Matching

Graph Theory and Optimization Flow: Ford-Fulkerson Algorithm Max Flow- Min Cut duality

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

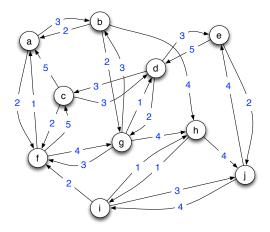
October 2018

Matching

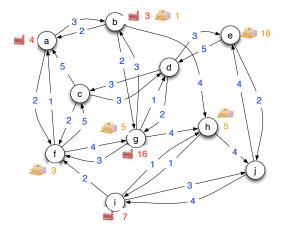
Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Directed weighted graph: D = (V, A), A: set of arcs, $(x, y) \in A$ ordered pair arrows



Directed weighted graph: D = (V, A)On vertices: production: $p_{max} : V \to \mathbb{R}^+$; consumption: $cons_{max} : V \to \mathbb{R}^+$ On arcs: capacity: $c : A \to \mathbb{R}^+$

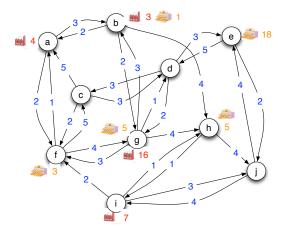


COATI

Matching

Transportation problem: Modeling

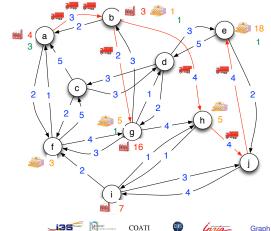
What is the main amount of goods that can be exchanged? Actual production: $p: V \to \mathbb{R}^+$ and actual consumption: $cons: V \to \mathbb{R}^+$ flow: $f: A \to \mathbb{R}^+$: satisfies capacity and flow conservation



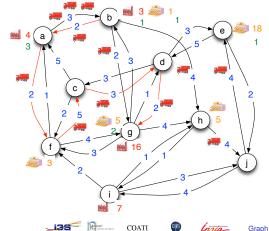
COATI

nría

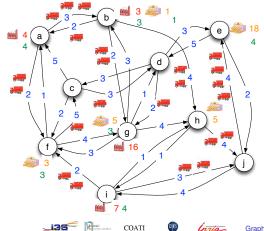
flow: $f : A \to \mathbb{R}^+$: feasibility: $\forall v \in V$, $p(v) \le p_{max}(v)$, $cons(v) \le cons_{max}(v)$ capacity constraint: $\forall a \in A, f(a) \le c(a)$. flow conservation: $\forall v \in V$, $p(v) + \sum_{w \in N^-(v)} f(wv) = c(v) + \sum_{w \in N^+(v)} f(vw)$



flow: $f : A \to \mathbb{R}^+$: feasibility: $\forall v \in V, p(v) \le p_{max}(v), cons(v) \le cons_{max}(v)$ capacity constraint: $\forall a \in A, f(a) \le c(a)$. flow conservation: $\forall v \in V, p(v) + \sum_{w \in N^-(v)} f(wv) = c(v) + \sum_{w \in N^+(v)} f(vw)$

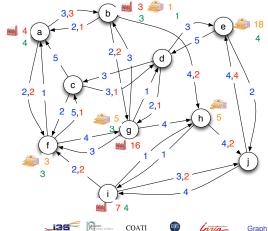


flow: $f : A \to \mathbb{R}^+$: feasibility: $\forall v \in V, p(v) \le p_{max}(v), cons(v) \le cons_{max}(v)$ capacity constraint: $\forall a \in A, f(a) \le c(a)$. flow conservation: $\forall v \in V, p(v) + \sum_{w \in N^-(v)} f(wv) = c(v) + \sum_{w \in N^+(v)} f(vw)$

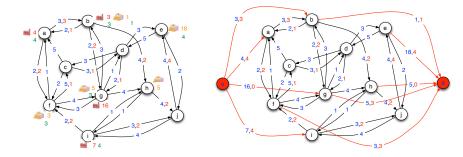


Graph Theory and applications 3/24

flow: $f : A \to \mathbb{R}^+$: feasibility: $\forall v \in V$, $p(v) \le p_{max}(v)$, $cons(v) \le cons_{max}(v)$ capacity constraint: $\forall a \in A, f(a) \le c(a)$. flow conservation: $\forall v \in V$, $p(v) + \sum_{w \in N^-(v)} f(wv) = c(v) + \sum_{w \in N^+(v)} f(vw)$



Simplification: one single source and one single destination



One source *s*: $\forall v \in V$ add one arc (s, v) with capacity $p_{max}(v)$ One destination *d*: $\forall v \in V$ add one arc (v, d) with capacity $cons_{max}(v)$ Flows are "equivalent" in both networks

Matching

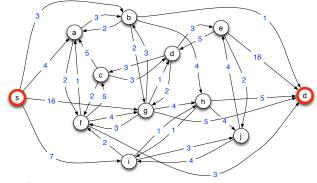
Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Elementary Flow Network

Directed graph: D = (V, A), source $s \in V$, destination $d \in V$, capacity $c : A \to \mathbb{R}^+$.

 $N^{-}(s) = \emptyset$ and $N^{+}(d) = \emptyset$



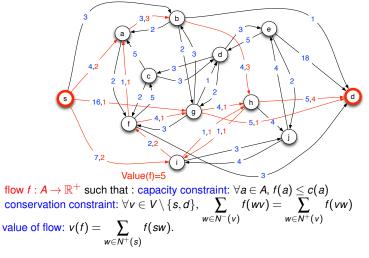
flow $f : A \to \mathbb{R}^+$ such that : capacity constraint: $\forall a \in A, f(a) \leq c(a)$ conservation constraint: $\forall v \in V \setminus \{s, d\}, \sum_{w \in N^-(v)} f(wv) = \sum_{w \in N^+(v)} f(vw)$ value of flow: $v(f) = \sum_{w \in N^+(s)} f(sw)$.

Inría

Elementary Flow Network

Directed graph: D = (V, A), source $s \in V$, destination $d \in V$, capacity $c : A \to \mathbb{R}^+$.

 $N^{-}(s) = \emptyset$ and $N^{+}(d) = \emptyset$



COATI

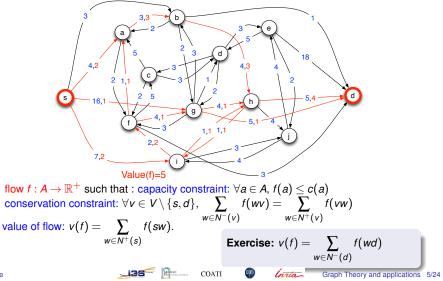
Inría

N. Nisse

Elementary Flow Network

Directed graph: D = (V, A), source $s \in V$, destination $d \in V$, capacity $c : A \to \mathbb{R}^+$.

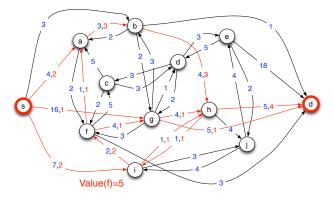
 $N^{-}(s) = \emptyset$ and $N^{+}(d) = \emptyset$



Matching

Elementary Flow Network: Max Flow

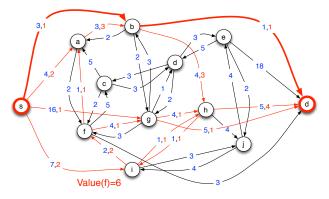
How to compute a flow with maximum value?



125

Elementary Flow Network: Max Flow

How to compute a flow with maximum value?



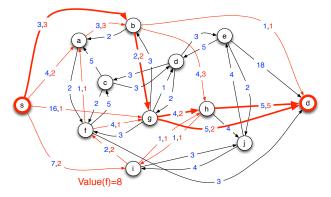
Possible to "push" flow along available path

Nenger

Matching

Elementary Flow Network: Max Flow

How to compute a flow with maximum value?



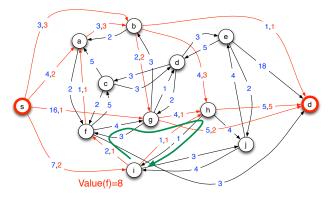
Possible to "push" flow along available path

vlenger

Matching

Elementary Flow Network: Max Flow

How to compute a flow with maximum value?



Possible to "push" flow along available path May be useful to "remove useless flow"

Matching

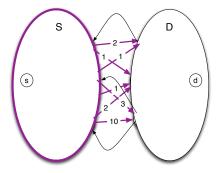
Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Matching

Max Flow, upper bound: Min cut

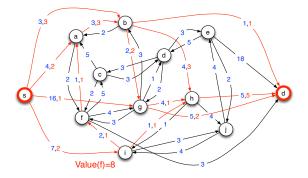
a cut gives an upper bound on the value of your flow



Matching

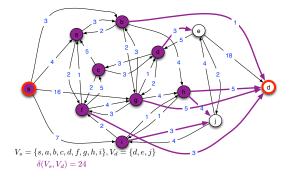
Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow



Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow

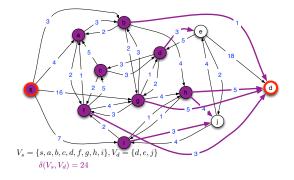


s,*d*-Cut: partition (V_s, V_d) of V with $s \in V_s$ and $d \in V_d$. Capacity of a *s*,*d*-cut: $\delta(V_s, V_d) = \sum_{u \in V_s, v \in V_d} c(uv)$.

Graph Theory and applications 8/24

Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow



s,*d*-Cut: partition (V_s , V_d) of V with $s \in V_s$ and $d \in V_d$. Capacity of a *s*,*d*-cut: $\delta(V_s, V_d) = \sum c(uv)$. $u \in V_s, v \in V_d$

_135

Theorem: for any network flow $D = (V, A), s, d \in V$ and $c : A \to \mathbb{R}^+$

COATI

Inría

For any flow $f : A \to \mathbb{R}^+$ and s, d-cut $(V_s, V_d), v(f) \le \delta(V_s, V_d)$ Repersité

Matching

Max Flow, upper bound: Min cut

Theorem: for any network flow $D=(V,A),\,s,d\in V$ and $c:A
ightarrow \mathbb{R}^+$

For any flow $f: A \to \mathbb{R}^+$ and s,d-cut $(V_s, V_d), v(f) \le \delta(V_s, V_d)$

Proof:
conservation constraint:
$$\forall v \in V \setminus \{s, d\}$$
, $\sum_{w \in N^-(v)} f(wv) = \sum_{w \in N^+(v)} f(vw)$.
sum over all vertices in $V_s \setminus \{s\}$:
 $0 = \sum_{v \in V_s \setminus \{s\}} (\sum_{w \in N^-(v)} f(wv) - \sum_{w \in N^+(v)} f(vw)) = \sum_{w \in N^+(s)} f(sw) + \sum_{v \in V_s \setminus \{s\}; w \in V_d} f(wv) - \sum_{v \in V_s; w \in V_d} f(vw)$
So
 $v(f) = \sum_{v \in V_s; w \in V_d} f(vw) - \sum_{v \in V_s \setminus \{s\}; w \in V_d} f(wv) \le \sum_{v \in V_s; w \in V_d} f(vw) \le \sum_{v \in V_s; w \in V_d} c(vw) = \delta(V_s, V_d)$

Corollary: Max flow \leq Min Cut

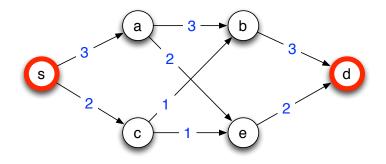
Matching

Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Matching

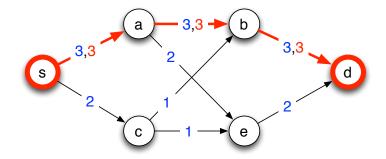
Algorithm for Max Flow: Intuition



Let us compute a max flow from *s* to *d*.

Matching

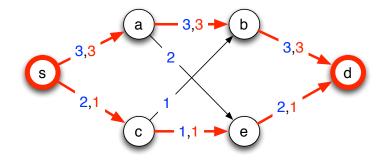
Algorithm for Max Flow: Intuition



We can "push" 3 units of flow along an available path (s, a, b, d). v(f) = 3. The only remaining available path is (s, c, e, d)

Matching

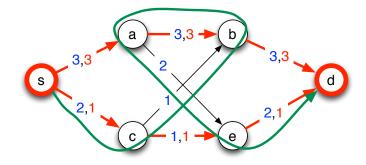
Algorithm for Max Flow: Intuition



We can "push" 1 units of flow along (s, c, e, d). v(f) = 4. No path from *s* to *d* remains available, but...

Matching

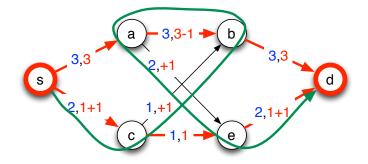
Algorithm for Max Flow: Intuition



We want to "push" some flow along the "path" (s, c, b, a, e, d)It is NOT a directed path (because $(b, a) \notin A$)

Matching

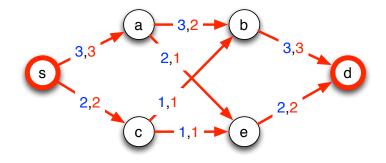
Algorithm for Max Flow: Intuition



Somehow, we "reverse" some flow along the arc (a, b)

Matching

Algorithm for Max Flow: Intuition

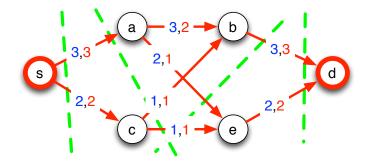


So we got a flow with value v(f) = 5.

Exercise: Why is it optimal ?

Matching

Algorithm for Max Flow: Intuition



Recall that Max flow \leq Min Cut

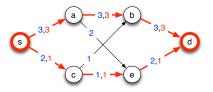
If there is a flow *f* and a cut (V_s, V_d) with $v(f) = \delta(V_s, V_d)$, then *f* is maximum and (V_s, V_d) is a minimum cut.

1st example

Matching

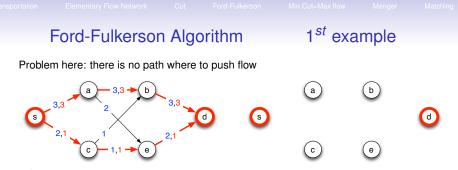
Ford-Fulkerson Algorithm

Problem here: there is no path where to push flow



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

N. Nisse



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

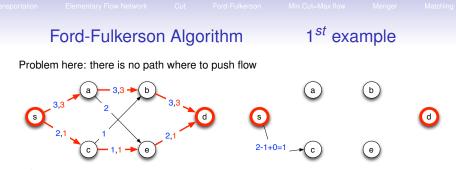
For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

COATI

Inría

Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

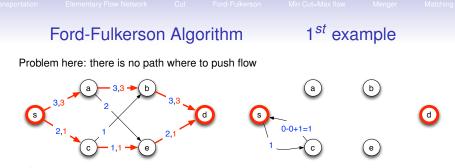
For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

COATI

Inría

Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

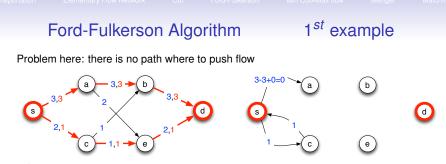
For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

COATI

Inría

Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

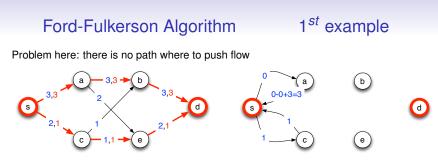
For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

COATI

Inría

Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$



1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

COATI

Inría

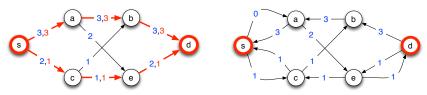
Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$

Ford-Fulkerson Algorithm

1st example

Problem here: there is no path where to push flow

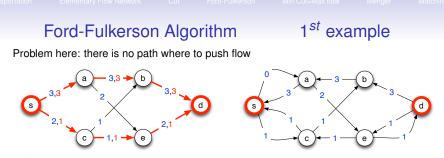


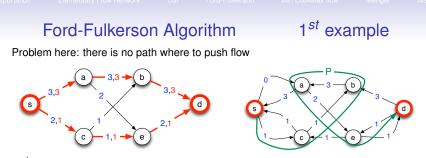
1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all $u, v \in V(G)$, create an arc with capacity $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$ f(uv) current flow from u to v, f(vu) current flow from v to uc(uv) - f(uv) is the residual capacity

Remarks:

- $c_{aux}(uv)$ may be positive even if $(u, v) \notin A(G)$
- If $(u, v) \notin A(G)$ and $(v, u) \notin A(G)$, then $c_{aux}(uv) = c_{aux}(vu) = 0$





COATI

2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$

2nd Phase of FF-algorithm: Look for a path *P* from *s* to *d* in auxiliary graph

Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nía

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.

Ford-Fulkerson Algorithm 1^{st} example Problem here: there is no path where to push flow 3^{3} , 2^{3} , 2^{3} , 3^{3} , 0^{3} , 0^{3}

2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nría

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.

2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

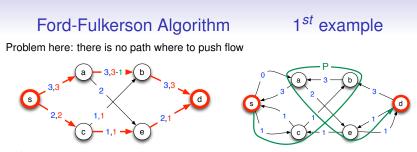
For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nía

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.



Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

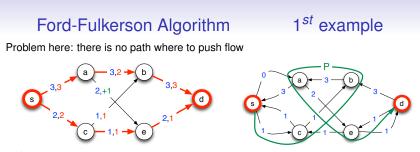
For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nía

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.



Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

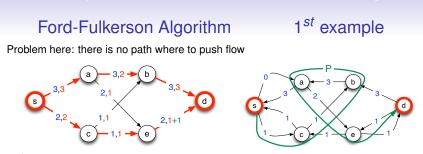
For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nía

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.



Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

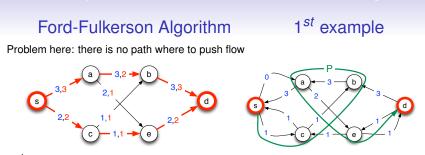
For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nría

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.



Here P = (s, c, b, a, e, d) and its minimum capacity is $\varepsilon = 1 > 0$ We will "push" ε units of flow along P in G

For all arcs (u, v) of P

- Add ε to the current flow of (u, v) if $f(uv) + \varepsilon \le c(uv)$
- Otherwise add c(uv) f(uv) to the current flow of (u, v)

note that $\varepsilon - (c(uv) - f(uv))$ are "lacking to be pushed"

nía

• In the latter case, remove $\varepsilon - (c(uv) - f(uv))$ from the current flow from v to u.

Matching

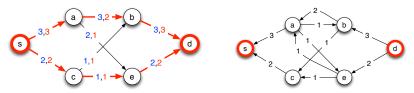
Ford-Fulkerson Algorithm

Problem here: there is no path where to push flow

back to the 1st Phase of FF-algorithm: Compute in auxiliary graph

Ford-Fulkerson Algorithm

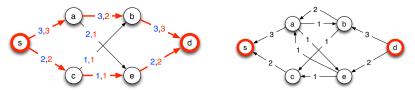
Problem here: there is no path where to push flow



back to the 1st Phase of FF-algorithm: Compute in auxiliary graph

Ford-Fulkerson Algorithm

Problem here: there is no path where to push flow



back to the 1st Phase of FF-algorithm: Compute in auxiliary graph

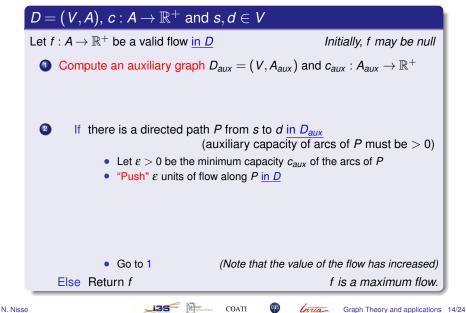
Here no path with > 0 capacity from *s* to *d*. The set of nodes reachable from *s* (here, only *s*) defines a cut

Exercise: What is the capacity of this cut? Why the flow is maximum?

Ford-Fulkersor

lenger

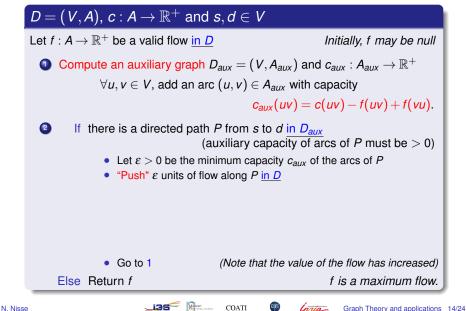
Ford-Fulkerson Algorithm



/lenger

Matching

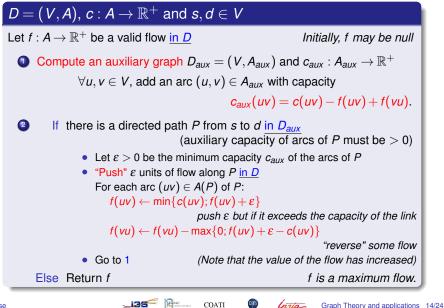
Ford-Fulkerson Algorithm



enger

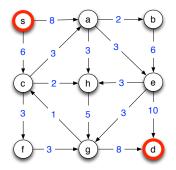
Matching

Ford-Fulkerson Algorithm



Matching

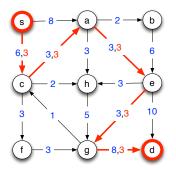
Ford-Fulkerson Algorithm



Digraph D = (V, A), capacity $c : A \to \mathbb{R}^+$ Let us compute a max flow from $s \in V$ to $d \in V$.

Matching

Ford-Fulkerson Algorithm



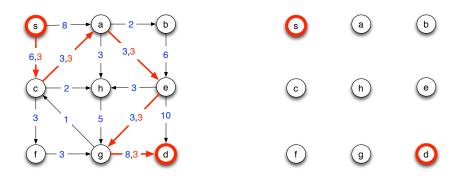
Let us compute a max flow from $s \in V$ to $d \in V$. start from a given initial flow: in the example v(f) = 3.

COATI

Inría

Matching

Ford-Fulkerson Algorithm



COATI

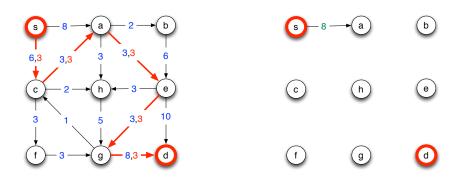
1st **step:** Compute the first auxiliary digraph *D*_{aux}

start with same vertices as D

Inría

Matching

Ford-Fulkerson Algorithm

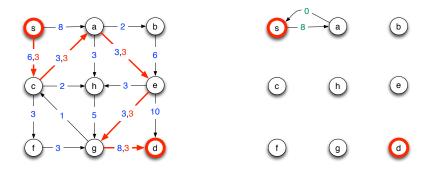


1st step: Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

in the example $c_{aux}(sa) = 8 - 0 + 0 = 8$

Matching

Ford-Fulkerson Algorithm



1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

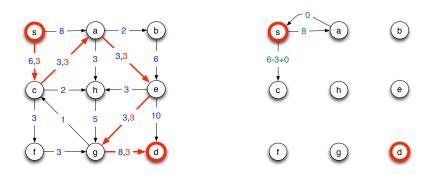
COATI

in the example $c_{aux}(as) = 0 - 0 + 0 = 0$

Innia

Matching

Ford-Fulkerson Algorithm



1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

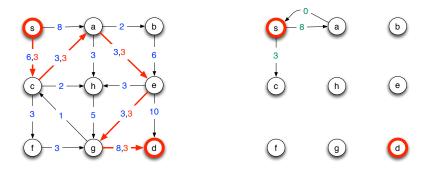
COATI

in the example $c_{aux}(sc) = 6 - 3 + 0 = 3$

Inría

Matching

Ford-Fulkerson Algorithm

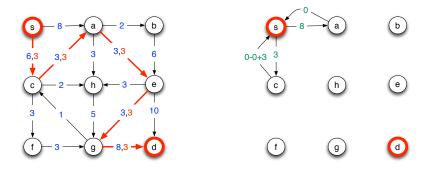


1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

in the example $c_{aux}(sc) = 6 - 3 + 0 = 3$

Matching

Ford-Fulkerson Algorithm



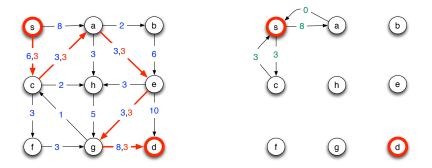
1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

COATI

in the example $c_{aux}(cs) = 0 - 0 + 3 = 3$

Matching

Ford-Fulkerson Algorithm

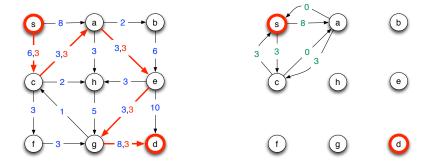


1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

in the example $c_{aux}(cs) = 0 - 0 + 3 = 3$

Matching

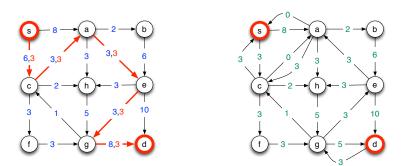
Ford-Fulkerson Algorithm



1^{*st*} **step:** Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$: in the example $c_{aux}(ca) = 3 - 3 + 0 = 0$ and $c_{aux}(ac) = 0 - 0 + 3 = 3$

Matching

Ford-Fulkerson Algorithm



1st step: Compute the first auxiliary digraph D_{aux} for all $u, v \in V \times V$, $c_{aux}(uv) = c(uv) - f(uv) + f(vu)$:

COATI

Inría

and so on

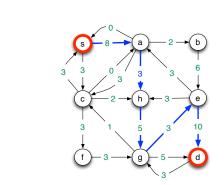
Matching

Ford-Fulkerson Algorithm

3,3

3,3

3,3



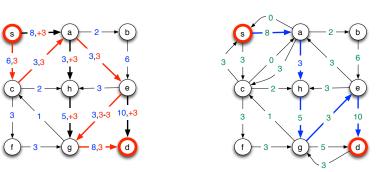
nría

 2^{nd} step: Find <u>in D_{aux} </u> a directed *s*,*d*-path with positive capacity

in the example P = (s, a, h, g, e, d) and $\varepsilon = \min_{arc \in P} c_{aux}(arc) = 3$

Matching

Ford-Fulkerson Algorithm



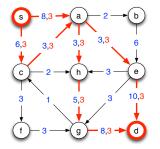
 2^{nd} step: Push ε units of flow along P in D. For each arc (uv) of P:

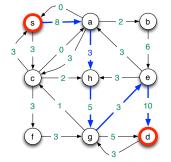
 $f(uv) \leftarrow \min\{c(uv); f(uv) + \varepsilon\}$ $f(uv) \leftarrow \min\{c(uv); f(uv) + \varepsilon\}$ $f(ge) = \min\{8, 0 + 3\} = 3$ $f(ge) = \min\{0, 0 + 3\} = 0$ $f(vu) \leftarrow f(vu) - \max\{0; f(uv) + \varepsilon - c(uv)\}$ $ex: f(eg) = 3 - \max\{0, 3 + 3 - 3\} = 0$ $f(vu) \leftarrow f(vu) = 0$ $f(eg) = 3 - \max\{0, 3 + 3 - 3\} = 0$ $f(vu) \leftarrow f(vu) = 0$ $f(eg) = 3 - \max\{0, 3 + 3 - 3\} = 0$ $f(vu) \leftarrow f(vu) = 0$ $f(eg) = 3 - \max\{0, 3 + 3 - 3\} = 0$

N. Nisse

Matching

Ford-Fulkerson Algorithm

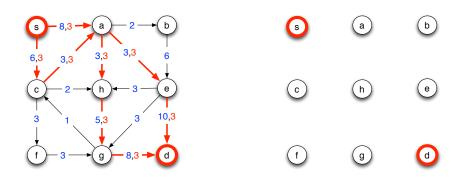




The flow has been increased:

Matching

Ford-Fulkerson Algorithm

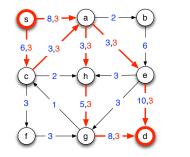


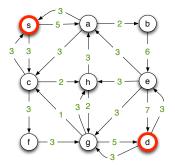
1st step: We have to compute the auxiliary digraph

starting from the new current flow

Matching

Ford-Fulkerson Algorithm



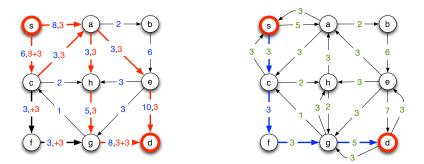


1st step: We have to compute the auxiliary digraph

starting from the new current flow

Matching

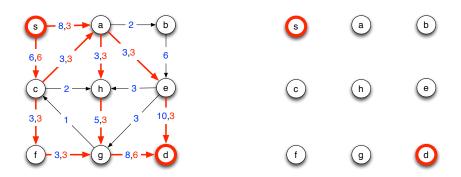
Ford-Fulkerson Algorithm



2nd step: Find in D_{aux} a directed s,d-path with positive capacity

in the example P = (s, c, f, g, d) and $\varepsilon = \min_{arc \in P} c_{aux}(arc) = 3$ and Push ε units of flow along P in D

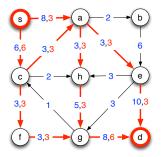
Ford-Fulkerson Algorithm

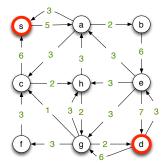


1st step: We have to compute the auxiliary digraph

starting from the new current flow v(f) = 9

Ford-Fulkerson Algorithm





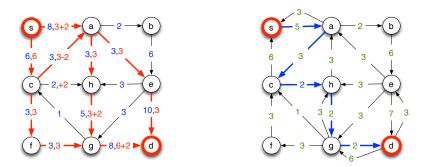
1st step: We have to compute the auxiliary digraph

starting from the new current flow

Example

Matching

Ford-Fulkerson Algorithm



 2^{nd} step: Find in D_{aux} a directed s,d-path with positive capacity

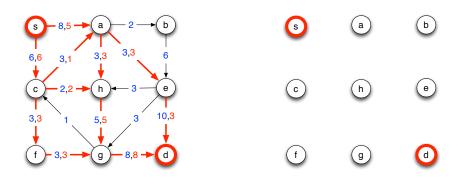
in the example P = (s, a, c, h, g, d) and $\varepsilon = \min_{arc \in P} c_{aux}(arc) = 2$ and Push ε units of flow along P in D

Inría

Example

Matching

Ford-Fulkerson Algorithm

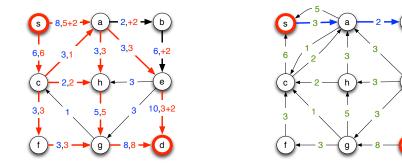


1st **step:** We have to compute the auxiliary digraph starting from the new current flow v(f) = 11

е

Matching

Ford-Fulkerson Algorithm



1^{*st*} **step:** We have to compute the auxiliary digraph 2^{nd} **step:** Find in D_{aux} a directed *s*,*d*-path with positive capacity

in the example P = (s, a, b, e, d) and $\varepsilon = \min_{arc \in P} c_{aux}(arc) = 2$ and Push ε units of flow along P in D

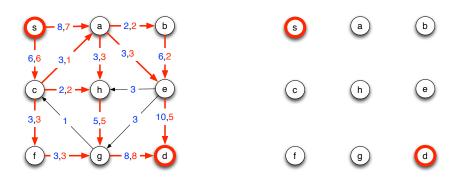
Innia

COATI

Example

Matching

Ford-Fulkerson Algorithm

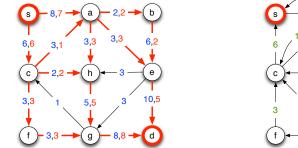


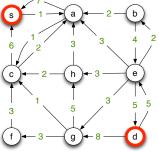
1st step: We have to compute the auxiliary digraph

starting from the new current flow v(f) = 13

Inría

Ford-Fulkerson Algorithm





 2^{nd} step: Find in D_{aux} a directed s,d-path with positive capacity in the example, there is no such path !!

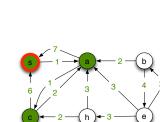
COATI

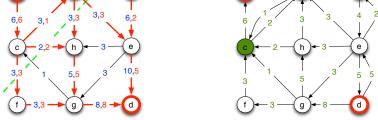
Inría

Exercise: Prove that the current flow is maximum 125

Example

Ford-Fulkerson Algorithm





Aux. digraph defines a cut: $V_s = \{ \text{vertices reachable from } s \}; V_d = V \setminus V_s.$ $\delta(V_s, V_d) = 13 = v(f) \Rightarrow f \text{ is maximum.}$

Menger

Matching

Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Ford-Fulkerson Algorithm: Min Cut=Max flow

Exercise: Let $f : A \to \mathbb{R}^+$ be computed by FF-algorithm

- Prove that f is a valid flow
- Prove that f is a maximum flow

idea of proof of 2:FF-algorithm returns a flow $f : A \to \mathbb{R}^+$ it also returns a cut with capacity v(f).

Theorem: Max Flow = Min Cut

For any digraph $D, c: A(D) \to \mathbb{R}^+$ and $s, d \in V(D)$: maximum value of a flow from s to d = minimum capacity of a s, d-cut

(duality)

Complexity

Matching

Ford-Fulkerson Algorithm:

Remark: the FF-algorithm may not terminate

Exercise: Assume capacities are integral $c: A \rightarrow \mathbb{N}$

- Prove that FF-algorithm always terminates
- Prove that the maximum value of a flow is integral

Complexity with integral capacities

FF-algorithm terminates in time $O(v_{max}|A(D)|)$

Complexity

Matching

Ford-Fulkerson Algorithm:

Remark: the FF-algorithm may not terminate

Exercise: Assume capacities are integral $c : A \rightarrow \mathbb{N}$

- Prove that FF-algorithm always terminates
- Prove that the maximum value of a flow is integral

Complexity with integral capacities

FF-algorithm terminates in time $O(v_{max}|A(D)|)$

N Nisse

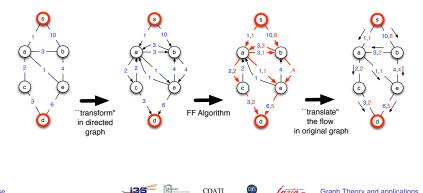
210

Graph Theory and applications 19/24

Ford-Fulkerson Algorithm: undirected graphs

In undirected graph G = (V, E)

 $f: V \times V \rightarrow \mathbb{R}^+$ is defined on ordered pairs of vertices Flow conservation: for any $v \in V \setminus \{s, d\}$, $\sum_{u \in N(v)} f(uv) = \sum_{v \in N(v)} f(vu)$ Capacity: for any $e = \{u, v\} \in E$, $f(uv) + f(vu) \leq c(\{u, v\})$.



Menger

Matching

Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Ford-Fulkerson Algorithm:

Application to Connectivity

Edge-disjoint Paths:

$G = (V, E), s, d \in V, k \in \mathbb{N}$

Exercise: \exists k edge-disjoint paths from s to d in G

 $\Leftrightarrow \exists$ a *s*,*d*-flow with value *k* in *G* (with capacity 1 on edges)

Idea: use the fact that there exists an integral maximum flow

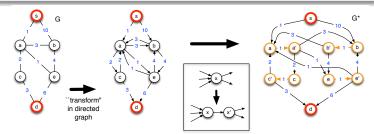
Ford-Fulkerson Algorithm:

Application to Connectivity

Vertex-disjoint Paths:

$G = (V, E), s, d \in V, k \in \mathbb{N}$

Exercise: \exists *k* (internally) vertex-disjoint paths from *s* to *d* in *G* $\Leftrightarrow \exists$ a *s*,*d*-flow with value *k* in *G*^{*} (see Picture)



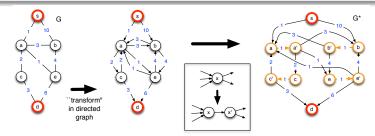
Ford-Fulkerson Algorithm:

Application to Connectivity

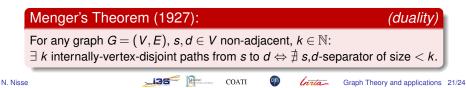
Vertex-disjoint Paths:

$G = (V, E), s, d \in V, k \in \mathbb{N}$

Exercise: \exists *k* (internally) vertex-disjoint paths from *s* to *d* in *G* $\Leftrightarrow \exists$ a *s*,*d*-flow with value *k* in *G*^{*} (see Picture)



 $S \subseteq V$ is a *s*,*d*-separator if *s* and *d* in different components of $G \setminus S$



Menger

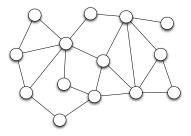
Matching

Outline

- 2 Elementary Flow Network
- Opper bound on Flow: Cut
- 4 Ford-Fulkerson Algorithm
- 5 Min Cut=Max flow
- 6 Application to Connectivity: Menger Theorem
- Application to Matching

Let G = (V, E) be a graph. Matching: A set *M* of pairwise disjoint edges in a graph

 $(M \subseteq E)$



Problem: Compute a matching of maximum cardinality

Let G = (V, E) be a graph. Matching: A set *M* of pairwise disjoint edges in a graph

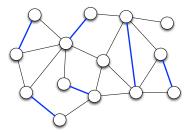
 $(M \subseteq E)$



Question: is this matching maximum?

Let G = (V, E) be a graph. Matching: A set *M* of pairwise disjoint edges in a graph

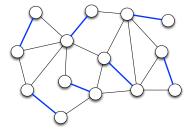
 $(M \subseteq E)$



Question: and this one?

Let G = (V, E) be a graph.

Matching: A set *M* of pairwise disjoint edges in a graph $(M \subseteq E)$



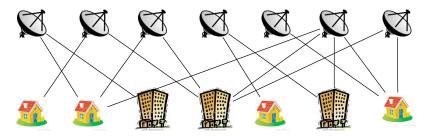
Question: and this one?

Exercise: Prove that any matching *M* is such that $|M| \leq ||V|/2|$

Ford-Fulkerson Algorithm:

Application to Matching

Example of application of matching:

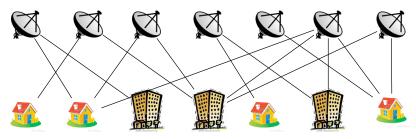


stable set: set of vertices pariwise non-adjacent Bipartite graph: G = (V, E) and $V = A \cup B$ can be partitioned into 2 stable sets A and B.

Ford-Fulkerson Algorithm:

Application to Matching

Example of application of matching:



stable set: set of vertices pariwise non-adjacent

i26

Bipartite graph: G = (V, E) and $V = A \cup B$ can be partitioned into 2 stable sets *A* and *B*.

Matching in bipartite graphs

$G = (A \cup B, E)$

- Hall's Theorem (1935): \exists matching saturating $A \Leftrightarrow \forall S \subseteq A$, $|N(S)| \ge |S|$.
- Hungarian Method [Kuhn, 1955]: compute a maximum matching in time $O(n^3)$

Graph Theory and applications 23/24

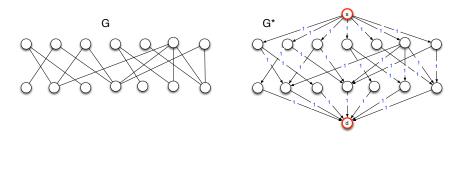
Ford-Fulkerson Algorithm: Application to Matching

$G = (A \cup B, E)$ a bipartite graph, $k \in \mathbb{N}$

Exercise: Prove that there exists a matching of size > k \Leftrightarrow exists a *s*,*d*-flow of value > k in G^* (see Picture)

Idea: use the fact that there exists an integral maximum flow

nía



COATI

Summary: To be remembered

- flow, cut
- Ford-Fulkerson algorithm $O(|E| flow_{max})$ for rational capacities
- Min Cut = Max Flow
- Menger Theorem (max # disjoint paths = min size of separator)
- Matching (Hungarian method, Edmonds algorithm, Hall Theorem)

