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Weighted graphs (length/capacity/cost/distance)

Let G = (V ,E) be a graph, we can assign a weight to the edges
w : E → R+

w may represent

• length

• capacity

• cost

• ...
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Weighted graphs (length/capacity/cost/distance)
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• weigth of subgraph H: w(H) = ∑
e∈E(H)

w(e) ex: w(H) = 72

• length of path P = (v1, · · · ,v`): w(P) = ∑
e∈E(P)

w(e) = ∑
1≤i<`

w({vi ,vi+1})

sum of weights of edges of P

• distance dist(x ,y): minimum length of a path from x ∈ V to y ∈ V .
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Weighted graphs (length/capacity/cost/distance)
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• weigth of subgraph H: w(H) = ∑
e∈E(H)

w(e)

• length of path P = (v1, · · · ,v`): w(P) = ∑
e∈E(P)∗

w(e) = ∑
1≤i<`

w({vi ,vi+1})

sum of weights of edges of P
ex: w(P) = 125

∗ a path P = (v1, · · · ,v`) is seen as the subgraph P = ({v1 , · · · ,v`},{{vi ,vi+1} | 1≤ i < `})

• distance dist(x ,y): minimum length of a path from x ∈ V to y ∈ V .
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Weighted graphs (length/capacity/cost/distance)
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• weigth of subgraph H: w(H) = ∑
e∈E(H)

w(e)

• length of path P = (v1, · · · ,v`): w(P) = ∑
e∈E(P)

w(e) = ∑
1≤i<`

w({vi ,vi+1})

sum of weights of edges of P

• distance dist(x ,y): minimum length of a path from x ∈ V to y ∈ V .
ex: dist(a, j) = 16
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Weighted graphs: two important questions
• Computing distances and shortest paths

• Breadth First Search (BFS) (unweighted graph, i.e., weights= 1)
• Dijkstra’s algorithm (1956)
• Bellman-Ford algorithm (1958) handle negative weights

Applications: GPS, routing in the Internet, basis of many
algorithms...

You think it is easy?

[AS network in 2000, Burch, Cheswick]
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Weighted graphs: two important questions
• Computing distances and shortest paths

• Breadth First Search (BFS) (unweighted graph, i.e., weights= 1)
• Dijkstra’s algorithm (1956)
• Bellman-Ford algorithm (1958) handle negative weights

Applications: GPS, routing in the Internet, basis of many
algorithms...

You think it is easy? ...really?.... Algorithms needed!!

[AS network in 2000, Burch, Cheswick]
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Weighted graphs: two important questions

• Computing distances and shortest paths
• Breadth First Search (BFS) (unweighted graph, i.e., weights= 1)
• Dijkstra’s algorithm (1956)
• Bellman-Ford algorithm (1958) handle negative weights

Applications: GPS, routing in the Internet, basis of many
algorithms...

• Computing minimum spanning trees
Goal: given G = (V ,E) with weight w : E → R
Compute a spanning tree T of G with w(T ) minimum

• Borůvska (1926), Kruskal (1956), Prim (1957)

Applications:
Minimum (cheapest) substructure (subgraph) preserving connectivity.
ex: “first published by Borůvska as a method of constructing an efficient
electricity network" (Wikipedia)
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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Breadth First Search
input: unweighted graph G = (V ,E) and r ∈ V

Initially: d(r) = 0, ToBeExplored = (r)
Done = /0 and T = (V (T ),E(T )) = ({r}, /0)

While ToBeExplored 6= /0 do

Let v = head(ToBeExplored)

for u ∈ N(v)\ (ToBeExplored ∪Done) do

d(u)← d(v)+1
add u in V (T ) and {v ,u} in E(T )
add u at the end of ToBeExplored

remove v from ToBeExplored , add v to Done
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BFS: Connectivity and distances in unweighted graphs
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BFS: Connectivity and distances in unweighted graphs
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|
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BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|
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Breadth First Search
input: unweighted graph G = (V ,E) and r ∈ V

Initially: d(r) = 0, ToBeExplored = (r)
Done = /0 and T = (V (T ),E(T )) = ({r}, /0)

While ToBeExplored 6= /0 do

Let v = head(ToBeExplored)

for u ∈ N(v)\ (ToBeExplored ∪Done) do

d(u)← d(v)+1
add u in V (T ) and {v ,u} in E(T )
add u at the end of ToBeExplored

remove v from ToBeExplored , add v to Done

Output: for any v ∈ V , d(v) = dist(r ,v).
T is a shortest path tree of G rooted in r : i.e., T spanning subtree of G s.t.

for any v ∈ V , the path from r to v in T is a shortest path from r to v in G.
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BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|
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Breadth First Search
input: unweighted graph G = (V ,E) and r ∈ V

Initially: d(r) = 0, ToBeExplored = (r)
Done = /0 and T = (V (T ),E(T )) = ({r}, /0)

While ToBeExplored 6= /0 do

Let v = head(ToBeExplored)

for u ∈ N(v)\ (ToBeExplored ∪Done) do

d(u)← d(v)+1
add u in V (T ) and {v ,u} in E(T )
add u at the end of ToBeExplored

remove v from ToBeExplored , add v to Done

Time-Complexity: # operations = O(|E |) each edge is considered

Exercise: Give an algorithm that decides if a graph is connected
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BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|
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Breadth First Search
input: unweighted graph G = (V ,E) and r ∈ V

Initially: d(r) = 0, ToBeExplored = (r)
Done = /0 and T = (V (T ),E(T )) = ({r}, /0)

While ToBeExplored 6= /0 do

Let v = head(ToBeExplored)

for u ∈ N(v)\ (ToBeExplored ∪Done) do

d(u)← d(v)+1
add u in V (T ) and {v ,u} in E(T )
add u at the end of ToBeExplored

remove v from ToBeExplored , add v to Done

Time-Complexity: # operations = O(|E |) each edge is considered
Rmk1: allows to decide whether G is connected

G connected iff dist(r ,v)< ∞ defined for all v ∈ V
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BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|
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Breadth First Search
input: unweighted graph G = (V ,E) and r ∈ V

Initially: d(r) = 0, ToBeExplored = (r)
Done = /0 and T = (V (T ),E(T )) = ({r}, /0)

While ToBeExplored 6= /0 do

Let v = head(ToBeExplored)

for u ∈ N(v)\ (ToBeExplored ∪Done) do

d(u)← d(v)+1
add u in V (T ) and {v ,u} in E(T )
add u at the end of ToBeExplored

remove v from ToBeExplored , add v to Done

Time-Complexity: # operations = O(|E |) each edge is considered
Rmk2: gives only one shortest path tree, may be more...

depends on the ordering in which vertices are considered
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BFS: Connectivity and distances in unweighted graphs
Diameter of a graph G: maximum distance between two vertices of G.

diam(G) = max
u,v∈V(G)

dist(u,v)

Exercise: Give an algorithm that computes the diameter of a graph.
What is the number of operations?

Exercise: What does this algorithm computes??

input: unweighted tree T = (V ,E) and r ∈ V

1 Execute a BFS rooted in r

2 Let u be a node maximizing the distance from r

3 Execute a BFS rooted in u

4 Let w be a node maximizing the distance from u

return dist(u,w)

What is the number of operations?
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BFS: Connectivity and distances in unweighted graphs
Diameter of a graph G: maximum distance between two vertices of G.

diam(G) = max
u,v∈V(G)

dist(u,v)

Exercise: Give an algorithm that computes the diameter of a graph.
What is the number of operations?

Exercise: What does this algorithm computes??

input: unweighted tree T = (V ,E) and r ∈ V

1 Execute a BFS rooted in r

2 Let u be a node maximizing the distance from r

3 Execute a BFS rooted in u

4 Let w be a node maximizing the distance from u

return dist(u,w)

What is the number of operations?
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Diameter of trees
Theorem: Previous algorithm computes the diameter of T

Termination: two executions of BFS
Correctness: u is a leaf (otherwise, there would be a vertex further from r ) Similarly, w
is a leaf For contradiction, assume that diam(T ) = dist(x ,y)> dist(u,w)

(x and y must be leaves)
Several Cases:

r

w u

z

r

w u

z

r

w u

x y x y

w

x y

z

a

b c

d

e

f

As an example, consider the second one (from the left)
f +e+ c ≥max{f +a; f +e+b; f +d} (u further from r )
b ≥max{e+a;e+ f ;e+d} (w further from u)

So dist(u,w) = b+ c ≥ a+d = dist(x ,y), a contradiction
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Outline

1 Weighted Graphs, distance

2 Shortest paths and Spanning trees

3 Breadth First Search (BFS)

4 Dijkstra Algorithm

5 Kruskal Algorithm
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Dijkstra’s algorithm (required positive weights)

BFS algorithm does not work in weighted graphs Exercise: Example?

a

b

d

e

h

j

g

c

f

i

10

5

1

0

7

42

22

1

2

6

96

4

30

7

1

108

Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v
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Dijkstra’s algorithm (required positive weights)
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Done = 0

Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).

N. Nisse Graph Theory and applications 11/16



Weighted Graphs, distance Shortest paths and Spanning trees Breadth First Search (BFS) Dijkstra Algorithm Kruskal Algorithm

Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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Dijkstra’s algorithm (required positive weights)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞,

parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

For all v ∈ Done, d(v) = dist(r ,v). Otherwise dist(r ,v)≤ d(v).
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input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞, parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v
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Dijkstra’s algorithm (required positive weights)

a

b

d

e

h

j

g

c

f

i

10

5

1

0

7

42

22

1

2

6

96

4

30

7

1

108

0

Done = {a,f,c,i,d,h,g,b,e,j}=V

10

1

1
9

3

8

9

16

15

Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞, parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

Output: ∀v ∈ V , d(v) = dist(r ,v), T is a shortest path tree of G rooted in r
Time-complexity: O(|E |+ |V | log |V |) (requires sorting ∗)
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Dijkstra
input: graph G = (V ,E), weight w , and r ∈ V

Initially: d(r) = 0, (VT ,ET ) = ( /0, /0), Done = /0,
and ∀v ∈ V \{r} d(v) = ∞, parent(v) = /0
While Done 6= V do

Let v ∈ V \Done with d(v) minimum ∗

Add v in VT and {v ,parent(v)} in ET

Add v in Done
for u ∈ N(v)\Done do

if d(u)> d(v)+w({u,v}) then
d(u)← d(v)+w({u,v})
parent(u)← v

Output: ∀v ∈ V , d(v) = dist(r ,v), T is a shortest path tree of G rooted in r
proof: since w positive⇒ a subpath of a shortest path is a a shortest path
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Dijkstra’s algorithm Proof of correctness

Termination: After i th iteration of while loop, |Done|= i , then the algorithm
terminates in |V | iterations of while loop
Correctness: By induction on 1≤ i < |V |, after the i th iteration of while loop,
|Done|= i , and ∀v ∈ Done, d(v) = dist(r ,v). ok for i = 0

Assume the hypothesis holds ater the i th iteration.
Let v ∈ V \Done be chosen at the (i +1)th iteration.

• By minimality of d(v) (in V \Done),

if G connected, then d(v)< ∞ and Done∩N(v) 6= /0, and

d(v) = minu∈Done∩N(v) d(u)+w({u,v}) by induction: d(v)≥ dist(v , r)

• For contradiction, assume that d(v)< dist(v , r): there is a shortest
path P = (r , · · · ,x ,v) of length < d .

• x ∈ Done: otherwise it would contradict minimality of d(v)
• dist(v , r) = dist(x , r)+w({x ,v}) = d(x)+w({x ,v})< d(v) =

minu∈Done∩N(v) d(u)+w({u,v})≤ d(x)+w({x ,v})
a contradiction
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Outline

1 Weighted Graphs, distance

2 Shortest paths and Spanning trees

3 Breadth First Search (BFS)

4 Dijkstra Algorithm

5 Kruskal Algorithm
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Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V ,E) with weight w : E → R
Compute a spanning tree T of G with w(T ) minimum
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Kruskal
input: connected graph G = (V ,E), weight w

Initially: Let (e1, · · · ,em) be an ordering of E in
non decreasing ordering of w , and T = ( /0, /0)
For i ≤m do

Add ei in T if it does not create a cycle.
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For i ≤m do
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non decreasing ordering of w , and T = ( /0, /0)
For i ≤m do

Add ei in T if it does not create a cycle.
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For i ≤m do
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Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V ,E) with weight w : E → R
Compute a spanning tree T of G with w(T ) minimum

a

b

d

e

h

j

g

c

f

i

10

5

1

0

7

42

22

1

2

6

96

4

30

7

1

108

Kruskal
input: connected graph G = (V ,E), weight w

Initially: Let (e1, · · · ,em) be an ordering of E in
non decreasing ordering of w , and T = ( /0, /0)
For i ≤m do

Add ei in T if it does not create a cycle.
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Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V ,E) with weight w : E → R
Compute a spanning tree T of G with w(T ) minimum
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Kruskal
input: connected graph G = (V ,E), weight w

Initially: Let (e1, · · · ,em) be an ordering of E in
non decreasing ordering of w , and T = ( /0, /0)
For i ≤m do

Add ei in T if it does not create a cycle.

Time-Complexity: # operations = O(|E | log |E |) sorting
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Kruskal’s algorithm Minimum Spanning Tree
Reminder: given G = (V ,E) with weight w : E → R

Compute a spanning tree T of G with w(T ) minimum
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Kruskal
input: connected graph G = (V ,E), weight w

Initially: Let (e1, · · · ,em) be an ordering of E in
non decreasing ordering of w , and T = ( /0, /0)
For i ≤m do

Add ei in T if it does not create a cycle.

Exercise: Prove that, T returned by the Alg. is a minimum spanning tree
Idea of proof: by contradiction
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Kruskal’s algorithm Proof of correctness

Terminaison: obvious
Correctness:(Sketch) Clearly, T is a spanning tree (it is acyclic by definition,
and if it is not connected, some edges connecting the components should
have been added)
Assume it is not minimum and let (e1, · · · ,en−1) be its edges in non
decreasing ordering of their weights.
Among the min. spanning tree of G, let T ∗ with edges (f1, · · · , fn−1) such that
the minimum index i with ei 6= fi is maximized.
T ∗∪ei contains a cycle C and, there is j > i such that fj ∈ E(C)\E(T ) and
w(fj)≤ w(ei) (otw, T ∗ is not minimum).

• if w(fj)< w(ei) then the algorithm should have chosen fj instead of ei

• if w(fj) = w(ei), T ′ obtained from T ∗by replacing fj by ei is a minimum
spanning tree, contradicting the maximality of i .
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Summary: To be remembered

• weighted graph, distances

• Deciding connectivity
Shortest path tree in undirected graph O(|E |), BFS

• Computing Shortest path tree O(|E |+ |V | log |V |), Dijkstra

• Computing Min. spanning tree O(|E | log |E |), Kruskal
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