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0 Transportation Problem

e Elementary Flow Network

e Upper bound on Flow: Cut

e Ford-Fulkerson Algorithm

@ Min Cut=Max flow

e Application to Connectivity: Menger Theorem

e Application to Matching
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Transportation problem: Modeling
Directed weighted graph: D = (V,A), A: set of arcs, (x,y) € A ordered pair
arrows
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Transportation problem: Modeling
Directed weighted graph: D = (V, A)
On vertices: production: pmay : V — R™T; consumption: consmay - V — R*
On arcs: capacity: ¢: A— R

= 1A .
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Transportation problem: Modeling
What is the main amount of goods that can be exchanged?
Actual production: p: V — R and actual consumption: cons: V — RT

flow: f: A— R™: satisfies capacity and flow conservation
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Transportation problem: Modeling
flow: f: A— RT: feasibility: Vv € V, p(v) < pmax(v), cons(v) < consmax(v)
capacity constraint: Va € A, f(a ) c(a).

flow conservation: Vv € V, p(v)+ Y flwv)=c(v)+ Y f(ww)
weN~(v) weNT(v)
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Transportation problem: Modeling
flow: f: A— RT: feasibility: Vv € V, p(v) < pmax(v), cons(v) < consmax(v)
capacity constraint: Va € A, f(a ) c(a).

flow conservation: Vv € V, p(v)+ Y. f(wv)=c(v)+ Y f
weN—(v) weNT( )
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Transportation problem: Modeling

Simplification: one single source and one single destination

One source s: Vv € V add one arc (s, v) with capacity pmax(v)
One destination d: Vv € V add one arc (v, d) with capacity consmax(v)

Flows are “equivalent” in both networks

=
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Elementary Flow Network
Directed graph: D = (V, A), source s € V, destination d € V, capacity c: A — R™.
N~ (s)=0and NT(d) =0

flow f: A— R such that : capacity constraint: Va € A, f(a) < c(a)
conservation constraint: Vv € V\ {s,d}, Z f(wv) = Z f(vw)

- +
value of flow: v(f) = Z (sw). weN-(v) weN+(v)
weN*(s)
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Elementary Flow Network
Directed graph: D = (V, A), source s € V, destination d € V, capacity c: A — R™.
N~ (s)=0and NT(d) =0

Value(f)=5
flow f: A— R such that : capacity constraint: Va € A, f(a) < c(a)
conservation constraint: Vv € V\ {s,d}, Z f(wv) = Z f(vw)

- +
value of flow: v(f) = Z (sw). weN-(v) weN+(v)
weN*(s)
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Elementary Flow Network
Directed graph: D = (V, A), source s € V, destination d € V, capacity c: A — R™.
N~ (s)=0and NT(d) =0

Value(f)=5
flow f: A— R such that : capacity constraint: Va € A, f(a) < c(a)
conservation constraint: Vv € V\ {s,d}, Z f(wv) = Z f(vw)

- +
value of flow: v(f) = Z (sw). weN-(v) weN+(v)

weNT(s) Exercise: v(f)= ) f(wd) J
weN-(d)
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?

Value(f)=6 3

Possible to “push” flow along available path
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?

Value(f)=8 3

Possible to “push” flow along available path
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?

Possible to “push" flow along available path
May be useful to “remove useless flow"
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0 Transportation Problem

e Elementary Flow Network

e Upper bound on Flow: Cut

e Ford-Fulkerson Algorithm

@ Min Cut=Max flow

e Application to Connectivity: Menger Theorem

e Application to Matching
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Max Flow, upper bound: Min cut

a cut gives an upper bound on the value of your flow
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Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow
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Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow

Vi = {s,a,b,¢,d, f,g.h, i}, Va = {d, e, j} 3
5(Vi, V) = 24

s,d-Cut: partition (Vs, Vy) of V with s € Vg and d € Vj.
Capacity of a s,d-cut: §(Vs, Vo) = ). c(uv).

ueVs,veVy
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Max Flow, upper bound: Min cut
Is this flow maximum?: a cut gives an upper bound on the value of your flow

Vi={s,ab,e.d, fg.h i}, Vo= {d.e.j} .
oV, Vy) =24

s,d-Cut: partition (Vs, Vy) of V with s € Vs and d € Vy.
Capacity of a s,d-cut: §(Vs, Vg) = ). c(uv).
ueVs,veVy
Theorem: for any network flow D = (V,A), s,d € Vandc: A— R™"

For any flow f: A— R™ and s,d-cut (Vs, Vy), v(f) < 6(Vs, Vi)
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Max Flow, upper bound: Min cut

Theorem: for any network flow D =

(V,A),s,de Vandc: A— RT

For any flow f: A— RT and s,d-cut (Vs, Vy),

v(f) < 6(Vs, Vy)

Proof:
conservation constraint: Yv € V\{s,d}, Y flw)= Y f(w).
weN—(v) weN*(v)
sum over all vertices in Vs \ {s}:
0= Y ( Z f(wv)— Y f(w))=
veVs\{s} weN— weNt(v)
Z f(sw)+ Z f(wv) — Z f(vw)
weN*(s) veVs\{shweVy veVs;weVy
So
v(f)= Z f(vw)— Z f(wv) < Z flvw) < Z c(vw) = 6(Vs, Vy)
veVs;weVy veVs\{shweVy veVs;weVy veVs;weVy

v

Corollary: Max flow < Min Cut
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Algorithm for Max Flow: Intuition

AL,
, X 0
RO 0

Let us compute a max flow from sto d.
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Algorithm for Max Flow: Intuition

We can “push” 3 units of flow along an available path (s,a,b,d).  v(f) =3.
The only remaining available path is (s, c, e, d)
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Algorithm for Max Flow: Intuition

We can “push” 1 units of flow along (s, ¢, e, d). v(f) =4.
No path from s to d remains available, but...
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Algorithm for Max Flow: Intuition

We want to “push" some flow along the "path” (s, c, b, a, e, d)
It is NOT a directed path (because (b, a) ¢ A)
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Algorithm for Max Flow: Intuition

Somehow, we "reverse" some flow along the arc (a, b)
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Algorithm for Max Flow: Intuition

So we got a flow with value v(f) = 5.

Exercise: Why is it optimal ? J
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Algorithm for Max Flow: Intuition

Recall that Max flow < Min Cut

If there is a flow f and a cut ( Vs, Vy) with v(f) = 6(Vs, Vi), then
f is maximum and ( Vs, Vi) is @ minimum cut.
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

=
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

ONENO
Q @

ONENO

15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v € V(G), create an arc with capacity caux(uv) = c(uv) — f(uv) + f(vu)

f(uv) current flow from u to v, f(vu) current flow from v to u
c(uv) — f(uv) is the residual capacity

N. Nisse

® caux(uv) may be positive even if (u,v) ¢ A(G)
e If (u,v) ¢ A(G) and (v,u) ¢ A(G), then caux(uv) = caux(vu) =0
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow
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15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v € V(G), create an arc with capacity caux(uv) = c(uv) — f(uv) + f(vu)

f(uv) current flow from u to v, f(vu) current flow from v to u
c(uv) — f(uv) is the residual capacity
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® caux(uv) may be positive even if (u,v) ¢ A(G)
e If (u,v) ¢ A(G) and (v,u) ¢ A(G), then caux(uv) = caux(vu) =0
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow
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15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

©

For all u,v € V(G), create an arc with capacity caux(uv) = c(uv) — f(uv) + f(vu)

f(uv) current flow from u to v, f(vu) current flow from v to u
c(uv) — f(uv) is the residual capacity
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow
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15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v € V(G), create an arc with capacity caux(uv) = c(uv) — f(uv) + f(vu)
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

OO
,3\ /3 2 3
: 1 1 1?
e 1

1 je— 1

15! Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v € V(G), create an arc with capacity caux(uv) = c(uv) — f(uv) + f(vu)

f(uv) current flow from u to v, f(vu) current flow from v to u
c(uv) — f(uv) is the residual capacity

® caux(uv) may be positive even if (u,v) ¢ A(G)
e If (u,v) ¢ A(G) and (v,u) ¢ A(G), then caux(uv) = caux(vu) =0
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

2" Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

2" Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is € =1 >0
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

2" Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is € =1 >0
We will “push” € units of flow along P in G

For all arcs (u, v) of P

e Add ¢ to the current flow of (u, v) if f(uv) + € < c(uv)

e Otherwise add c(uv) — f(uv) to the current flow of (u, v)
note that € — (¢(uv) — f(uv)) are “lacking to be pushed"

e In the latter case, remove € — (c(uv) — f(uv)) from the current flow from v to w.
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow
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back to the 15 Phase of FF-algorithm: Compute in auxiliary graph
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

back to the 15 Phase of FF-algorithm: Compute in auxiliary graph
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Ford-Fulkerson Algorithm 15t example

Problem here: there is no path where to push flow

back to the 15! Phase of FF-algorithm: Compute in auxiliary graph

Here no path with > 0 capacity from s to d.
The set of nodes reachable from s (here, only s) defines a cut

Exercise: What is the capacity of this cut? Why the flow is maximum? )
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Ford-Fulkerson Algorithm
D=(V,A),c:A—Rtands,de V
Letf: A— R™ be a valid flow in D Initially, f may be null

@ Compute an auxiliary graph Dy = (V,Aaux) and Caux : Azux — RT

Q If there is a directed path P from sto din D,y
(auxiliary capacity of arcs of P must be > 0)
e Let € > 0 be the minimum capacity c,x of the arcs of P
e “Push" € units of flow along P in D

e Goto1 (Note that the value of the flow has increased)

Else Return f f is a maximum flow./
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Ford-Fulkerson Algorithm
D=(V,A),c:A—Rtands,de V
Letf: A— R™ be a valid flow in D Initially, f may be null

@ Compute an auxiliary graph Dy = (V,Aaux) and Caux : Azux — RT
Yu,v € V, add an arc (u, v) € Aaux With capacity
Caux(uv) = c(uv) — f(uv) + f(vu).

Q If there is a directed path P from sto din D,y
(auxiliary capacity of arcs of P must be > 0)

e Let € > 0 be the minimum capacity c,x of the arcs of P
e “Push" € units of flow along P in D

e Goto1 (Note that the value of the flow has increased)

Else Return f f is a maximum flow./
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Ford-Fulkerson Algorithm

D=(V,A),c:A—Rtands,de V
Letf: A— R™ be a valid flow in D Initially, f may be null

@ Compute an auxiliary graph Dy = (V,Aaux) and Caux : Azux — RT
Yu,v € V, add an arc (u, v) € Aaux With capacity
Caux(uv) = c(uv) — f(uv) + f(vu).

Q If there is a directed path P from sto din D,y
(auxiliary capacity of arcs of P must be > 0)
e Let € > 0 be the minimum capacity c,x of the arcs of P
e “Push" € units of flow along P in D
For each arc (uv) € A(P) of P:
f(uv) < min{c(uv); f(uv) + €}
push € but if it exceeds the capacity of the link
f(vu) < f(vu) —max{0; f(uv) +¢& — c(uv)}

“reverse"” some flow
e Goto1 (Note that the value of the flow has increased)
f is a maximum flow. |

Else Return f
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Ford-Fulkerson Algorithm Example

PR
H@H
LN d

Digraph D = (V,A), capacity c: A— R™
Let us compute a max flow fromse Vtod € V.
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Ford-Fulkerson Algorithm Example

Q 7@<
H@ﬁs
b

Let us compute a max flow froms € Viod e V.
start from a given initial flow: in the example v(f) = 3.
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Ford-Fulkerson Algorithm Example

Q5

6,3 3

Lk
b 0 G

15t step: Compute the first auxiliary digraph Dy
start with same vertices as D

X
'

© ©
G ©
© 0 ©
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Ford-Fulkerson Algorithm Example

A O~
ggw@} 5/@ @ ©

O —XeFow O @

15! step: Compute the first auxiliary digraph Dax
forall u,v € V x V, caux(uv) = c(uv) — f(uv) + f(vu):

© ©© ©

in the example cax(sa) =8—0+0=38
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Ford-Fulkerson Algorithm Example

QX o= ONNO

63 33 i 33 i;
Lo © © ©

|
O —F - ®© © ©

15! step: Compute the first auxiliary digraph Dy
forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example cgyx(as) =0—0+0=0
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Ford-Fulkerson Algorithm Example

O Hx P oo ©

Bf 3,3 | 33 ii e-sl+o
Lo © © ©

|
O —F - ®© © ©

15! step: Compute the first auxiliary digraph Dy
forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example caux(sc) =6—-3+0=3
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Ford-Fulkerson Algorithm Example
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15! step: Compute the first auxiliary digraph Dy

forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example caux(sc) =6—-3+0=3
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Ford-Fulkerson Algorithm Example
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15! step: Compute the first auxiliary digraph Dy

forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example cgux(cs) =0—0+3 =3
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Ford-Fulkerson Algorithm Example
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15! step: Compute the first auxiliary digraph Dy
forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example cux(cs) =0—0+3=3
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Ford-Fulkerson Algorithm Example

Q9 /Q }a ®
g{ }a We o
| v
O= %}@ O © @
15! step: Compute the first auxiliary digraph Dy
forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

in the example caux(ca) =3 —3+0=0and cax(ac) =0—0+3=3

N. Nisse —izs— [H= COATI @ Giwzz=  Graph Theory and applications 15/24



Ford-Fulkerson Algorithm Example

15! step: Compute the first auxiliary digraph Dy
forall u,v € V x V, cax(uv) = c(uv) — f(uv) + f(vu):

and so on
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2" step: Find in Dy a directed s,d-path with positive capacity

in the example P = (s,a,h,g,e,d) and € = Mincep Caux(arc) =3

=5
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Ford-Fulkerson Algorithm Example
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2" step: Push ¢ units of flow along P in D. For each arc (uv) of P:
f(uv) < min{c(uv); f(uv) + €} ex: f(sa) =min{8,0+3} =3
f(ge) =min{0,0+3} =0
f(vu) < f(vu) —max{0; f(uv) +&—c(uv)}
ex: f(eg) =3—max{0,3+3—-3} =0
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Ford-Fulkerson Algorithm
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The flow has been increased:
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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2" step: Find in D,y a directed s,d-path with positive capacity

in the example P = (s, ¢, f,g,d) and € = mingcep Caux(arc) =3
and Push € units of flow along P in D

=5
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
starting from the new current flow v(f) =9
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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2" step: Find in Dy a directed s,d-path with positive capacity

in the example P = (s,a,¢, h,g,d) and € = Minarep Caux(arc) = 2
and Push € units of flow along P in D

=5
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
starting from the new current flow v(f) =
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Ford-Fulkerson Algorithm Example
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15! step: We have to compute the auxiliary digraph
2" step: Find in D,y a directed s,d-path with positive capacity

éxécé/{é

in the example P = (s, a,b, e,d) and € = Mingreep Caux(arc) =2
and Push € units of flow along P in D
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Ford-Fulkerson Algorithm Example

o9 @ @ ©
é{m@k }@ O © @
bt O @ ©

15! step: We have to compute the auxiliary digraph
starting from the new current flow v(f) =13

N. Nisse i3S /’?“ . COATI 0 UiwZa=  Graph Theory and applications 15/24



Ford-Fulkerson Algorithm Example
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2" step: Find in Dy a directed s,d-path with positive capacity
in the example, there is no such path !!

/

565

o
(&3]

é«

Exercise: Prove that the current flow is maximum }
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Ford-Fulkerson Algorithm Example

Aux. digraph defines a cut: Vs = {vertices reachable from s}; Vg = V'\ Vs.
0(Vs, Vg) =13 = v(f) = f is maximum.
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Outline

0 Transportation Problem

e Elementary Flow Network

e Upper bound on Flow: Cut

e Ford-Fulkerson Algorithm

@ Min Cut=Max flow

e Application to Connectivity: Menger Theorem

e Application to Matching
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Ford-Fulkerson Algorithm: Min Cut=Max flow

Exercise: Let f : A— R™ be computed by FF-algorithm

@ Prove that f is a valid flow

@ Prove that f is a maximum flow

idea of proof of 2:FF-algorithm returns a flow f : A — R*
it also returns a cut with capacity v(f).

Theorem: Max Flow = Min Cut (duality)

For any digraph D, ¢ : A(D) — R* and s,d € V(D):
maximum value of a flow from s to d = minimum capacity of a s,d-cut

=
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Ford-Fulkerson Algorithm: Complexity

Remark: the FF-algorithm may not terminate

Exercise: Assume capacities are integralc: A — N

e Prove that FF-algorithm always terminates

e Prove that the maximum value of a flow is integral

=
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Ford-Fulkerson Algorithm: Complexity

Remark: the FF-algorithm may not terminate

Exercise: Assume capacities are integralc: A — N

e Prove that FF-algorithm always terminates
e Prove that the maximum value of a flow is integral

Complexity with integral capacities
FF-algorithm terminates in time O(Vmax|A(D)|)

)
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Ford-Fulkerson Algorithm: undirected graphs

In undirected graph G=(V, E)
f:VxV—RT is defined on ordered pairs of vertices

Flow conservation: forany v e V\{s,d}, Y f(w)= Y f(w)
ueN(v) ueN(v)

Capacity: for any e = {u,v} € E, f(uv) + f(vu) < c({u, v}).

@ B o @

T 1 10\ 1,1 10,i ,/111 10,6
/3 ¥,33
%34@ /3)@ =3 - ; 6%54@
2 1 22 2 i 1,1 4 4 122 44]
&P \@ﬁ [oN o1 \
3 6 * 3,2 5 R . \3,2 615/

6,
“transform" f FF Algorithm P g translate"
é in directed @ @ ) t_ht_s flow

graph in original graph
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Outline

0 Transportation Problem

e Elementary Flow Network

e Upper bound on Flow: Cut

e Ford-Fulkerson Algorithm

@ Min Cut=Max flow

e Application to Connectivity: Menger Theorem

e Application to Matching
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Ford-Fulkerson Algorithm:  Application to Connectivity

Edge-disjoint Paths: G=(V,E),s,de V,keN

Exercise: J k edge-disjoint paths from sto d in G
< d a s,d-flow with value k in G (with capacity 1 on edges)

Idea: use the fact that there exists an integral maximum flow

=
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Ford-Fulkerson Algorithm:  Application to Connectivity
Vertex-disjoint Paths: G=(V,E),s,de V,keN

Exercise: 3 k (internally) vertex-disjoint paths from sto d in G
< J a s,d-flow with value k in G* (see Picture)

Q o Q O N

N [
6b gk = detey

A
J

“ " 6 8
B o ;@@(* o

graph

=
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Ford-Fulkerson Algorithm:  Application to Connectivity
Vertex-disjoint Paths: G=(V,E),s,de V,keN

Exercise: 3 k (internally) vertex-disjoint paths from sto d in G
< J a s,d-flow with value k in G* (see Picture)

‘Qm G 1Q‘0 (1/93\'0\?
— axy —, Tt

3 3
6 6
“transform" Ny * \
in directed @ ,}@—-®<

graph

S C Vs a s,d-separator if s and d in different components of G\ S

Menger’s Theorem (1927): (duality)

For any graph G = (V,E), s,d € V non-adjacent, k € N:
3 k internally-vertex-disjoint paths from s to d < ] s,d-separator of size < k.
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Outline

0 Transportation Problem

e Elementary Flow Network

e Upper bound on Flow: Cut

e Ford-Fulkerson Algorithm

@ Min Cut=Max flow

e Application to Connectivity: Menger Theorem

e Application to Matching
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Ford-Fulkerson Algorithm: Application to Matching

Let G=(V,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (MCE)

Problem: Compute a matching of maximum cardinality

=
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Ford-Fulkerson Algorithm: Application to Matching

Let G=(V,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (MCE)

Question: is this matching maximum?

=
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Ford-Fulkerson Algorithm: Application to Matching

Let G= (V,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (MCE)

Question: and this one?

=5
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Ford-Fulkerson Algorithm: Application to Matching

Let G=(V,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (MCE)

Question: and this one?

Exercise: Prove that any matching M is such that |[M| < ||V|/2] J

=5
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Ford-Fulkerson Algorithm: Application to Matching

Example of application of matching:

stable set: set of vertices pariwise non-adjacent
Bipartite graph: G= (V, E) and V = AU B can be partitioned into 2 stable
sets Aand B.

=

N. Nisse —i3s— [ COATI 0 Ciada= Graph Theory and applications 23/24



Ford-Fulkerson Algorithm: Application to Matching

Example of application of matching:

stable set: set of vertices pariwise non-adjacent

Bipartite graph: G = (V, E) and V = AU B can be partitioned into 2 stable
sets Aand B.

Matching in bipartite graphs G=(AUB,E)

® Hall's Theorem (1935): 3 matching saturating A < VS C A, [N(S)| > |S].

® Hungarian Method [Kuhn, 1955]: compute a maximum matching in time O(n3)
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Ford-Fulkerson Algorithm: Application to Matching

G = (AU B, E) a bipartite graph, k € N

Exercise: Prove that there exists a matching of size > k
& exists a s,d-flow of value > k in G* (see Picture)

Idea: use the fact that there exists an integral maximum flow

=
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Summary: To be remembered

flow, cut

Ford-Fulkerson algorithm O(| E|flowpmax) for rational capacities
Min Cut = Max Flow
Menger Theorem (max # disjoint paths = min size of separator)

Matching (Hungarian method, Edmonds algorithm, Hall Theorem)

)
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