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Transportation problem: Modeling
Directed weighted graph: D = (V ,A), A : set of arcs, (x ,y) ∈ A ordered pair
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Transportation problem: Modeling
Directed weighted graph: D = (V ,A)
On vertices: production: pmax : V → R+; consumption: consmax : V → R+

On arcs: capacity: c : A→ R+
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Transportation problem: Modeling
What is the main amount of goods that can be exchanged?
Actual production: p : V → R+ and actual consumption: cons : V → R+

flow: f : A→ R+: satisfies capacity and flow conservation
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Transportation problem: Modeling
flow: f : A→ R+: feasibility: ∀v ∈ V , p(v)≤ pmax (v), cons(v)≤ consmax (v)
capacity constraint: ∀a ∈ A, f (a)≤ c(a).
flow conservation: ∀v ∈ V , p(v)+ ∑

w∈N−(v)
f (wv) = c(v)+ ∑

w∈N+(v)

f (vw)
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Transportation problem: Modeling
flow: f : A→ R+: feasibility: ∀v ∈ V , p(v)≤ pmax (v), cons(v)≤ consmax (v)
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Transportation problem: Modeling
flow: f : A→ R+: feasibility: ∀v ∈ V , p(v)≤ pmax (v), cons(v)≤ consmax (v)
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Transportation problem: Modeling

Simplification: one single source and one single destination
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One source s: ∀v ∈ V add one arc (s,v) with capacity pmax(v)
One destination d : ∀v ∈ V add one arc (v ,d) with capacity consmax(v)

Flows are “equivalent" in both networks
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Outline
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Elementary Flow Network
Directed graph: D = (V ,A), source s ∈ V , destination d ∈ V , capacity c : A→ R+.

N−(s) = /0 and N+(d) = /0
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flow f : A→ R+ such that : capacity constraint: ∀a ∈ A, f (a)≤ c(a)
conservation constraint: ∀v ∈ V \{s,d}, ∑

w∈N−(v)

f (wv) = ∑
w∈N+(v)

f (vw)

value of flow: v(f ) = ∑
w∈N+(s)

f (sw).

Exercise: v(f ) = ∑
w∈N−(d)

f (wd)
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Elementary Flow Network
Directed graph: D = (V ,A), source s ∈ V , destination d ∈ V , capacity c : A→ R+.

N−(s) = /0 and N+(d) = /0
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Value(f)=5
flow f : A→ R+ such that : capacity constraint: ∀a ∈ A, f (a)≤ c(a)
conservation constraint: ∀v ∈ V \{s,d}, ∑

w∈N−(v)

f (wv) = ∑
w∈N+(v)

f (vw)

value of flow: v(f ) = ∑
w∈N+(s)

f (sw).

Exercise: v(f ) = ∑
w∈N−(d)

f (wd)
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Elementary Flow Network
Directed graph: D = (V ,A), source s ∈ V , destination d ∈ V , capacity c : A→ R+.
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flow f : A→ R+ such that : capacity constraint: ∀a ∈ A, f (a)≤ c(a)
conservation constraint: ∀v ∈ V \{s,d}, ∑

w∈N−(v)

f (wv) = ∑
w∈N+(v)

f (vw)

value of flow: v(f ) = ∑
w∈N+(s)

f (sw).
Exercise: v(f ) = ∑

w∈N−(d)
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?
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Value(f)=6

Possible to “push" flow along available path
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?
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Value(f)=8

Possible to “push" flow along available path
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Elementary Flow Network: Max Flow

How to compute a flow with maximum value?
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Value(f)=8

Possible to “push" flow along available path
May be useful to “remove useless flow"
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Outline

1 Transportation Problem

2 Elementary Flow Network

3 Upper bound on Flow: Cut

4 Ford-Fulkerson Algorithm

5 Min Cut=Max flow

6 Application to Connectivity: Menger Theorem

7 Application to Matching

N. Nisse Graph Theory and applications 7/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Max Flow, upper bound: Min cut

a cut gives an upper bound on the value of your flow
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Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow
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Max Flow, upper bound: Min cut

Is this flow maximum?: a cut gives an upper bound on the value of your flow
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Vs = {s, a, b, c, d, f, g, h, i}, Vd = {d, e, j}
δ(Vs, Vd) = 24

s,d-Cut: partition (Vs,Vd) of V with s ∈ Vs and d ∈ Vd .
Capacity of a s,d-cut: δ (Vs,Vd) = ∑

u∈Vs ,v∈Vd

c(uv).
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Max Flow, upper bound: Min cut
Is this flow maximum?: a cut gives an upper bound on the value of your flow
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Vs = {s, a, b, c, d, f, g, h, i}, Vd = {d, e, j}
δ(Vs, Vd) = 24

s,d-Cut: partition (Vs,Vd) of V with s ∈ Vs and d ∈ Vd .
Capacity of a s,d-cut: δ (Vs,Vd) = ∑

u∈Vs ,v∈Vd

c(uv).

Theorem: for any network flow D = (V ,A), s,d ∈ V and c : A→ R+

For any flow f : A→ R+ and s,d-cut (Vs,Vd), v(f )≤ δ (Vs,Vd)

Proof:
conservation constraint: ∀v ∈ V \{s,d}, ∑

w∈N−(v)

f (wv) = ∑
w∈N+(v)

f (vw).

sum over all vertices in Vs \{s}:
0 = ∑

v∈Vs\{s}
( ∑

w∈N−(v)
f (wv)− ∑

w∈N+(v)

f (vw)) =

∑
w∈N+(s)

f (sw)+ ∑
v∈Vs\{s};w∈Vd

f (wv)− ∑
v∈Vs ;w∈Vd

f (vw)

So
v(f )= ∑

v∈Vs ;w∈Vd

f (vw)− ∑
v∈Vs\{s};w∈Vd

f (wv)≤ ∑
v∈Vs ;w∈Vd

f (vw)≤ ∑
v∈Vs ;w∈Vd

c(vw) = δ(Vs,Vd )

Corollary: Max flow ≤ Min Cut
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Max Flow, upper bound: Min cut

Theorem: for any network flow D = (V ,A), s,d ∈ V and c : A→ R+
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Algorithm for Max Flow: Intuition

s
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21

Let us compute a max flow from s to d .
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Algorithm for Max Flow: Intuition

s

a
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e

d
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3,3
3,32
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We can “push" 3 units of flow along an available path (s,a,b,d). v(f ) = 3.
The only remaining available path is (s,c,e,d)
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Algorithm for Max Flow: Intuition

s

a

c

b

e

d
3,3

3,3
3,32

2,1

1,1
2,11

We can “push" 1 units of flow along (s,c,e,d). v(f ) = 4.
No path from s to d remains available, but...
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Algorithm for Max Flow: Intuition

s

a

c

b

e

d
3,3

3,3
3,32

2,1

1,1
2,1

1

We want to “push" some flow along the "path" (s,c,b,a,e,d)
It is NOT a directed path (because (b,a) /∈ A)
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Algorithm for Max Flow: Intuition

s
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d
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2,1+11,+1

Somehow, we "reverse" some flow along the arc (a,b)
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Algorithm for Max Flow: Intuition

s

a

c
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e

d
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So we got a flow with value v(f ) = 5.

Exercise: Why is it optimal ?

N. Nisse Graph Theory and applications 10/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Algorithm for Max Flow: Intuition

s

a

c

b

e

d
3,3

3,2
3,32,1

2,2

1,1
2,21,1

Recall that Max flow ≤ Min Cut

If there is a flow f and a cut (Vs,Vd) with v(f ) = δ (Vs,Vd), then
f is maximum and (Vs,Vd) is a minimum cut.
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Ford-Fulkerson Algorithm 1st example

Problem here: there is no path where to push flow

s
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1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v ∈ V(G), create an arc with capacity caux (uv) = c(uv)− f (uv)+ f (vu)

f (uv) current flow from u to v , f (vu) current flow from v to u
c(uv)− f (uv) is the residual capacity

Remarks:

• caux (uv) may be positive even if (u,v) /∈ A(G)

• If (u,v) /∈ A(G) and (v ,u) /∈ A(G), then caux (uv) = caux (vu) = 0
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• If (u,v) /∈ A(G) and (v ,u) /∈ A(G), then caux (uv) = caux (vu) = 0
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1st Phase of FF-algorithm: Compute an auxiliary graph where to find a path

For all u,v ∈ V(G), create an arc with capacity caux (uv) = c(uv)− f (uv)+ f (vu)

f (uv) current flow from u to v , f (vu) current flow from v to u
c(uv)− f (uv) is the residual capacity

Remarks:
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Problem here: there is no path where to push flow
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.

N. Nisse Graph Theory and applications 12/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Ford-Fulkerson Algorithm 1st example
Problem here: there is no path where to push flow

s

a

c

b

e

d
3,3

3,3
3,32

2,2

1,1
2,11,+1

s

a

c

b

e

d

1

1

0

3
3

1

2

1

3

1
1

P

2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.

N. Nisse Graph Theory and applications 12/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Ford-Fulkerson Algorithm 1st example
Problem here: there is no path where to push flow

s

a

c

b

e

d
3,3

3,3-1
3,32

2,2

1,1
2,11,1

s

a

c

b

e

d

1

1

0

3
3

1

2

1

3

1
1

P

2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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2nd Phase of FF-algorithm: Look for a path P from s to d in auxiliary graph

Here P = (s,c,b,a,e,d) and its minimum capacity is ε = 1 > 0

We will “push" ε units of flow along P in G

For all arcs (u,v) of P

• Add ε to the current flow of (u,v) if f (uv)+ ε ≤ c(uv)

• Otherwise add c(uv)− f (uv) to the current flow of (u,v)

note that ε− (c(uv)− f (uv)) are “lacking to be pushed"

• In the latter case, remove ε− (c(uv)− f (uv)) from the current flow from v to u.
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Ford-Fulkerson Algorithm 1st example

Problem here: there is no path where to push flow
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back to the 1st Phase of FF-algorithm: Compute in auxiliary graph

Here no path with > 0 capacity from s to d .
The set of nodes reachable from s (here, only s) defines a cut

Exercise: What is the capacity of this cut? Why the flow is maximum?
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Ford-Fulkerson Algorithm

D = (V ,A), c : A→ R+ and s,d ∈ V

Let f : A→ R+ be a valid flow in D Initially, f may be null

1 Compute an auxiliary graph Daux = (V ,Aaux) and caux : Aaux → R+

∀u,v ∈ V , add an arc (u,v) ∈ Aaux with capacity

caux(uv) = c(uv)− f (uv)+ f (vu).

2 If there is a directed path P from s to d in Daux
(auxiliary capacity of arcs of P must be > 0)

• Let ε > 0 be the minimum capacity caux of the arcs of P
• “Push" ε units of flow along P in D

For each arc (uv) ∈ A(P) of P:
f (uv)←min{c(uv); f (uv)+ ε}

push ε but if it exceeds the capacity of the link
f (vu)← f (vu)−max{0; f (uv)+ ε− c(uv)}

“reverse" some flow

• Go to 1 (Note that the value of the flow has increased)

Else Return f f is a maximum flow.
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Ford-Fulkerson Algorithm Example
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Digraph D = (V ,A), capacity c : A→ R+

Let us compute a max flow from s ∈ V to d ∈ V .
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Let us compute a max flow from s ∈ V to d ∈ V .
start from a given initial flow: in the example v(f ) = 3.
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c
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f g

1st step: Compute the first auxiliary digraph Daux

start with same vertices as D
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Ford-Fulkerson Algorithm Example
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(sa) = 8−0+0 = 8
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Ford-Fulkerson Algorithm Example
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(as) = 0−0+0 = 0
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Ford-Fulkerson Algorithm Example
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(sc) = 6−3+0 = 3
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(sc) = 6−3+0 = 3
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(cs) = 0−0+3 = 3
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(cs) = 0−0+3 = 3
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Ford-Fulkerson Algorithm Example
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

in the example caux(ca) = 3−3+0 = 0 and caux(ac) = 0−0+3 = 3
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Ford-Fulkerson Algorithm Example
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1st step: Compute the first auxiliary digraph Daux

for all u,v ∈ V ×V , caux(uv) = c(uv)− f (uv)+ f (vu):

and so on
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Ford-Fulkerson Algorithm Example
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2nd step: Find in Daux a directed s,d-path with positive capacity

in the example P = (s,a,h,g,e,d) and ε = minarc∈P caux(arc) = 3
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Ford-Fulkerson Algorithm Example
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2nd step: Push ε units of flow along P in D. For each arc (uv) of P:

f (uv)←min{c(uv); f (uv)+ ε} ex: f (sa) = min{8,0+3}= 3
f (ge) = min{0,0+3}= 0

f (vu)← f (vu)−max{0; f (uv)+ ε− c(uv)}
ex: f (eg) = 3−max{0,3+3−3}= 0
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Ford-Fulkerson Algorithm Example
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The flow has been increased:
v(f ) = 6

N. Nisse Graph Theory and applications 15/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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2nd step: Find in Daux a directed s,d-path with positive capacity

in the example P = (s,c, f ,g,d) and ε = minarc∈P caux(arc) = 3
and Push ε units of flow along P in D
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow v(f ) = 9
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow
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Ford-Fulkerson Algorithm Example
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2nd step: Find in Daux a directed s,d-path with positive capacity

in the example P = (s,a,c,h,g,d) and ε = minarc∈P caux(arc) = 2
and Push ε units of flow along P in D
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow v(f ) = 11
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
2nd step: Find in Daux a directed s,d-path with positive capacity

in the example P = (s,a,b,e,d) and ε = minarc∈P caux(arc) = 2
and Push ε units of flow along P in D
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Ford-Fulkerson Algorithm Example
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1st step: We have to compute the auxiliary digraph
starting from the new current flow v(f ) = 13
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Ford-Fulkerson Algorithm Example
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2nd step: Find in Daux a directed s,d-path with positive capacity
in the example, there is no such path !!

Exercise: Prove that the current flow is maximum
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Ford-Fulkerson Algorithm Example
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Aux. digraph defines a cut: Vs = {vertices reachable from s}; Vd = V \Vs.
δ (Vs,Vd) = 13 = v(f )⇒ f is maximum.
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Outline

1 Transportation Problem

2 Elementary Flow Network

3 Upper bound on Flow: Cut

4 Ford-Fulkerson Algorithm

5 Min Cut=Max flow

6 Application to Connectivity: Menger Theorem

7 Application to Matching
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Ford-Fulkerson Algorithm: Min Cut=Max flow

Exercise: Let f : A→ R+ be computed by FF-algorithm

1 Prove that f is a valid flow

2 Prove that f is a maximum flow

idea of proof of 2:FF-algorithm returns a flow f : A→ R+

it also returns a cut with capacity v(f ).

Theorem: Max Flow = Min Cut (duality)
For any digraph D, c : A(D)→ R+ and s,d ∈ V (D):

maximum value of a flow from s to d = minimum capacity of a s,d-cut
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Ford-Fulkerson Algorithm: Complexity

Remark: the FF-algorithm may not terminate

Exercise: Assume capacities are integral c : A→ N
• Prove that FF-algorithm always terminates

• Prove that the maximum value of a flow is integral

Complexity with integral capacities

FF-algorithm terminates in time O(vmax |A(D)|)
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Ford-Fulkerson Algorithm: undirected graphs

In undirected graph G = (V ,E)

f : V ×V → R+ is defined on ordered pairs of vertices
Flow conservation: for any v ∈ V \{s,d}, ∑

u∈N(v)

f (uv) = ∑
u∈N(v)

f (vu)

Capacity: for any e = {u,v} ∈ E , f (uv)+ f (vu)≤ c({u,v}).
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4 Ford-Fulkerson Algorithm

5 Min Cut=Max flow

6 Application to Connectivity: Menger Theorem
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Ford-Fulkerson Algorithm: Application to Connectivity

Edge-disjoint Paths: G = (V ,E), s,d ∈ V , k ∈ N
Exercise: ∃ k edge-disjoint paths from s to d in G

⇔ ∃ a s,d-flow with value k in G (with capacity 1 on edges)

Idea: use the fact that there exists an integral maximum flow

S ⊆ V is a s,d-separator if s and d in different components of G \S

Menger’s Theorem (1927): (duality)
For any graph G = (V ,E), s,d ∈ V non-adjacent, k ∈ N:
∃ k internally-vertex-disjoint paths from s to d ⇔ @ s,d-separator of size < k .
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Ford-Fulkerson Algorithm: Application to Connectivity
Vertex-disjoint Paths: G = (V ,E), s,d ∈ V , k ∈ N
Exercise: ∃ k (internally) vertex-disjoint paths from s to d in G

⇔ ∃ a s,d-flow with value k in G∗ (see Picture)
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∃ k internally-vertex-disjoint paths from s to d ⇔ @ s,d-separator of size < k .
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Ford-Fulkerson Algorithm: Application to Connectivity
Vertex-disjoint Paths: G = (V ,E), s,d ∈ V , k ∈ N
Exercise: ∃ k (internally) vertex-disjoint paths from s to d in G

⇔ ∃ a s,d-flow with value k in G∗ (see Picture)
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Outline

1 Transportation Problem

2 Elementary Flow Network

3 Upper bound on Flow: Cut

4 Ford-Fulkerson Algorithm

5 Min Cut=Max flow

6 Application to Connectivity: Menger Theorem

7 Application to Matching
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Ford-Fulkerson Algorithm: Application to Matching

Let G = (V ,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (M ⊆ E)

Problem: Compute a matching of maximum cardinality
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Ford-Fulkerson Algorithm: Application to Matching

Let G = (V ,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (M ⊆ E)

Question: is this matching maximum?
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Ford-Fulkerson Algorithm: Application to Matching

Let G = (V ,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (M ⊆ E)

Question: and this one?
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Ford-Fulkerson Algorithm: Application to Matching

Let G = (V ,E) be a graph.
Matching: A set M of pairwise disjoint edges in a graph (M ⊆ E)

Question: and this one?

Exercise: Prove that any matching M is such that |M| ≤ b|V |/2c
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Ford-Fulkerson Algorithm: Application to Matching

Example of application of matching:

stable set: set of vertices pariwise non-adjacent
Bipartite graph: G = (V ,E) and V = A∪B can be partitioned into 2 stable
sets A and B.
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Ford-Fulkerson Algorithm: Application to Matching
Example of application of matching:

stable set: set of vertices pariwise non-adjacent
Bipartite graph: G = (V ,E) and V = A∪B can be partitioned into 2 stable
sets A and B.

Matching in bipartite graphs G = (A∪B,E)

• Hall’s Theorem (1935): ∃ matching saturating A⇔ ∀S ⊆ A, |N(S)| ≥ |S|.
• Hungarian Method [Kuhn, 1955]: compute a maximum matching in time O(n3)
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Ford-Fulkerson Algorithm: Application to Matching

G = (A∪B,E) a bipartite graph, k ∈ N
Exercise: Prove that there exists a matching of size ≥ k

⇔ exists a s,d-flow of value ≥ k in G∗ (see Picture)

Idea: use the fact that there exists an integral maximum flow

s

d

1
1 1 1 1 1 1

1 1

1 1

1

1
1

1

1
1

1
11 1

1
111111

1

G G*

N. Nisse Graph Theory and applications 23/24



Transportation Elementary Flow Network Cut Ford-Fulkerson Min Cut=Max flow Menger Matching

Summary: To be remembered

• flow, cut

• Ford-Fulkerson algorithm O(|E |flowmax) for rational capacities

• Min Cut = Max Flow

• Menger Theorem (max # disjoint paths = min size of separator)

• Matching (Hungarian method, Edmonds algorithm, Hall Theorem)
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