Graph Theory and Optimization Computational Complexity (in brief)

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

Time-Complexity

Decision Problem

Input: Instance / Problem: does / satisfy Property \mathscr{P} ? Output: solution $\in \{ Yes, No \}$

ex: Is graph *G* connected? Does *G* admit a s,d-flow of value $\geq k$?...

How to evaluate if:

- a Problem *P* is "difficult" or "easy"?
- an algorithm for solving *P* is efficient or not?

(classical) Time-complexity of an algorithm \mathscr{A} for solving \mathscr{P}

Number of elementary operations of \mathscr{A} as a function of the size *n* of the instance *running time in the worst case*

COATI

Definitions of elementary operations and size depend on:

Context, Data Structure, Units of measure...

very brief introduction

Time-Complexity very brief introduction

Assume that Algorithm \mathscr{A} has time-complexity f(N):

in the worst case, \mathscr{A} executes f(N) operations on an instance of size N

For which size of instances is your problem feasible?

Assume 10¹⁰ operations (e.g., addition of 2 integers on 64 bits) per second *(it is more than current desktops)*

Complexity $f(N)$	maximum size N
$\Theta(N)$	10 ¹¹
$\Theta(N \log N)$	10 ¹⁰
$\Theta(N^2)$	4 · 10 ⁵
$\Theta(N^3)$	4600
$\Theta(N^4)$	560
$\Theta(2^N)$	36
$\Theta(N!)$	13

Table: Approximation of maximum size to obtain an answer in 10 seconds

Problems solvable by an algorithm with polynomial running time are "easy"

COATI

cirs

Inia

Innia

Some polynomial problems

Some examples you may know:

- Sorting *n* integers: $\Theta(n \log n)$ heap sort, merge sort
- Multiplying two $n \times n$ matrices: $O(n^{2.3728639})$ [Le Gall, 2014]
- Decide if *m*-edge graph is connected: *O*(*m*) *BFS*
- Compute a shortest path in *n*-node *m*-edge graph: $O(m + n \log n)$

[Dijkstra]

- Compute min. spanning tree in *m*-edge graph: $O(m \log m)$ [Kruskal...]
- max. flow and min. cut in *n*-node *m*-edge graph and max capacity c_{max} : $O(m \cdot n \cdot c_{max})$ [Ford-Fulkerson]
- Maximum matching in *n*-node graph: $O(n^4)$ [Edmonds 1965] $O(mn^2)$ [Micali, Vazirani, 1980]

All these problems can be solved in time **polynomial** in the size of the input \Rightarrow "generally", they are said "easy"

COATI

i25

Complexity Hierarchy (very informal and partial description)

EXPTIME: set of the (decision) problems solvable in exponential-time *P*: set of the (decision) problems solvable in polynomial-time $P \subset EXPTIME$

135

Complexity Hierarchy (very informal and partial description)

Graph Theory and applications 5/22

Complexity Hierarchy (very informal and partial description)

NP-hard: problems that are as "difficult" as the "hardest" problems in *NP* Solving one of them in polynomial-time would prove that P = NP

is Othe

Complexity Hierarchy (very informal and partial description)

NP-hard: problems that are as "difficult" as the "hardest" problems in *NP NP*-complete = *NP*-hard $\cap NP$

Complexity Hierarchy (very informal and partial description)

NP-hard problems: we do not know if they can be solved in polynomial-time Roughly, best existing (known) algorithms (generally) enumerate all possible solutions and take a best one

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

Famous NP-complete problems

SAT = Satisfiability

3-SAT is NP-completeCook-Levin Theorem (1971)3-SAT: Given 3-CNF formula $\Phi(v_1, \dots, v_n)$ on n Boolean variables \exists ? a Boolean assignment $a: \{v_1, \dots, v_n\} \rightarrow \{0, 1\}$ that satisfies Φ ?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

 $\begin{aligned} & \textit{Ex:} \ \Phi(a,b,c,d,e) = (a \lor \overline{b} \lor c) \land (\overline{e} \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{c} \lor e) \\ & \text{here, the assignment } (a,b,c,d,e) = (1,1,0,0,1) \text{ satisfies } \Phi. \end{aligned}$

example of algorithm for 3-SAT

Try all the 2ⁿ possible assignments

Remarks: 3-SAT is the first problem to be proved NP-hard. It is often used to prove that other problems are NP-hard.

Famous NP-complete problems

SAT = Satisfiability

3-SAT is NP-completeCook-Levin Theorem (1971)3-SAT: Given 3-CNF formula $\Phi(v_1, \dots, v_n)$ on n Boolean variables \exists ? a Boolean assignment $a: \{v_1, \dots, v_n\} \rightarrow \{0, 1\}$ that satisfies Φ ?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

 $\begin{aligned} & \textit{Ex:} \ \Phi(a,b,c,d,e) = (a \lor \bar{b} \lor c) \land (\bar{e} \lor b \lor \bar{c}) \land (\bar{a} \lor \bar{c} \lor e) \\ & \text{here, the assignment } (a,b,c,d,e) = (1,1,0,0,1) \text{ satisfies } \Phi. \end{aligned}$

example of algorithm for 3-SAT

Try all the 2ⁿ possible assignments

Remarks: 3-SAT is the first problem to be proved NP-hard. It is often used to prove that other problems are NP-hard.

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

Famous NP-c problems Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G Hamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete

[Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with *n* vertices, \exists ? an Hamiltonian path/cycle in *G*?

Application: Travelling Salesman Problem (TSP): want to visit all cities, minimizing the distance he has to cross

Exercice: show that the right graph has no Hamiltonian cycle.

135

COATI

Famous NP-c problems

Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph GHamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete

[Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with *n* vertices, \exists ? an Hamiltonian path/cycle in *G*?

Ex of algorithm: Try all the n! orderings of the vertices

Famous NP-c problems

Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G Hamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete

[Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with *n* vertices, \exists ? an Hamiltonian path/cycle in *G*?

Ex of algorithm: Try all the n! orderings of the vertices

Longest path/cycle

Exercice: Let G = (V, E) be a graph and $k \in \mathbb{N}$ Prove that deciding if G has a path/cycle of length > k is NP-complete

Famous NP-c problems

Hamiltonian Path/Cycle

Hamiltonian Cycle: cycle that passes through each vertex (exactly once)

Remark: Problems that "look similar" may be "very different"

Tour \approx "cycle" where vertices may be repeated, but not edges. Eulerian Tour: Tour that passes through each edge (exactly once)

Euler (1736)

Exercice: Prove that deciding if *G* admits an Eulerian tour is in *P* hint: prove that *G* admits an Eulerian tour \Leftrightarrow each vertex has even degree

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

CITS

Famous NP-c problems

Disjoint paths (multi-flow)

Exercice: Let G = (V, E) be a graph, $S, D \subseteq V, k \in \mathbb{N}$ Deciding if it exists k vertex-disjoint paths from S to D is in P*hint: use flow algorithm*

Disjoint paths is NP-complete

[Garey, Johnson]

disjoint paths: Given G = (V, E), $\{s_1, \dots, s_k\} \subseteq V$ and $\{d_1, \dots, d_k\} \subseteq V$ $\exists ? (P_1, \dots, P_k)$ pairwise vertex-disjoint paths s.t. $\underline{P_i}$ path from s_i to d_i

Remark: can be solved in time f(k)poly(n), i.e., in *P* if *k* is fixed [Robertson and Seymour, 1995]

Famous NP-c problems

Disjoint paths (multi-flow)

Exercice: Let G = (V, E) be a graph, $S, D \subseteq V, k \in \mathbb{N}$ Deciding if it exists *k* vertex-disjoint paths from *S* to *D* is in *P*

hint: use flow algorithm

Disjoint paths is NP-complete

[Garey, Johnson]

disjoint paths: Given G = (V, E), $\{s_1, \dots, s_k\} \subseteq V$ and $\{d_1, \dots, d_k\} \subseteq V$ $\exists ? (P_1, \dots, P_k)$ pairwise vertex-disjoint paths s.t. $\underline{P_i}$ path from s_i to d_i

2 disjoint paths from {s1,s2} to {d1,d2}

no 2 disjoint paths from s1 to d1 and from s2 to d2

Remark: can be solved in time f(k) bolv(

Graph Theory and applications 12/22

Famous NP-c problems

Disjoint paths (multi-flow)

Disjoint paths is NP-complete

[Garey, Johnson]

disjoint paths: Given G = (V, E), $\{s_1, \dots, s_k\} \subseteq V$ and $\{d_1, \dots, d_k\} \subseteq V$ $\exists ? (P_1, \dots, P_k)$ pairwise vertex-disjoint paths s.t. P_i path from s_i to d_i

Remark: can be solved in time f(k)poly(n), i.e., in *P* if *k* is fixed [Robertson and Seymour, 1995]

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

CITS

Famous NP-complete problems Let G = (V, E) be a graph

Coloring

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \ (\leq k \ colors)$ s.t. adjacent vertices receive \neq colors

Vertices = antennas $\{u, v\} \in E$ iff transmissions of u and v overlap Color = frequency of transmission

Famous NP-complete problems Let G = (V, E) be a graph

Coloring

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Vertices = antennas $\{u, v\} \in E$ iff transmissions of u and v overlap Color = frequency of transmission with the coloring in the example: if you live in orange zone \Rightarrow No WiFi!!

COATI

ті 🖤

Inia

Famous NP-complete problems Let G = (V, E) be a graph

Coloring

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-coloring

Proper 3-coloring

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Exercice: Show that $\chi(G) \leq 2$ if and only if G is bipartite.

Famous NP-complete problems Let G = (V, E) be a graph

Coloring

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-coloring

Proper 3-coloring

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Exercice: Show that $\chi(G) \leq 2$ if and only if *G* is bipartite.

Famous NP-complete problems Let G = (V, E) be a graph

Coloring

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s (\leq k \text{ colors})$ s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-coloring

Proper 3-coloring

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Exercice: Show that $\chi(G) \leq 2$ if and only if *G* is bipartite.

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

CITS

Famous NP-complete problems Vertex Cover Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Application: each street must be protected by a fire station

Famous NP-complete problems Vertex Cover Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Problem: Min. number of fire stations to protect each street?

Famous NP-complete problems Vertex Cover Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Problem: Min. number of fire stations to protect each street?

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

CITS

How to actually handle NP-hard problems?

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem $\mathscr P$ may be NP-complete in a set $\mathscr I$ of instances but polynomial-time solvable in $\mathscr I'\subset \mathscr I$

Ex: for any bipartite graph G, $\kappa(G) = \min$. vertex cover(G) = max. matching(G) = $\mu(G)$

c-Approximation algorithms \mathscr{A} : polynomial-time algorithm s.t.

for any instance *I*, \mathscr{A} returns a solution with value for minimization problem: $OPT(I) \le value(\mathscr{A}) \le c \cdot OPT(I)$ for maximization problem: $OPT(I)/c \le value(\mathscr{A}) \le OPT(I)$

Exercice: Give a 2-approximation algorithm for Vertex-Cover

LISS Remain COATI

hint: show that, for any graph G, $\mu(G) \leq \kappa(G) \leq 2\mu(G)$

Innia

cirs

How to actually handle NP-hard problems?

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem \mathscr{P} may be NP-complete in a set \mathscr{I} of instances but polynomial-time solvable in $\mathscr{I}' \subset .$

Ex: for any bipartite graph G, $\kappa(G) = \min$. vertex cover $(G) = \max$. matching $(G) = \mu(G)$

c-Approximation algorithms *A*: polynomial-time algorithm s.f

for any instance *I*, \mathscr{A} returns a solution with value for minimization problem: $OPT(I) \le value(\mathscr{A}) \le c \cdot OPT(I)$ for maximization problem: $OPT(I)/c \le value(\mathscr{A}) \le OPT(I)$

Exercice: Give a 2-approximation algorithm for Vertex-Cover

hint: show that, for any graph G, $\mu(G) \leq \kappa(G) \leq 2\mu(G)$

Inia

How to actually handle NP-hard problems?

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem \mathscr{P} may be NP-complete in a set \mathscr{I} of instances but polynomial-time solvable in $\mathscr{I}' \subset \mathscr{I}$

Ex: for any bipartite graph G, $\kappa(G) = \min$ vertex cover $(G) = \max$ matching $(G) = \mu(G)$

Inia

How to actually handle NP-hard problems?

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem \mathscr{P} may be NP-complete in a set \mathscr{I} of instances but polynomial-time solvable in $\mathscr{I}' \subset \mathscr{I}$

Graph Theory and applications 19/22

Ex: for any bipartite graph G, $\kappa(G) = \min$ vertex cover $(G) = \max$ matching $(G) = \mu(G)$

c-Approximation algorithms \mathscr{A} : polynomial-time algorithm s.t.

for any instance I, A returns a solution with value for minimization problem: $OPT(I) \leq value(\mathscr{A}) \leq c \cdot OPT(I)$ for maximization problem: $OPT(I)/c \le value(\mathscr{A}) \le OPT(I)$

Exercice: Give a 2-approximation algorithm for Vertex-Cover

COATI

hint: show that, for any graph G, $\mu(G) \leq \kappa(G) \leq 2\mu(G)$

Inia

cirs

Outline

Time-complexity Hierarchy

- 3 Hamiltonian path/cycle
- 4 Vertex-disjoint paths
- 5 Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms

CITS

Some other famous NP-complete problems

Max. Independent set is NP-complete

Independent set: Given a graph $G = (V, E), k \in \mathbb{N}, \quad \exists$? stable set $S \subseteq V$ of size $\geq k$ in G?

Min. Feedback Vertex Set (FVS) is NP-complete

FVS: Given a digraph $D = (V, A), k \in \mathbb{N}$,

 \exists ? $F \subseteq V$ such that $D \setminus F$ is acyclic?

Min. Set Cover is NP-complete

Set Cover: set *E*, family of subsets $\mathscr{S} = \{\mathscr{S}_1, \cdots, \mathscr{S}_\ell\} \subseteq 2^E$, $k \in \mathbb{N}$ $\exists ? \ Y \subseteq \mathscr{S}, \bigcup_{S \in Y} S = E, |\mathscr{S}| \le k?$

Min. Hitting Set is NP-complete

Hitting Set: set *E*, family of subsets $\mathscr{S} = \{\mathscr{S}_1, \cdots, \mathscr{S}_\ell\} \subseteq 2^E$, $k \in \mathbb{N}$ $\exists ? H \subseteq E, H \cap \mathscr{S}_i$ for any $i \leq \ell, |H| \leq k?$

COATI

Partition is weakly NP-complete

Partition: Given set $X = \{x_1, \dots, x_n\}$ of integers,

_125

 \exists ? partition (*A*, *B*) of *X* such that $\sum_{x \in A} x = \sum_{x \in B} x$?

Graph Theory and applications 21/22

Innia

Summary: To be remembered

- P, NP, NP-hard, NP-complete
- 3-SAT, Hamiltonian path, Coloring, Vertex Cover, ...
- Approximation algorithm

