition (S,T ) of V with s ∈ S and t ∈ T
⇒ variables xv for each v ∈ V

xv = 1 if v ∈ S, xv = 0 otherwise.

Minimize ∑
{u,v}∈E

c({u,v})|xu− xv |

Subject to: xs = 1
xt = 0
xv ∈ {0,1} for all v ∈ V
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Integer Programme Example: Minimum Spanning Tree

G = (V ,E) be a graph with weight w : E → R+, and s, t ∈ V .
Problem: Compute a minimum spanning tree

Solution: A spanning tree T ⇒ variables xe for each e ∈ E
xE = 1 if e ∈ E(T ), xe = 0 otherwise.

Minimize ∑
e∈E

w(e)xe

Subject to: ∑
e={u,v}∈E ,u∈S,v /∈S

xe ≥ 1 for all S ⊆ V

xe ∈ {0,1} for all e ∈ E

Remark: The number of constraints is exponential
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(Integer) Linear Programme Example: Exercises

G = (V ,E) be a graph with weight w : E → R+, and s, t ∈ V .
What compute the following programmes?

Maximize ∑
P path from s to t

xP

Subject to: ∑
P,e∈E(P)

xP ≤ w(e) for all e ∈ E

xP ∈ {0,1} for all paths P
from s to t

Maximize xt

Subject to: xs = 0
xv ≤ xu +w({u,v}) for all {v ,u} ∈ E
xv ≥ 0 for all v ∈ V
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Integer Programme Example: Maximum Matching

G = (V ,E) be a graph
Problem: Compute a maximum matching

Solution: a set M ⊆ E of pairwise disjoint edges
⇒ variables xe for each e ∈ E

xe = 1 if e ∈M, xe = 0 otherwise.

Maximize ∑
e∈E

xe

Subject to: ∑
e∈E ,v∈e

xe ≤ 1 for all v ∈ V

xe ∈ {0,1} for all e ∈ E
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