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Motivation

Why linear programming is a very important tool?

• A lot of problems can be formulated as linear programmes, and

• There exist efficient methods to solve them

• or at least give good approximations.

• Solve difficult problems: e.g. original example given by Dantzig
(1947). Best assignment of 70 people to 70 tasks.

→ Magic algorithmic box.
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What is a linear programme?

• Optimization problem consisting in
• maximizing (or minimizing) a linear objective function
• of n decision variables
• subject to a set of constraints expressed by linear equations or

inequalities.

• Originally, military context: "programme"="resource planning".
Now "programme"="problem"

• Terminology due to George B. Dantzig, inventor of the Simplex
Algorithm (1947)
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Terminology

x1,x2

max 350x1 +300x2

subject to
x1 + x2 ≤ 200

9x1 +6x2 ≤ 1566
12x1 +16x2 ≤ 2880

x1,x2 ≥ 0

Decision variables (generally: ∈ R)

Objective function (linear!!)

Constraints (linear!!)
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Terminology

x1,x2

max 350x1 +300x2

subject to
x1 + x2 ≤ 200

9x1 +6x2 ≤ 1566
12x1 +16x2 ≤ 2880

x1,x2 ≥ 0

Decision variables

Objective function

Constraints

In linear programme: objective function + constraints are all linear

Typically (not always): variables are non-negative

If variables are integer: system called Integer Programme (IP)
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Terminology

Linear programmes can be written under the standard form:

Maximize
n

∑
j=1

cjxj

Subject to:
n

∑
j=1

aijxj ≤ bi for all 1≤ i ≤m

xj ≥ 0 for all 1≤ j ≤ n.

• the problem is a maximization;

• all constraints are inequalities (and not equations);

• all variables are non-negative.
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Example 1: a resource allocation problem

A company produces copper cable of 5 and 10 mm of diameter on a
single production line with the following constraints:

• The available copper allows to produces 21 meters of cable of 5
mm diameter per week. Moreover, one meter of 10 mm diameter
copper consumes 4 times more copper than a meter of 5 mm
diameter copper.

• Due to demand, the weekly production of 5 mm cable is limited to
15 meters and the production of 10 mm cable should not exceed
40% of the total production.

• Cable are respectively sold 50 and 200 euros the meter.

What should the company produce in order to maximize its weekly
revenue?
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Example 1: a resource allocation problem

Define two decision variables:

• x1: the number of meters of 5 mm cables produced every week

• x2: the number of meters of 10 mm cables produced every week

The revenue associated to a production (x1,x2) is

z = 50x1 +200x2.

The capacity of production cannot be exceeded

x1 +4x2 ≤ 21.
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Example 1: a resource allocation problem

The demand constraints have to be satisfied

x2 ≤
4

10
(x1 + x2)

x1 ≤ 15

Negative quantities cannot be produced

x1≥ 0,x2≥ 0.

Exercise: Write the above programme in standard form
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Example 1: a resource allocation problem

The model: To maximize the sell revenue, determine the solutions of
the following linear programme x1 and x2:

max z = 50x1 +200x2

subject to
x1 +4x2 ≤ 21
−4x1 +6x2 ≤ 0

x1 ≤ 15
x1,x2 ≥ 0
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Example 2: Maximum flow (Reminder on the Problem)

Directed graph: D = (V ,A), source s ∈ V , destination d ∈ V , capacity c : A→ R+.
N−(s) = /0 and N+(d) = /0

s

a

c

b

e

d
3

3
32

2

1
21

flow f : A→ R+ such that :

• capacity constraint: ∀a ∈ A, f (a)≤ c(a)

• conservation constraint: ∀v ∈ V \{s,d}, ∑
w∈N−(v)

f (wv) = ∑
w∈N+(v)

f (vw)

• value of flow: v(f ) = ∑
w∈N+(s)

f (sw).
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Example 2: Maximum flow (on an example)

s

a

c

b

e

d
3

3
32

2

1
21

Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution
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Example 2: Maximum flow (on an example)
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Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution

Solution: flow f : A→ R+ Variables: fx ∈ R+ for each x ∈ A
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Example 2: Maximum flow (on an example)

s

a

c

b

e
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Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution

Solution: flow f : A→ R+ Variables: fx ∈ R+ for each x ∈ A
Objective: maximize the flow leaving s Max. fsa + fsc
subject to:
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Example 2: Maximum flow (on an example)
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Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution

Solution: flow f : A→ R+ Variables: fx ∈ R+ for each x ∈ A
Objective: maximize the flow leaving s Max. fsa + fsc
subject to:
Capacity constraints: fsa ≤ 3; fsc ≤ 2; fab ≤ 3; fae ≤ 2; fcb ≤ 1; fce ≤ 1; fbd ≤ 3; fed ≤ 2.
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s

a

c

b

e

d
3

3
32

2

1
21

Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution

Solution: flow f : A→ R+ Variables: fx ∈ R+ for each x ∈ A
Objective: maximize the flow leaving s Max. fsa + fsc
subject to:
Capacity constraints: fsa ≤ 3; fsc ≤ 2; fab ≤ 3; fae ≤ 2; fcb ≤ 1; fce ≤ 1; fbd ≤ 3; fed ≤ 2.
Conservation constraints: fsa = fab + fae ; fsc = fcb + fce ; fae + fce = fed and fab + fcb = fbd .
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Example 2: Maximum flow (on an example)
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Exercise: Give a LP computing a maximum flow in the above graph
hint: variables correspond to the expected solution

Solution: flow f : A→ R+ Variables: fx ∈ R+ for each x ∈ A
Objective: maximize the flow leaving s Max. fsa + fsc
subject to:
Capacity constraints: fsa ≤ 3; fsc ≤ 2; fab ≤ 3; fae ≤ 2; fcb ≤ 1; fce ≤ 1; fbd ≤ 3; fed ≤ 2.
Conservation constraints: fsa = fab + fae ; fsc = fcb + fce ; fae + fce = fed and fab + fcb = fbd .
Variables domain: fx ≥ 0 for any x ∈ A

N. Nisse Graph Theory and applications 14/31



Motivations Linear Programmes First examples Solving Methods: Graphical method, simplex...

Example 2: Maximum flow

D = (V ,A) be a graph with capacity c : A→ R+, and s, t ∈ V .
Problem: Compute a maximum flow from s to t .

Solution: f : A→ R+ ⇒ variables fa, for each a ∈ A
Objective function: maximize value of the flow ∑

u∈N+(s)

f (su)

Constraints:

• capacity constraints: f (a)≤ c(a) for each a ∈ A

• flow conservation: ∑
u∈N+(v)

f (vu) = ∑
u∈N−(v)

f (uv), ∀v ∈ V \{s, t}

N. Nisse Graph Theory and applications 14/31



Motivations Linear Programmes First examples Solving Methods: Graphical method, simplex...

Example 2: Maximum flow

D = (V ,A) be a graph with capacity c : A→ R+, and s, t ∈ V .
Problem: Compute a maximum flow from s to t .

Maximize ∑
u∈N+(s)

f (su)

Subject to: f (a) ≤ c(a) for all a ∈ A

∑
u∈N+(v)

f (vu) = ∑
u∈N−(v)

f (uv) for all v ∈ V \{s, t}

f (a) ≥ 0 for all a ∈ A
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Solving Difficult Problems

• Difficulty: Large number of solutions.

• Choose the best solution among 2n or n! possibilities: all solutions
cannot be enumerated.

• Complexity of studied problems: often NP-complete.
but Polynomial-time solvable when variables are real !!

• Solving methods:
• Optimal solutions:

• Graphical method (2 variables only).
• Simplex method. exponential-time, work well in practice
• interior point method polynomial-time
• Ellipsoid polynomial-time

• Approximations:
• Theory of duality (assert the quality of a solution).
• Approximation algorithms.
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Graphical Method

• The constraints of a linear programme define a zone of solutions.

• The best point of the zone corresponds to the optimal solution.

• For problem with 2 variables, easy to draw the zone of solutions
and to find the optimal solution graphically.
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Graphical Method

Example:

max 350x1 +300x2

subject to
x1 + x2 ≤ 200

9x1 +6x2 ≤ 1566
12x1 +16x2 ≤ 2880

x1,x2 ≥ 0
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Graphical Method
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Graphical Method
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Graphical Method
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Graphical Method
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Graphical Method
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Graphical Method
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Computation of the optimal solution

The optimal solution is at the intersection of the constraints:

x1 + x2 = 200

9x1 +6x2 = 1566

We get:
x1 = 122

x2 = 78

Objective = 66100.
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Optimal Solutions: Different Cases
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Optimal Solutions: Different Cases

Three different possible cases:

• a single optimal solution,

• an infinite number of optimal solutions, or

• no optimal solutions.
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Optimal Solutions: Different Cases

Three different possible cases:

• a single optimal solution,

• an infinite number of optimal solutions, or

• no optimal solutions.

If an optimal solution exists, there is always a corner point optimal
solution!
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Solving Linear Programmes
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Solving Linear Programmes

• The constraints of an LP give rise to a geometrical shape: a
convex polyhedron.

• If we can determine all the corner points of the polyhedron, then
we calculate the objective function at these points and take the
best one as our optimal solution.

• The Simplex Method intelligently moves from corner to corner
until it can prove that it has found the optimal solution.
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Solving Linear Programmes

• Geometric method impossible in higher dimensions

• Algebraical methods:
• Simplex method (George B. Dantzig 1949): skim through the

feasible solution polytope.
Similar to a "Gaussian elimination".
Very good in practice, but can take an exponential time.

• Polynomial methods exist:
• Leonid Khachiyan 1979: ellipsoid method. But more theoretical

than practical.
• Narendra Karmarkar 1984: a new interior method. Can be used in

practice.
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But Integer Programming (IP) is different!

• Feasible region: a set of
discrete points.

• Corner point solution not
assured.

• No "efficient" way to solve
an IP.

• Solving it as an LP provides
a relaxation and a bound on
the solution.
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Summary: To be remembered

• What is a linear programme.

• The graphical method of resolution.

• Linear programs can be solved efficiently (polynomial).

• Integer programs are a lot harder (in general no known
polynomial algorithms).
In this case, we look for approximate solutions.
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