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Time-Complexity very brief introduction

Decision Problem

Input: Instance /
Problem: does / satisfiy Property &2?
Output: solution € { Yes, No}

ex: Is graph G connected? Does G admit a s,d-flow of value > k?...
How to evaluate if:
@ a Problem 2 is “difficult” or “easy"?

@ an algorithm for solving & is efficient or not?

(classical) Time-complexity of an algorithm <7 for solving &

Number of elementary operations of <7 as a function of the size n of the
instance running time in the worst case

Definitions of elementary operations and size depend on:
Context, Data Structure, Units of measure...
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N. Nisse

Time-Complexity
Assume that Algorithm ./ has time-complexity f(N):
in the worst case, </ executes f(N) operations on an instance of size N

very brief introduction

For which size of instances is your problem feasible?

J

Assume 10'° operations (e.g., addition of 2 integers on 64 bits) per second

(it is more than current desktops)

Complexity f(N)

maximum size N

O(N) 10"
©(NlogN) 1010
O(N?) 4-10°
O(N?) 4600
O(N*) 560
o(2M) 36
O(N!) 13

. )
_izs— [f= COATI @ ‘loa

Table: Approximation of maximum size to obtain an answer in 10 seconds

Problems solvable by an algorithm with polynomial running time are “easy”
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Some polynomial problems
Some examples you may know:

e Sorting nintegers: ©(nlog n) heap sort, merge sort
e Multiplying two n x n matrices: O(n?-3728639) [Le Gall, 2014]
e Decide if m-edge graph is connected: O(m) BFS

e Compute a shortest path in n-node m-edge graph: O(m+ nlog n)
[Dijkstra]

e Compute min. spanning tree in m-edge graph: O(mlogm) [Kruskal...]

e max. flow and min. cut in n-node m-edge graph and max capacity Cmax:
O(m-n-cmax) [Ford-Fulkerson]

e Maximum matching in n-node graph: O(n*) [Edmonds 1965]
O(mn?)  [Micali, Vazirani, 1980]

All these problems can be solved in time polynomial in the size of the input
= “generally”, they are said “easy"J
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Complexity Hierarchy (very informal and partial description)

EXPTIME: set of the (decision) problems solvable in exponential-time
P: set of the (decision) problems solvable in polynomial-time P C EXPTIME
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Complexity Hierarchy (very informal and partial description)

problems whose solutions can b
checked in Polynomial Time

i.e., solvable by polynomial-time

non-deterministic Tiiring machine

Non-deterministic Polynomial (NP): problems that can be solved in
polynomial-time by a Non-deterministic Ttring machine P C NP
Equivalently, a solution can be checked in polynomial-time
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Complexity Hierarchy (very informal and partial description)

problems whose solutions can be
checked in Polynomial Time

i.e., solvable by polynomial-time

non-deterministic Tiiring machine

NP-hard: problems that are as “difficult" as the “hardest" problems in NP
Solving one of them in polynomial-time would prove that P = NP
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Complexity Hierarchy (very informal and partial description)

problems whose solutions can b
checked in Polynomial Time

i.e., solvable by polynomial-time
non-deterministic Tiiring machine

NP-hard: problems that are as “difficult" as the “hardest" problems in NP
NP-complete = NP-hard N"NP
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Complexity Hierarchy (very informal and partial description)

problems whose solutions can be
checked in Polynomial Time

i.e., solvable by polynomial-time
non-deterministic Tiiring machine

NP-hard problems: we do not know if they can be solved in polynomial-time

Roughly, best existing (known) algorithms (generally) enumerate all possible
solutions and take a best one
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Famous NP-complete problems 3-SAT

SAT = Satisfiability

3-SAT is NP-complete Cook-Levin Theorem (1971)

3-SAT: Given 3-CNF formula ®(vy,---, v,) on n Boolean variables
3? a Boolean assignment a: {vq,---,v,} — {0, 1} that satisfies ®?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

Ex: ®(a,b,c,d,e) =(avVbVc)A(eVvbVe)A(aveVe)
here, the assignment (a, b, c,d,e) = (1,1,0,0,1) satisfies ®.
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Famous NP-complete problems 3-SAT

SAT = Satisfiability

3-SAT is NP-complete Cook-Levin Theorem (1971)

3-SAT: Given 3-CNF formula ®(vy,---, v,) on n Boolean variables
3? a Boolean assignment a: {vq,---,v,} — {0, 1} that satisfies ®?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

Ex: ®(a,b,c,d,e) =(avVbVc)A(eVvbVe)A(aveVe)
here, the assignment (a, b, c,d,e) = (1,1,0,0,1) satisfies ®.

example of algorithm for 3-SAT
Try all the 2" possible assignments

Remarks: 3-SAT is the first problem to be proved NP-hard.
It is often used to prove that other problems are NP-hard.
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Famous NP-c problems Hamiltonian Path/Cycle
Hamiltonian Path: a spanning path P in a graph G
Hamiltonian Cycle: a spanning cycle Cin G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,
3? an Hamiltonian path/cycle in G?

Application: Travelling Salesman Problem (TSP): want to visit all cities,
minimizing the distance he has to cross

Exercice: show that the right graph has no Hamiltonian cycle. J
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Famous NP-c problems Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G
Hamiltonian Cycle: a spanning cycle Cin G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,
3? an Hamiltonian path/cycle in G?

Ex of algorithm: Try all the n! orderings of the vertices
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Famous NP-c problems Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G
Hamiltonian Cycle: a spanning cycle Cin G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,
3? an Hamiltonian path/cycle in G?

Ex of algorithm: Try all the n! orderings of the vertices

Longest path/cycle

Exercice: Let G= (V,E) be a graph and k € N
Prove that deciding if G has a path/cycle of length > k is NP-complete
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Famous NP-c problems Hamiltonian Path/Cycle

Hamiltonian Cycle: cycle that passes through each vertex (exactly once)

Remark: Problems that “look similar" may be “very different” J

Tour= “cycle" where vertices may be repeated, but not edges.
Eulerian Tour: Tour that passes through each edge (exactly once)

Exercice: Prove that deciding if G admits an Eulerian tour is in P
hint: prove that G admits an Eulerian tour <> each vertex has even degree
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Famous NP-c problems Disjoint paths (multi-flow)

Exercice: Let G= (V,E) be agraph, S;DC V, ke N
Deciding if it exists k vertex-disjoint paths from Sto D is in P
hint: use flow algorithm
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Famous NP-c problems Disjoint paths (multi-flow)

Exercice: Let G= (V,E) be agraph, S,DC V, ke N

Deciding if it exists k vertex-disjoint paths from Sto D is in P
hint: use flow algorithm

Disjoint paths is NP-complete [Garey, Johnson]

disjoint paths: Given G= (V,E), {s1, -+ ,sx} € Vand {dy,--- ,dx} C V
3? (P, , Px) pairwise vertex-disjoint paths s.t. P; path from s; to d;

v

no 2 disjoint paths from s1 to d1

2 disjoint paths from {s1,s2} to {d1,d2}
and from s2 to d2
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Famous NP-c problems Disjoint paths (multi-flow)

[Garey, Johnson]

Disjoint paths is NP-complete

disjoint paths: Given G= (V,E), {s1,---,sk} C V and {dj,---,dk} C V
3? (P1,- -+, Px) pairwise vertex-disjoint paths s.t. P; path from s; to d;

Remark: can be solved in time f(k)poly(n), i.e., in P if k is fixed
[Robertson and Seymour, 1995]
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Famous NP-complete problems Coloring
Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,---  k} s.t. ¢(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive #* co/orsJ

Vertices = antennas {u, v} € Eiff transmissions of u and v overlap
Color = frequency of transmission
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Famous NP-complete problems Coloring
Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--+  k} s.t. ¢(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # co/orsJ

Vertices = antennas {u, v} € E iff transmissions of u and v overlap
Color = frequency of transmission
with the coloring in the example: if you live in orange zone = No WiFi!!
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Famous NP-complete problems Coloring
Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. c(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # co/orsJ

— |

L A

Y

Unproper 3-coloring (red edges) Proper 6-coloring Proper 3-coloring

chromatic number x(G): min. k such that G admits a k-Proper coloring.
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Famous NP-complete problems Coloring
Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. c(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # co/orsJ

— |

L A

Y

Unproper 3-coloring (red edges) Proper 6-coloring Proper 3-coloring

chromatic number x(G): min. k such that G admits a k-Proper coloring.

Exercice: Show that x(G) < 2 if and only if G is bipartite. J
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Famous NP-complete problems Coloring
Let G=(V,E) be a graph

k-Proper coloring: ¢: V — {1,--- ,k} s.t. c(u) # ¢(v) for all {u,v} € E.
color the vertices s (< k colors) s.t. adjacent vertices receive # co/ors

e L

Unproper 3-coloring (red edges) Proper 6-coloring Proper 3-coloring

chromatic number x(G): min. k such that G admits a k-Proper coloring.

Exercice: Show that x(G) < 2 if and only if G is bipartite. J

Coloring is NP-complete [Garey, Johnson]

chromatic number: Given G = (V, E) be a graph, x(G) <32
even if G is restricted to be a planar graph
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Famous NP-complete problems Vertex Cover
Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Application: each street must be protected by a fire station
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Famous NP-complete problems Vertex Cover
Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Problem: Min. number of fire stations to protect each street?
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Famous NP-complete problems Vertex Cover
Let G=(V,E) be a graph

Vertex Cover: set K C V suchthatVe € E, eNK #£ 0
set of vertices that “touch" every edgeJ

Problem: Min. number of fire stations to protect each street?

Min Vertex Cover is NP-complete [Garey, Johnson]

Vertex Cover: Given G = (V, E) be a graph, k € N,
3? K C V a vertex cover of G such that |K| < k?
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How to actually handle NP-hard problems?
NP-hard: No Polynomial-time algorithms known!!!
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How to actually handle NP-hard problems?
NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice
exponential-time algorithms may be efficient on practical instances
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How to actually handle NP-hard problems?
NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice
exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem &2 may be NP-complete in a set .# of instances
but polynomial-time solvable in .¢’" C .#

Ex: for any bipartite graph G,
K(G) = min. vertex cover(G) = max. matching(G) = u(G)
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How to actually handle NP-hard problems?
NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice
exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem &2 may be NP-complete in a set .# of instances
but polynomial-time solvable in .#' C .#

Ex: for any bipartite graph G,
K(G) = min. vertex cover(G) = max. matching(G) = u(G)

c-Approximation algorithms o/:  polynomial-time algorithm s.t.

for any instance /, <7 returns a solution with value
for minimization problem: OPT (/) < value(«/) < ¢- OPT(/)
for maximization problem: OPT(I)/c < value(?) < OPT(I)

Exercice: Give a 2-approximation algorithm for Vertex-Cover
hint: show that, for any graph G, 1(G) < x(G) < 2u(G)
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Some other famous NP-complete problems
Max. Independent set is NP-complete

Independent set: Given a graph G = (V7 E), keN, J7? stable set S C V of size > kin G?

Min. Feedback Vertex Set (FVS) is NP-complete
FVS: Given a digraph D = (V,A), k € N, 3? F C V such that D\ F is acyclic?

Min. Set Cover is NP-complete

Set Cover: set E, family of subsets .7 = {.#4,---,.%} C2F . k€N
3?2 Y C.¥ Usey S=E, |.7| < k?
v

Min. Hitting Set is NP-complete

Hitting Set: set £, family of subsets . = {.#},---,.%} C2F ke N
3? HCE,HN .Y forany i < ¢, |H| < k?
v

Partition is weakly NP-complete

Partition: Given set X = {xy,---,xp} of integers ,
3? partition (A, B) of X such that ¥ ycq X = Yxep X?
w
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Summary: To be remembered

e P, NP, NP-hard, NP-complete
e 3-SAT, Hamiltonian path, Coloring, Vertex Cover, ...
e Approximation algorithm
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