Graph Theory and Optimization Introduction on Linear Programming

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Thank you to F. Giroire for his slides

First examples

Outline

- 2 Linear Programmes
- 3 First examples
- 4 Solving Methods: Graphical method, simplex...

Motivation

Why linear programming is a very important tool?

- A lot of problems can be formulated as linear programmes, and
- There exist efficient methods to solve them
- or at least give good approximations.
- Solve difficult problems: e.g. original example given by Dantzig (1947). Best assignment of 70 people to 70 tasks.
- \rightarrow Magic algorithmic box.

First examples

Solving Methods: Graphical method, simplex..

Outline

- 2 Linear Programmes
- 3 First examples
- 4 Solving Methods: Graphical method, simplex...

What is a linear programme?

- Optimization problem consisting in
 - maximizing (or minimizing) a linear objective function
 - of *n* decision variables
 - subject to a set of constraints expressed by linear equations or inequalities.
- Originally, military context: "programme"="resource planning". Now "programme"="problem"
- Terminology due to George B. Dantzig, inventor of the Simplex Algorithm (1947)

First examples

Terminology

 x_1, x_2 Decision variables (generally: $\in \mathbb{R}$)

max subject to

 $\begin{array}{c} x_1 + x_2 \leq 200 \\ 9x_1 + 6x_2 \leq 1566 \\ 12x_1 + 16x_2 \leq 2880 \\ x_1, x_2 \geq 0 \end{array}$

 $350x_1 + 300x_2$

Objective function (linear!!)

Constraints (linear!!)

N. Nisse

Terminology

In linear programme: objective function + constraints are all linear Typically (not always): variables are non-negative If variables are integer: system called Integer Programme (IP)

Terminology

Linear programmes can be written under the standard form:

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables are non-negative.

First examples

Outline

- 2 Linear Programmes
- 3 First examples
- 4 Solving Methods: Graphical method, simplex...

A company produces copper cable of 5 and 10 mm of diameter on a single production line with the following constraints:

- The available copper allows to produces 21 meters of cable of 5 mm diameter per week. Moreover, one meter of 10 mm diameter copper consumes 4 times more copper than a meter of 5 mm diameter copper.
- Due to demand, the weekly production of 5 mm cable is limited to 15 meters and the production of 10 mm cable should not exceed 40% of the total production.
- Cable are respectively sold 50 and 200 euros the meter.

What should the company produce in order to maximize its weekly revenue?

A company produces copper cable of 5 and 10 mm of diameter on a single production line with the following constraints:

- The available copper allows to produces 21 meters of cable of 5 mm diameter per week. Moreover, one meter of 10 mm diameter copper consumes 4 times more copper than a meter of 5 mm diameter copper.
- Due to demand, the weekly production of 5 mm cable is limited to 15 meters and the production of 10 mm cable should not exceed 40% of the total production.
- Cable are respectively sold 50 and 200 euros the meter.

What should the company produce in order to maximize its weekly revenue?

Define two decision variables:

- x_1 : the number of meters of 5 mm cables produced every week
- x_2 : the number of meters of 10 mm cables produced every week

The revenue associated to a production (x_1, x_2) is

 $z = 50x_1 + 200x_2$.

The capacity of production cannot be exceeded

 $x_1+4x_2\leq 21.$

Define two decision variables:

- x_1 : the number of meters of 5 mm cables produced every week
- x_2 : the number of meters of 10 mm cables produced every week

The revenue associated to a production (x_1, x_2) is

 $z = 50x_1 + 200x_2$.

The capacity of production cannot be exceeded

 $x_1 + 4x_2 \le 21$.

Define two decision variables:

- x_1 : the number of meters of 5 mm cables produced every week
- x_2 : the number of meters of 10 mm cables produced every week

The revenue associated to a production (x_1, x_2) is

 $z = 50x_1 + 200x_2$.

The capacity of production cannot be exceeded

 $x_1 + 4x_2 \le 21$.

The demand constraints have to be satisfied

$$x_2 \leq \frac{4}{10}(x_1+x_2)$$

 $x_1 \le 15$

Negative quantities cannot be produced

 $x1 \ge 0, x2 \ge 0.$

Exercise: Write the above programme in standard form

Graph Theory and applications 13/31

Example 1: a resource allocation problem

The model: To maximize the sell revenue, determine the solutions of the following linear programme x_1 and x_2 :

max . subject to	$z = 50x_1 + 200x_2$
	$x_1 + 4x_2 < 21$
	$-4x_1 + 6x_2 < 0$
	$x_1 \leq 15$
	$x_1, x_2 \ge 0$

COATI

Inría

Example 2: Maximum flow (Reminder on the Problem)

Directed graph: D = (V, A), source $s \in V$, destination $d \in V$, capacity $c : A \to \mathbb{R}^+$. $N^-(s) = \emptyset$ and $N^+(d) = \emptyset$

flow $f : A \to \mathbb{R}^+$ such that :

- capacity constraint: $\forall a \in A, f(a) \leq c(a)$
- conservation constraint: $\forall v \in V \setminus \{s, d\}$, $\sum_{w \in N^-(v)} f(wv) = \sum_{w \in N^+(v)} f(vw)$

COATI

• value of flow:
$$v(f) = \sum_{w \in N^+(s)} f(sw)$$
.

Inría

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

Solution: flow $f : A \to \mathbb{R}^+$

Variables: $f_x \in \mathbb{R}^+$ for each $x \in A$

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

Solution: flow $f : A \rightarrow \mathbb{R}^+$ **Objective:** maximize the flow leaving *s* subject to: Variables: $f_x \in \mathbb{R}^+$ for each $x \in A$ Max. $f_{sa} + f_{sc}$

Graph Theory and applications 14/31

Example 2: Maximum flow

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

Solution: flow $f: A \to \mathbb{R}^+$ Variables: $f_x \in \mathbb{R}^+$ for each $x \in A$ Objective: maximize the flow leaving sMax. $f_{sa} + f_{sc}$ subject to:Max. $f_{sa} \le 3$; $f_{sc} \le 2$; $f_{ab} \le 3$; $f_{ae} \le 2$; $f_{cb} \le 1$; $f_{ce} \le 1$; $f_{bd} \le 3$; $f_{ed} \le 2$.

COATI

Inría

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

COATI

(on an example)

Exercise: Give a LP computing a maximum flow in the above graph hint: variables correspond to the expected solution

D = (V, A) be a graph with capacity $c : A \rightarrow \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f : A \to \mathbb{R}^+$ Objective function: maximize value of the flow

Constraints:

- capacity constraints:
- flow conservation:

 $\Rightarrow \text{ variables } f_a, \text{ for each } a \in A$ $\sum_{u \in N^+(s)} f(su)$

$$\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv), \, \forall v \in V \setminus \{s, t\}$$

Graph Theory and applications 14/31

Example 2: Maximum flow

D = (V, A) be a graph with capacity $c : A \rightarrow \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

j35

Reserved Street Avenue

COATI

Innia

First examples

Outline

- 2 Linear Programmes
- 3 First examples
- 4 Solving Methods: Graphical method, simplex...

Solving Difficult Problems

• Difficulty: Large number of solutions.

- Choose the best solution among 2ⁿ or n! possibilities: all solutions cannot be enumerated.
- Complexity of studied problems: often NP-complete.

but Polynomial-time solvable when variables are real !!

Inría

- Solving methods:
 - Optimal solutions:
 - Graphical method (2 variables only).
 - Simplex method.
 exponential-time, work well in practice
 - interior point method
 - Ellipsoid
 - Approximations:
 - Theory of duality (assert the quality of a solution).

COATI

• Approximation algorithms.

polynomial-time

- The constraints of a linear programme define a zone of solutions.
- The best point of the zone corresponds to the optimal solution.
- For problem with 2 variables, easy to draw the zone of solutions and to find the optimal solution graphically.

Example:

 $\begin{array}{ll} \max & 350x_1 + 300x_2 \\ \text{subject to} & & \\ & x_1 + x_2 \leq 200 \\ & 9x_1 + 6x_2 \leq 1566 \\ & 12x_1 + 16x_2 \leq 2880 \\ & x_1, x_2 \geq 0 \end{array}$

COATI

cirs

Innia

135

Hannaki

Computation of the optimal solution

The optimal solution is at the intersection of the constraints:

 $x_1 + x_2 = 200$

$$9x_1 + 6x_2 = 1566$$

We get:

$$x_1 = 122$$

 $x_2 = 78$
Objective = 66100.

cirs

Optimal Solutions: Different Cases

Optimal Solutions: Different Cases

Three different possible cases:

- a single optimal solution,
- an infinite number of optimal solutions, or
- no optimal solutions.

Optimal Solutions: Different Cases

Three different possible cases:

- a single optimal solution,
- an infinite number of optimal solutions, or
- no optimal solutions.

If an optimal solution exists, there is always a corner point optimal solution!

Solving Linear Programmes

Solving Linear Programmes

- The constraints of an LP give rise to a geometrical shape: a convex polyhedron.
- If we can determine all the corner points of the polyhedron, then we calculate the objective function at these points and take the best one as our optimal solution.
- The Simplex Method intelligently moves from corner to corner until it can prove that it has found the optimal solution.

Solving Linear Programmes

- Geometric method impossible in higher dimensions
- Algebraical methods:
 - Simplex method (George B. Dantzig 1949): skim through the feasible solution polytope.
 Similar to a "Gaussian elimination".
 Very good in practice, but can take an exponential time.
 - Polynomial methods exist:
 - Leonid Khachiyan 1979: ellipsoid method. But more theoretical than practical.
 - Narendra Karmarkar 1984: a new interior method. Can be used in practice.

But Integer Programming (IP) is different!

- Feasible region: a set of discrete points.
- Corner point solution not assured.
- No "efficient" way to solve an IP.
- Solving it as an LP provides a relaxation and a bound on the solution.

Summary: To be remembered

- What is a linear programme.
- The graphical method of resolution.
- Linear programs can be solved efficiently (polynomial).
- Integer programs are a lot harder (in general no known polynomial algorithms).
 In this case, we look for approximate solutions.

