Graph Theory and Optimization
Weighted Graphs
Shortest Paths & Spanning Trees

Nicolas Nisse
Université Cote d’Azur, Inria, CNRS, I3S, France

October 2018

=5

N. Nisse —izs— [COATI 0 Ciada= Graph Theory and applications 1/16

Outline

@ Weighted Graphs, distance

9 Shortest paths and Spanning trees
© Breadth First Search (BFS)

@ Dijkstra Algorithm

© Kruskal Aigorithm

N. Nisse i35 /’?“ . COATI 0 Ciada= Graph Theory and applications 2/16

Weighted graphs

(length/capacity/cost/distance)

Let G= (V, E) be a graph, we can assign a weight to the edges

w may represent

e |ength
e capacity
e cost

N. Nisse i3S

w:E—R"T

COATI

Graph Theory and applications 3/16

Weighted graphs (length/capacity/cost/distance)

ex: w(H) =72

N. Nisse i35 | = COATI 0 Ciata= Graph Theory and applications 3/16

Weighted graphs (length/capacity/cost/distance)

e weigth of subgraph H: w(H) = Z w(e)
ecE(H)
o lengthofpath P=(vi,---,v):w(P)= Y w(e)=Y w({vi,vit1})
ecE(P)* 1<i<t
sum of weights of edges of P
ex: w(P)=125

*apath P=(vy,---,vp) is seen as the subgraph P = ({vy,---, v}, {{vi,vig1} |1 < i< (})

=

N. Nisse —izs— [COATI 0 Ciada= Graph Theory and applications 3/16

Weighted graphs (length/capacity/cost/distance)

(4)
1
108

0

B!

3

4

6

o

e weigth of subgraph H: w(H) = Z w(e)
ecE(H)

o lengthof path P = (vy,---,v): w(P)= Y w(e)=) w({vi,vit1})
ecE(P) 1<i<t
sum of weights of edges of P

e distance dist(x, y): minimum length of a path from x € Vto y € V.
ex: dist(a,j) = 16

N. Nisse —izs— [H= COATI @ Ciwta— Graph Theory and applications 3/16

Outline

@ Weighted Graphs, distance

9 Shortest paths and Spanning trees
© Breadth First Search (BFS)

@ Dijkstra Algorithm

© Kruskal Aigorithm

N. Nisse i35 /’?“ . COATI 0 Ciada= Graph Theory and applications 4/16

Weighted graphs: two important questions

e Computing distances and shortest paths
e Breadth First Search (BFS) (unweighted graph, i.e., weights=1)
e Dijkstra’s algorithm (1956)

e Bellman-Ford algorithm (1958) handle negative weights
Applications: GPS, routing in the Internet, basis of many
algorithms...

You think it is easy?

wwwwwwww

N. Nisse i3S ,’? ” COATI 0 Ciata= Graph Theory and applications 5/16

N. Nisse

Weighted graphs: two important questions

e Computing distances and shortest paths
e Breadth First Search (BFS) (unweighted graph, i.e., weights=1)
e Dijkstra’s algorithm (1956)

e Bellman-Ford algorithm (1958) handle negative weights
Applications: GPS, routing in the Internet, basis of many
algorithms...

You think it is easy? ...really?.... Algorithms needed!!

*

ey

COATI 0 Ciata= Graph Theory and applications 5/16

Weighted graphs: two important questions

e Computing distances and shortest paths
e Breadth First Search (BFS) (unweighted graph, i.e., weights=1)
e Dijkstra’s algorithm (1956)
e Bellman-Ford algorithm (1958) handle negative weights
Applications: GPS, routing in the Internet, basis of many
algorithms...

e Computing minimum spanning trees
Goal: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum
e Borlvska (1926), Kruskal (1956), Prim (1957)
Applications:
Minimum (cheapest) substructure (subgraph) preserving connectivity.
ex: “first published by Borlivska as a method of constructing an efficient
electricity network" (Wikipedia)

N. Nisse i3S ,’? ” COATI @ Ciada= Graph Theory and applications 5/16

Outline

@ Weighted Graphs, distance

9 Shortest paths and Spanning trees
© Breadth First Search (BFS)

@ Dijkstra Algorithm

© Kruskal Aigorithm

N. Nisse i35 /’?“ . COATI 0 Ciada= Graph Theory and applications 6/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

=5

N. Nisse —izs— [COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(a)

=5

N. Nisse —izs— [COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(a,b)

N. Nisse —izs— [H= COATI @ Ciwta— Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(a,b,c)

N. Nisse —izs— [H= COATI @ Ciwta— Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(a,b,c,f)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(b,c,f)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(b,c.f)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(b,c.f,g)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(b,c.f,g,h)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(c,f,g,h)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(c,f,g,h,d)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(f,g,h,d)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(f,g,h,d,i)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(h,d,i)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(h,d,i,j)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(d,i,j)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(d,i,j,e)

N. Nisse i35 | = COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

In unweighted graph, length of path P = # of edges of P = |E(P)|

Breadth First Search
input: unweighted graph G= (V,E) and r € V
Initially: d(r) = 0, ToBeExplored = (r)
Done=0and T = (V(T),E(T)) = ({r},0)
While ToBeExplored # () do
Let v = head(ToBeExplored)
for u € N(v) \ (ToBeExplored U Done) do
d(u) < d(v)+1
add vin V(T) and {v,u} in E(T)
add v at the end of ToBeExplored

ToBeExplored=(d,i,j,e)

remove v from ToBeExplored, add v to Done

=

N. Nisse —i3s— [t COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|

ToBeExplored=(d,i,j,e)

Breadth First Search
input: unweighted graph G= (V,E) and r € V
Initially: d(r) = 0, ToBeExplored = (r)
Done=0and T = (V(T),E(T)) = ({r},0)
While ToBeExplored # (0 do
Let v = head(ToBeExplored)
for u € N(v) \ (ToBeExplored U Done) do
d(u) < d(v)+1
add vin V(T) and {v,u} in E(T)
add v at the end of ToBeExplored

remove v from ToBeExplored, add v to Done

v

Output: for any v € V, d(v) = dist(r, v).
T is a shortest path tree of G rooted in r: i.e., T spanning subtree of G s.t.
for any v € V, the path from r to v in T is a shortest path from r to v in G.

N. Nisse

125 COATI 0 liwia— Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|

Breadth First Search
input: unweighted graph G=(V,E) and r € V
Initially: d(r) = 0, ToBeExplored = (r)
Done=0and T = (V(T),E(T)) = ({r},0)
While ToBeExplored # (0 do
Let v = head(ToBeExplored)
for u € N(v) \ (ToBeExplored U Done) do
d(u) < d(v)+1
add uin V(T) and {v,u} in E(T)
add v at the end of ToBeExplored

ToBeExplored=(d,i,j,e)

remove v from ToBeExplored, add v to Done

v

Time-Complexity: # operations = O(|E|) each edge is considered

Exercise: Give an algorithm that decides if a graph is connected
N. Nisse i3S ,’? ” COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|

Breadth First Search
input: unweighted graph G=(V,E) and r € V
Initially: d(r) = 0, ToBeExplored = (r)
Done=0and T = (V(T),E(T)) = ({r},0)
While ToBeExplored # (0 do
Let v = head(ToBeExplored)
for u € N(v) \ (ToBeExplored U Done) do
d(u) < d(v)+1
add uin V(T) and {v,u} in E(T)
add v at the end of ToBeExplored

ToBeExplored=(d,i,j,e)

remove v from ToBeExplored, add v to Done

Time-Complexity: # operations = O(|E|) each edge is considered
Rmk1: allows to decide whether G is connected

G connected iff dist(r,v) < e defined for all v € V
N. Nisse —i3s— [k COATI 0 Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs
In unweighted graph, length of path P = # of edges of P = |E(P)|

Breadth First Search
input: unweighted graph G=(V,E) and r € V
! Initially: d(r) = 0, ToBeExplored = (r)

° Done=0and T = (V(T),E(T)) = ({r},0)
‘ While ToBeExplored # (0 do
Let v = head(ToBeExplored)

‘ for u € N(v) \ (ToBeExplored U Done) do
V) d(u) d(v)+1
add uin V(T) and {v,u} in E(T)
add v at the end of ToBeExplored

ToBeExplored=(d,i,j,e)

remove v from ToBeExplored, add v to Done

Time-Complexity: # operations = O(|E|) each edge is considered
Rmk2: gives only one shortest path tree, may be more...

depends on the ordering in which vertices are considered
N. Nisse —i3s— [k COATI ® Ciada= Graph Theory and applications 7/16

BFS: Connectivity and distances in unweighted graphs

Diameter of a graph G: maximum distance between two vertices of G.
diam(G) = max dist(u,v)

u,veV(G)

Exercise: Give an algorithm that computes the diameter of a graph.
What is the number of operations?J

=

N. Nisse _izs— [COATI 0 Ciada= Graph Theory and applications 8/16

BFS: Connectivity and distances in unweighted graphs
Diameter of a graph G: maximum distance between two vertices of G.
diam(G) = max dist(u,v)

u,veV(G)

Exercise: Give an algorithm that computes the diameter of a graph.
What is the number of operations?

input: unweighted tree T = (V,E) and r € V

@ Execute a BFS rooted in r
@ Let u be a node maximizing the distance from r
© Execute a BFS rooted in u

© Let w be a node maximizing the distance from u

return dist(u, w)

What is the number of operations?

=

N. Nisse —i3s— [COATI 0 Ciada= Graph Theory and applications 8/16

Diameter of trees

Theorem: Previous algorithm computes the diameter of T

Termination: two executions of BFS
Correctness: u is a leaf (otherwise, there would be a vertex further from r) Similarly, w
is a leaf For contradiction, assume that diam(T) = dist(x, y) > dist(u, w)

(x and y must be leaves)
Several Cases:

0 /K’@ o
@) R 5
© % b\® ® © O

As an example, consider the second one (from the left)
f+e+c>max{f+a;f+e+b;f+d} (ufurther from r)
b> max{e+a; e+ f; e+ d} (w further from u)

So dist(u,w) = b+ ¢ > a+ d = dist(x, y), a contradiction

N. Nisse i3S ,’? ” COATI 0 Ciada= Graph Theory and applications 9/16

Outline

@ Weighted Graphs, distance

9 Shortest paths and Spanning trees
© Breadth First Search (BFS)

@ Dijkstra Algorithm

© Kruskal Aigorithm

N. Nisse i35 /’?“ . COATI 0 UiwZa= Graph Theory and applications 10/16

Dijkstra’s algorithm (required positive weights)

BFS algorithm does not work in weighted graphs Exercise: Example?

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=

N. Nisse —i3s— [k COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=

N. Nisse —i3s— [COATI o Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=

N. Nisse —i3s— [COATI o Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse _izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f,c}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse _izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f,c}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse _izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f,c,i}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={a,f,c,i}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
10 Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,

° 1o - PO and Vv e V\ {r} d(v) =,
Y e

Done ={a/f,c,i,d}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
10 . Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,

° 1o - Po and Vv e V\ {r} d(v) =,
Y e

Done ={a/f,c,i,d}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done = {af,c,i,d,h}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done ={af,c,i,d,h,g}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo,

Done = {af,c,i,d,h,g,b}

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
; Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
) and Vv e V\ {r} d(v) = o,

10
t 1
7
1
9
4
42 108
9 99
2
\‘%%
3

Done ={a/f,c,i,d,h,g,b,e}

5
0

1

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
; Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
) and Vv e V\ {r} d(v) = o,

10
t 1
7
1
9
4
42 108
9 16
2
\.A%
3

Done ={a/f,c,i,d,h,g,b,e}

5
0

1

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
. Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
7/’ and Vv € V\ {r} d(v) = o,

T _10
7
1
9
4
42 108
9 N

\.// @

5
0

1

Done ={a,f,c,i,d,h,g,b.e,j}=V

For all v € Done, d(v) = dist(r, v). Otherwise dist(r,v) < d(v).

=5

N. Nisse —izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
y and Vv € V\ {r} d(v) = e, parent(v) =0
1 While Done # V do
oo Let v € V'\ Done with d(v) minimum *

s Add v in V7 and {v,parent(v)} in Er
‘ 108 Add v in Done

1

1 42

for u € N(v) \ Done do
if d(u) > d(v)+w({u,v}) then
d(u) < d(v)+w({u,v})
parent(u) < v

10
5
1
)/7
0
2

3

Done ={a/f,c,i,dh,gb.e)=V

N. Nisse i35 COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra

input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = oo, parent(v) =0
While Done # V do

Let v € V'\ Done with d(v) minimum *

Add v in V7 and {v,parent(v)} in Er

Add v in Done

for u € N(v) \ Done do

if d(u) > d(v) +w({u,v}) then

Done ={a,f,c,i,d,h,g,b.e,j}=V d(u) — d(v) + W({u’ V})
parent(u) < v

Output: Vv € V, d(v) = dist(r,v), T is a shortest path tree of G rooted in r
Time-complexity: O(|E| + |V|log|V|) (requires sorting *)

N. Nisse _izs— [COATI 0 Ciata= Graph Theory and applications 11/16

Dijkstra’s algorithm (required positive weights)

Dijkstra
input: graph G = (V, E), weight w, and r € V
Initially: d(r) =0, (Vr, Er) = (0,0), Done = 0,
and Vv € V\ {r} d(v) = e, parent(v) =0

While Done # V do
Let v € V'\ Done with d(v) minimum *

Add v in V7 and {v,parent(v)} in Er
Add v in Done
for u € N(v) \ Done do
if d(u) > d(v) +w({u,v}) then
Done ={a/f,c,id,h,g,b,ej=V d(u) <~ d(V) + W({U’ V})
parent(u) « v

Output: Vv € V, d(v) = dist(r,v), T is a shortest path tree of G rooted in r
proof: since w positive = a subpath of a shortest path is a a shortest path

— i35 ,’? = COATI 0 Ciada= Graph Theory and applications 11/16

N. Nisse

Dijkstra’s algorithm Proof of correctness

Termination: After i iteration of while loop, |Done| = i, then the algorithm
terminates in | V| iterations of while loop

Correctness: By induction on 1 < i < | V|, after the i iteration of while loop,
|Done| = i, and Vv € Done, d(v) = dist(r,v). ok for i=0
Assume the hypothesis holds ater the i iteration.

Let v € V'\ Done be chosen at the (i + 1) iteration.

e By minimality of d(v) (in V'\ Done),
if G connected, then d(v) < e and DoneN N(v) # 0, and
d(v) = minueponenn(v) d(u) + w({u, v}) by induction: d(v) > dist(v,r)
e For contradiction, assume that d(v) < dist(v, r): there is a shortest
path P=(r,---,x,v) of length < d.
e x € Done: otherwise it would contradict minimality of d(v)
o dist(v,r) = dist(x,r) +w({x,v}) = d(x) + w({x,v}) < d(v) =

minueDoneﬂN(v) d(U) + W({U7 V}) < d(X) + W({Xv V})
a contradiction

N. Nisse i35

)

COATI @ Ciada= Graph Theory and applications 12/16

Outline

@ Weighted Graphs, distance

9 Shortest paths and Spanning trees
© Breadth First Search (BFS)

@ Dijkstra Algorithm

© Kruskal Aigorithm

N. Nisse i35 /’?“ . COATI 0 Uiwza= Graph Theory and applications 13/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

=5

N. Nisse _izs— [COATI 0 Ciata= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

Kruskal
input: connected graph G = (V, E), weight w
Initially: Let (ey,:- -, en) be an ordering of E in
non decreasing ordering of w, and T = (0,0)
For i < mdo
Add g; in T if it does not create a cycle.

=

N. Nisse —i3s— [Hh COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

Kruskal
input: connected graph G = (V, E), weight w
Initially: Let (ey,:- -, en) be an ordering of E in
non decreasing ordering of w, and T = (0,0)
For i < mdo
Add g; in T if it does not create a cycle.

=

N. Nisse —i3s— [Hh COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

Kruskal
input: connected graph G = (V, E), weight w
Initially: Let (ey,:- -, en) be an ordering of E in
non decreasing ordering of w, and T = (0,0)
For i < mdo
Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
?? 7% input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\®//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7% input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\®//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7{ input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\®//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7{ input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

o
2
\®//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7{ input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\.//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7{ input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, %h] non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\.//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 7{ input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, % non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\.//%

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 71 input: connected graph G = (V, E), weight w
b/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, % non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\.//es

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 71 input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1,) non decreasing ordering of w, and T = (0,0)
" 4 - Fori < mdo
6 Add g; in T if it does not create a cycle.

V.
2
\.//es

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
6

Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
6

Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T? 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
6

Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
v 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
6

Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T: 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (ey,:- -, en) be an ordering of E in
1, non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
6

Add g; in T if it does not create a cycle.

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w: E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
v 2 ’ input: connected graph G = (V, E), weight w
)/7 1 oo Initially: Let (e1,---,en) be an ordering of E in
| . non decreasing ordering of w, and T = (0,0)
4 Fori < mdo
42 108
'8 »

Add e; in T if it does not create a cycle.

Time-Complexity: # operations = O(|E|log |E|) sorting

=

N. Nisse —i3s— [k COATI 0 Ciata= Graph Theory and applications 14/16

Kruskal’s algorithm Minimum Spanning Tree

Reminder: given G = (V, E) with weight w : E — R
Compute a spanning tree T of G with w(T) minimum

10 Kruskal
T: 2 ! input: connected graph G = (V, E), weight w
)/7 o Initially: Let (e1,- -, en) be an ordering of E in
\ . non decreasing ordering of w, and T = (0,0)
4 For i< mdo
42 108
6
2%%

Add g; in T if it does not create a cycle.

Exercise: Prove that, T returned by the Alg. is a minimum spanning tree
Idea of proof: by contradiction J

=

N. Nisse s [k COATI 0 Ciada= Graph Theory and applications 14/16

Kruskal’s algorithm Proof of correctness

Terminaison: obvious

Correctness:(Sketch) Clearly, T is a spanning tree (it is acyclic by definition,
and if it is not connected, some edges connecting the components should
have been added)

Assume it is not minimum and let (ey,---,en_1) be its edges in non
decreasing ordering of their weights.
Among the min. spanning tree of G, let T* with edges (fi,:- -, f,_1) such that

the minimum index i with e; # f; is maximized.
T* U e contains a cycle C and, there is j > i such that f; € E(C) \ E(T) and
w(f) < w(e;) (otw, T* is not minimum).

e if w(f;) < w(e;) then the algorithm should have chosen f; instead of e;

e if w(f)) = w(e;), T’ obtained from T*by replacing f; by e; is a minimum
spanning tree, contradicting the maximality of /.

)

N. Nisse 25— COATI @ Cinta=. Graph Theory and applications 15/16

Summary: To be remembered

weighted graph, distances

Deciding connectivity

Shortest path tree in undirected graph O(|E|), BFS
e Computing Shortest path tree O(|E|+ |V|log|V]), Dijkstra
e Computing Min. spanning tree O(|E|log|E|), Kruskal

)

N. Nisse —i3s— [COATI 0 Cinta= Graph Theory and applications 16/16

	Weighted Graphs, distance
	Shortest paths and Spanning trees
	Breadth First Search (BFS)
	Dijkstra Algorithm
	Kruskal Algorithm

