Graph Theory and Optimization Weighted Graphs Shortest Paths & Spanning Trees

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

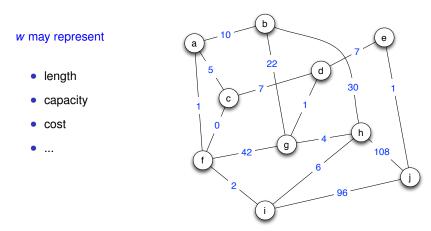
Kruskal Algorithm

Outline

- Weighted Graphs, distance
- 2 Shortest paths and Spanning trees
- Breadth First Search (BFS)
- 4 Dijkstra Algorithm
- 5 Kruskal Algorithm

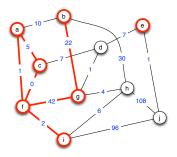
Weighted graphs (length/capacity/cost/distance)

Let G = (V, E) be a graph, we can assign a weight to the edges $w : E \to \mathbb{R}^+$



Weighted graphs

(length/capacity/cost/distance)

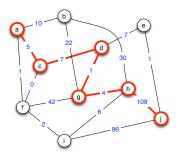


• weigth of subgraph *H*:
$$w(H) = \sum_{e \in E(H)} w(e)$$
 ex: $w(H) = 72$

Weighted graphs

(length/capacity/cost/distance)

Innia



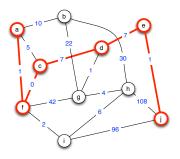
- weigth of subgraph *H*: $w(H) = \sum_{e \in E(H)} w(e)$
- length of path $P = (v_1, \dots, v_\ell)$: $w(P) = \sum_{e \in E(P)^*} w(e) = \sum_{1 \le i < \ell} w(\{v_i, v_{i+1}\})$ sum of weights of edges of Pex: w(P) = 125

COATI

* a path $P = (v_1, \cdots, v_\ell)$ is seen as the subgraph $P = (\{v_1, \cdots, v_\ell\}, \{\{v_i, v_{i+1}\} \mid 1 \le i < \ell\})$

Weighted graphs

(length/capacity/cost/distance)



- weigth of subgraph *H*: $w(H) = \sum_{e \in E(H)} w(e)$
- length of path $P = (v_1, \dots, v_\ell)$: $w(P) = \sum_{e \in E(P)} w(e) = \sum_{1 \le i < \ell} w(\{v_i, v_{i+1}\})$ sum of weights of edges of P
- <u>distance</u> dist(x, y): minimum length of a path from $x \in V$ to $y \in V$. ex: dist(a, j) = 16

COATI

Kruskal Algorithm

Outline

- Weighted Graphs, distance
- 2 Shortest paths and Spanning trees
- Breadth First Search (BFS)
- 4 Dijkstra Algorithm
- 5 Kruskal Algorithm

Weighted graphs: two important questions

- Computing distances and shortest paths
 - Breadth First Search (BFS) (unweighted graph, i.e., weights= 1)
 - Dijkstra's algorithm (1956)
 - Bellman-Ford algorithm (1958)
 handle negative weights

Applications: GPS, routing in the Internet, basis of many algorithms...

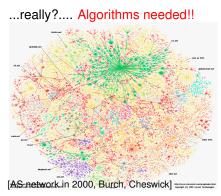
You think it is easy?

Weighted graphs: two important questions

- Computing distances and shortest paths
 - Breadth First Search (BFS) (unweighted graph, i.e., weights=1)
 - Dijkstra's algorithm (1956)
 - Bellman-Ford algorithm (1958)
 handle negative weights

Applications: GPS, routing in the Internet, basis of many algorithms...

COATI



Graph Theory and applications 5/16

nría

Weighted graphs: two important questions

- Computing distances and shortest paths
 - Breadth First Search (BFS) (unweighted graph, i.e., weights= 1)
 - Dijkstra's algorithm (1956)
 - Bellman-Ford algorithm (1958)
 handle negative weights

Applications: GPS, routing in the Internet, basis of many algorithms...

Computing minimum spanning trees

Goal: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum

• Borůvska (1926), Kruskal (1956), Prim (1957)

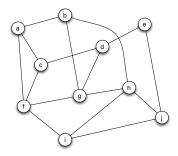
Applications:

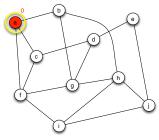
Minimum (cheapest) substructure (subgraph) preserving connectivity. ex: "first published by Borůvska as a method of constructing an efficient electricity network" (Wikipedia)

Kruskal Algorithm

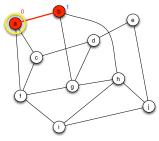
Outline

- Weighted Graphs, distance
- 2 Shortest paths and Spanning trees
- Breadth First Search (BFS)
- 4 Dijkstra Algorithm
- 5 Kruskal Algorithm

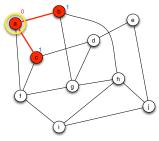




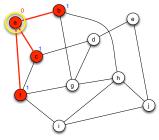
ToBeExplored=(a)



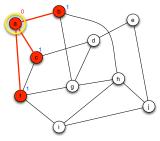
ToBeExplored=(a,b)



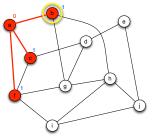
ToBeExplored=(a,b,c)



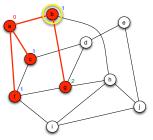
ToBeExplored=(a,b,c,f)



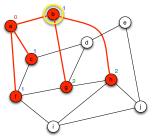
ToBeExplored=(b,c,f)



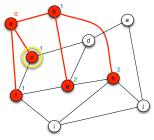
ToBeExplored=(b,c,f)



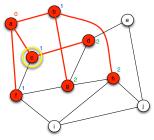
ToBeExplored=(b,c,f,g)



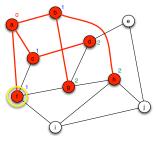
ToBeExplored=(b,c,f,g,h)



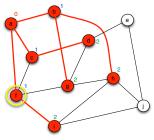
ToBeExplored=(c,f,g,h)



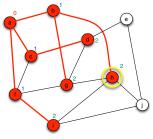
ToBeExplored=(c,f,g,h,d)



ToBeExplored=(f,g,h,d)

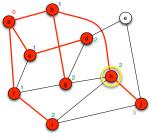


ToBeExplored=(f,g,h,d,i)

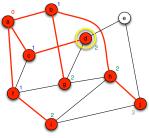


ToBeExplored=(h,d,i)

In unweighted graph, length of path P = # of edges of P = |E(P)|

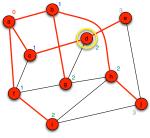


ToBeExplored=(h,d,i,j)



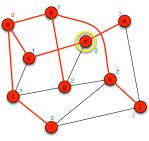
ToBeExplored=(d,i,j)

In unweighted graph, length of path P = # of edges of P = |E(P)|



ToBeExplored=(d,i,j,e)

In unweighted graph, length of path P = # of edges of P = |E(P)|



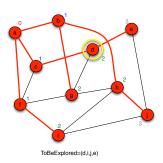
ToBeExplored=(d,i,j,e)

Breadth First Search **input:** unweighted graph G = (V, E) and $r \in V$ **Initially:** d(r) = 0, ToBeExplored = (r)Done = \emptyset and $T = (V(T), E(T)) = (\{r\}, \emptyset)$ While ToBeExplored $\neq \emptyset$ do Let v = head (ToBeExplored) for $u \in N(v) \setminus (ToBeExplored \cup Done)$ do $d(u) \leftarrow d(v) + 1$ add u in V(T) and $\{v, u\}$ in E(T)add u at the end of ToBeExplored remove v from ToBeExplored, add v to Done

Breadth First Search (BFS

h (BFS) Dijkstra Alge

BFS: Connectivity and distances in unweighted graphs In unweighted graph, length of path P = # of edges of P = |E(P)|



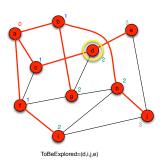
Breadth First Search input: unweighted graph G = (V, E) and $r \in V$ **Initially:** d(r) = 0, ToBeExplored = (r)Done = \emptyset and $T = (V(T), E(T)) = (\{r\}, \emptyset)$ While ToBeExplored $\neq \emptyset$ do Let v = head (ToBeExplored) for $u \in N(v) \setminus (ToBeExplored \cup Done)$ do $d(u) \leftarrow d(v) + 1$ add u in V(T) and $\{v, u\}$ in E(T)add u at the end of ToBeExplored remove v from ToBeExplored, add v to Done

Output: for any $v \in V$, d(v) = dist(r, v).

T is a shortest path tree of *G* rooted in *r*: i.e., *T* spanning subtree of *G* s.t. for any $v \in V$, the path from *r* to *v* in *T* is a shortest path from *r* to *v* in *G*. Graph Theory and applications 7/16

N. Nisse

BFS: Connectivity and distances in unweighted graphs In unweighted graph, length of path P = # of edges of P = |E(P)|



Breadth First Search input: unweighted graph G = (V, E) and $r \in V$ **Initially:** d(r) = 0, ToBeExplored = (r)Done = \emptyset and $T = (V(T), E(T)) = (\{r\}, \emptyset)$ While ToBeExplored $\neq \emptyset$ do Let v = head (ToBeExplored) for $u \in N(v) \setminus (ToBeExplored \cup Done)$ do $d(u) \leftarrow d(v) + 1$ add u in V(T) and $\{v, u\}$ in E(T)add u at the end of ToBeExplored remove v from ToBeExplored, add v to Done

Inría

Time-Complexity: # operations = O(|E|)

_**i2**5

each edge is considered

Graph Theory and applications 7/16

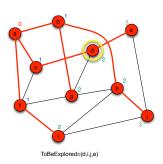
Exercise: Give an algorithm that decides if a graph is connected Horestei Ner seine erstenen

COATI

Breadth First Search (BFS

h (BFS) Dijkstra Alg

BFS: Connectivity and distances in unweighted graphs In unweighted graph, length of path P = # of edges of P = |E(P)|



Breadth First Search input: unweighted graph G = (V, E) and $r \in V$ **Initially:** d(r) = 0, ToBeExplored = (r)Done = \emptyset and $T = (V(T), E(T)) = (\{r\}, \emptyset)$ While ToBeExplored $\neq \emptyset$ do Let v = head (ToBeExplored) for $u \in N(v) \setminus (ToBeExplored \cup Done)$ do $d(u) \leftarrow d(v) + 1$ add u in V(T) and $\{v, u\}$ in E(T)add u at the end of ToBeExplored remove v from ToBeExplored, add v to Done

 Time-Complexity: # operations = O(|E|) each edge is considered

 Rmk1: allows to decide whether G is connected
 G connected iff dist(r, v) < ∞ defined for all $v \in V$

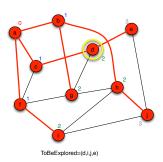
 G connected iff dist(r, v) < ∞ defined for all $v \in V$

 Graph Theory and applications 7/16

Breadth First Search (BFS

arch (BFS) Dijkstra

BFS: Connectivity and distances in unweighted graphs In unweighted graph, length of path P = # of edges of P = |E(P)|



Breadth First Search input: unweighted graph G = (V, E) and $r \in V$ **Initially:** d(r) = 0, ToBeExplored = (r)Done = \emptyset and $T = (V(T), E(T)) = (\{r\}, \emptyset)$ While ToBeExplored $\neq \emptyset$ do Let v = head (ToBeExplored) for $u \in N(v) \setminus (ToBeExplored \cup Done)$ do $d(u) \leftarrow d(v) + 1$ add u in V(T) and $\{v, u\}$ in E(T)add u at the end of ToBeExplored remove v from ToBeExplored, add v to Done

Time-Complexity: # operations = O(|E|) each edge is considered **Rmk2:** gives only one shortest path tree, may be more...

depends on the ordering in which vertices are considered Graph Theory and applications 7/16 Graph Theory and applications 7/16

Diameter of a graph *G*: maximum distance between two vertices of *G*. $diam(G) = \max_{u,v \in V(G)} dist(u,v)$

Exercise: Give an algorithm that computes the diameter of a graph.

What is the number of operations?

Diameter of a graph *G*: maximum distance between two vertices of *G*. $diam(G) = \max_{u,v \in V(G)} dist(u,v)$

Exercise: Give an algorithm that computes the diameter of a graph.

What is the number of operations?

Exercise: What does this algorithm computes??

input: unweighted tree T = (V, E) and $r \in V$

- Execute a BFS rooted in r
- Let u be a node maximizing the distance from r
- Execute a BFS rooted in u
- Let w be a node maximizing the distance from u

return dist(u, w)

What is the number of operations?

Breadth First Search (BF

nría

Diameter of trees

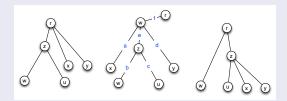
Theorem: Previous algorithm computes the diameter of T

Termination: two executions of BFS

Correctness: *u* is a leaf (otherwise, there would be a vertex further from *r*) Similarly, *w* is a leaf For contradiction, assume that diam(T) = dist(x, y) > dist(u, w)

(x and y must be leaves)

Several Cases:



As an example, consider the second one (from the left) $f + e + c \ge \max\{f + a; f + e + b; f + d\}$ (*u* further from *r*) $b \ge \max\{e + a; e + f; e + d\}$ (*w* further from *u*) So $dist(u, w) = b + c \ge a + d = dist(x, y)$, a contradiction

COATI

Outline

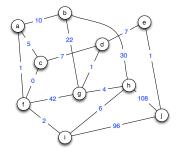
- Weighted Graphs, distance
- 2 Shortest paths and Spanning trees
- Breadth First Search (BFS)
- 4 Dijkstra Algorithm
- 5 Kruskal Algorithm

Dijkstra's algorithm

(required positive weights)

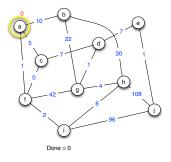
BFS algorithm does not work in weighted graphs

Exercise: Example?



Dijkstra's algorithm

(required positive weights)

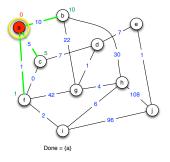


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

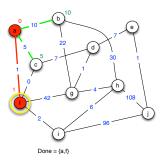


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

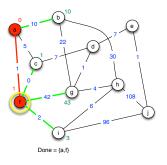


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

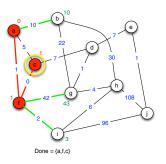


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

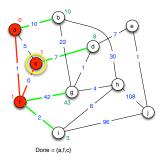


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

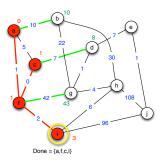


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

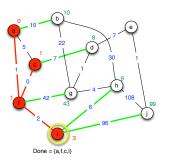


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

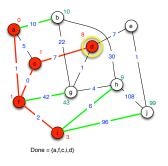


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

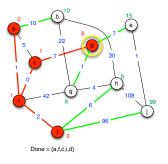


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

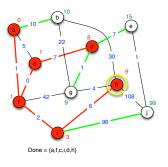


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

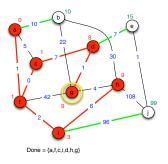


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

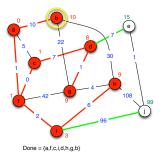


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

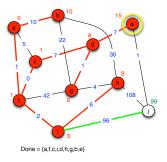


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)



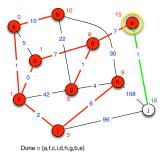
Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

iskal Algorithm

Dijkstra's algorithm

(required positive weights)

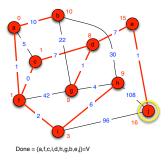


Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)



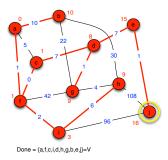
Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$,

Dijkstra's algorithm

(required positive weights)

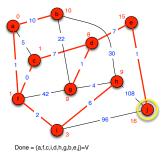
Dijkstra



input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} d(v) = \infty$, parent(v) = \emptyset While Done \neq V do Let $v \in V \setminus Done$ with d(v) minimum * Add v in V_T and $\{v, parent(v)\}$ in E_T Add v in Done for $u \in N(v) \setminus Done$ do if $d(u) > d(v) + w(\{u, v\})$ then $d(u) \leftarrow d(v) + w(\{u, v\})$ parent(u) $\leftarrow v$

Dijkstra's algorithm

(required positive weights)



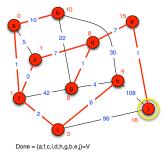
Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} d(v) = \infty$, parent(v) = \emptyset While $Done \neq V$ do Let $v \in V \setminus Done$ with d(v) minimum * Add v in V_T and $\{v, parent(v)\}$ in E_T Add v in Done for $u \in N(v) \setminus Done$ do if $d(u) > d(v) + w(\{u, v\})$ then $d(u) \leftarrow d(v) + w(\{u, v\})$ parent(u) $\leftarrow v$

Output: $\forall v \in V$, d(v) = dist(r, v), *T* is a shortest path tree of *G* rooted in *r* **Time-complexity:** $O(|E| + |V| \log |V|)$ (requires sorting *)

Dijkstra's algorithm

(required positive weights)



Dijkstra

input: graph G = (V, E), weight w, and $r \in V$ Initially: d(r) = 0, $(V_T, E_T) = (\emptyset, \emptyset)$, $Done = \emptyset$, and $\forall v \in V \setminus \{r\} \ d(v) = \infty$, $parent(v) = \emptyset$ While $Done \neq V$ do Let $v \in V \setminus Done$ with d(v) minimum * Add v in V_T and $\{v, parent(v)\}$ in E_T Add v in Donefor $u \in N(v) \setminus Done$ do if $d(u) > d(v) + w(\{u, v\})$ then $d(u) \leftarrow d(v) + w(\{u, v\})$

Output: $\forall v \in V$, d(v) = dist(r, v), *T* is a shortest path tree of *G* rooted in *r* **proof:** since *w* positive \Rightarrow a subpath of a shortest path is a a shortest path

parent(u) $\leftarrow v$

Dijkstra's algorithm

Proof of correctness

Termination: After *i*th iteration of *while* loop, |Done| = i, then the algorithm terminates in |V| iterations of *while* loop Correctness: By induction on $1 \le i < |V|$, after the *i*th iteration of *while* loop, |Done| = i, and $\forall v \in Done$, d(v) = dist(r, v). ok for i = 0

Assume the hypothesis holds ater the *i*th iteration. Let $v \in V \setminus Done$ be chosen at the (i + 1)th iteration.

- By minimality of d(v) (in V \ Done),
 if G connected, then d(v) < ∞ and Done ∩ N(v) ≠ Ø, and
 d(v) = min_{u∈Done∩N(v)} d(u) + w({u, v}) by induction: d(v) ≥ dist(v, r)
- For contradiction, assume that d(v) < dist(v, r): there is a shortest path P = (r, ..., x, v) of length < d.
 - *x* ∈ *Done*: otherwise it would contradict minimality of *d*(*v*)
 - $dist(v,r) = dist(x,r) + w(\{x,v\}) = d(x) + w(\{x,v\}) < d(v) = min_{u \in Done \cap N(v)} d(u) + w(\{u,v\}) \le d(x) + w(\{x,v\})$

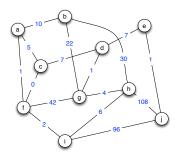
a contradiction

Outline

- Weighted Graphs, distance
- 2 Shortest paths and Spanning trees
- Breadth First Search (BFS)
- 4 Dijkstra Algorithm
- 5 Kruskal Algorithm

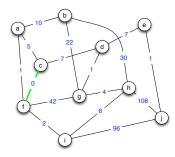
Minimum Spanning Tree

Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Minimum Spanning Tree

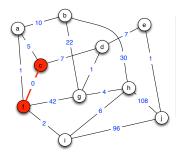
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

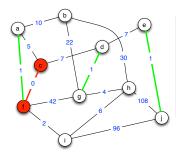
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree T of G with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

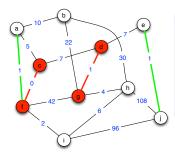
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

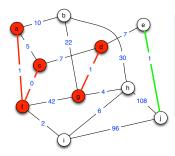
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

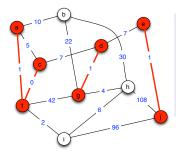
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

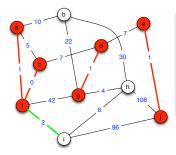
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

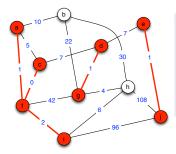
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

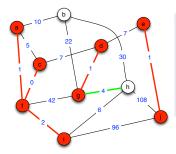
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

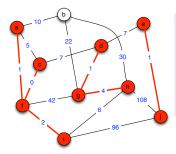
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

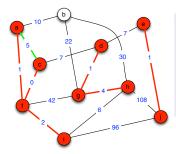
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

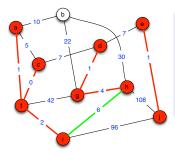
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree T of G with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

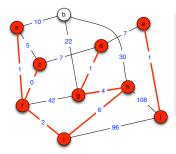
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

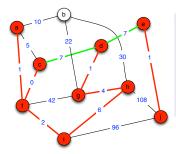
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

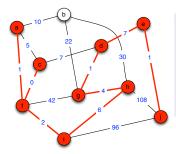
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

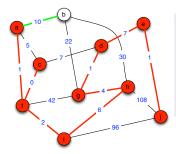
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

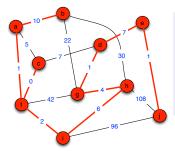
Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum



Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \leq m$ **do**

Minimum Spanning Tree

Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree *T* of *G* with w(T) minimum

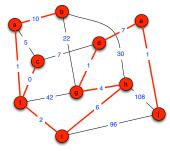


Kruskal input: connected graph G = (V, E), weight *w* **Initially:** Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ **For** $i \le m$ **do**

Minimum Spanning Tree

Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$ Compute a spanning tree T of G with w(T) minimum

COATI



Kruskal input: connected graph G = (V, E), weight wInitially: Let (e_1, \dots, e_m) be an ordering of E in non decreasing ordering of w, and $T = (\emptyset, \emptyset)$ For $i \le m$ do Add e_i in T if it does not create a cycle.

ría

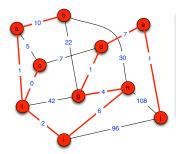
Time-Complexity: # operations = $O(|E|\log|E|)$

sorting

Minimum Spanning Tree

Reminder: given G = (V, E) with weight $w : E \to \mathbb{R}$

Compute a spanning tree T of G with w(T) minimum



Kruskal

input: connected graph G = (V, E), weight *w* Initially: Let (e_1, \dots, e_m) be an ordering of *E* in non decreasing ordering of *w*, and $T = (\emptyset, \emptyset)$ For $i \le m$ do Add e_i in *T* if it does not create a cycle.

nía

Graph Theory and applications 14/16

Exercise: Prove that, *T* returned by the Alg. is a minimum spanning tree *Idea of proof: by contradiction*

COATI

Proof of correctness

Terminaison: obvious

Correctness: (Sketch) Clearly, T is a spanning tree (it is acyclic by definition, and if it is not connected, some edges connecting the components should have been added)

Assume it is not minimum and let (e_1, \dots, e_{n-1}) be its edges in non decreasing ordering of their weights.

Among the min. spanning tree of *G*, let T^* with edges (f_1, \dots, f_{n-1}) such that the minimum index *i* with $e_i \neq f_i$ is maximized.

 $T^* \cup e_i$ contains a cycle *C* and, there is j > i such that $f_j \in E(C) \setminus E(T)$ and $w(f_j) \le w(e_i)$ (otw, T^* is not minimum).

- if $w(f_j) < w(e_i)$ then the algorithm should have chosen f_j instead of e_i
- if $w(f_j) = w(e_i)$, T' obtained from T^* by replacing f_j by e_i is a minimum spanning tree, contradicting the maximality of *i*.

Summary: To be remembered

- weighted graph, distances
- Deciding connectivity Shortest path tree in undirected graph O(|E|), BF
- Computing Shortest path tree
- Computing Min. spanning tree

h O(|E|), BFS $O(|E| + |V| \log |V|), Dijkstra$ $O(|E| \log |E|), Kruskal$

