Graphs :

2 hours

Handwritten documents are allowed, no more. You may answer in french if you prefer. Each of your answers must be explained/detailled.

1 Notations and definitions

Let $G=(V, E)$ be a graph, where V is the set of vertices and E is the set of edges. For any $v \in V$, let $N(v)=\{w \in V \mid\{v, w\} \in E\}$ be the set of neighbours of v.

A matching in G is a set $M \subseteq E$ of pairwise disjoint edges, i.e., for every $e, f \in M, e \cap f=\emptyset$. Note that \emptyset is a matching in G. Let $\mu(G)$ be the maximum size of a matching in G.

A vertex cover in G is a set $K \subseteq V$ of vertices that "touch" all edges, i.e., for every $e \in E$, there exists $v \in K$ such that $v \in e$. Note that V is a vertex cover in G. Let $v c(G)$ be the minimum size of a vertex cover in G.

An independent set in G is a set $I \subseteq V$ of vertices that are pairwise non-adjacent, i.e., for every $u, v \in I,\{u, v\} \notin E$. Note that \emptyset is an independent set in G. Let $\alpha(G)$ be the maximum size of an independent set in G.

A graph $G=(V, E)$ is bipartite if its vertex-set can be partionned into two independent sets, i.e., $V=A \cup B, A \cap B=\emptyset$ such that A is an independent set and B is an independent set.

Let $n, m \in \mathbb{N}^{*}$ be two non-zero integers. The $n \times m$ grid $G_{n \times m}$ is the graph defined as follows. Its vertex set is $V\left(G_{n \times m}\right)=\{(i, j) \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ and two vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent if and only if $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=1$. See Figure 1 for various examples.

Figure 1 - From left to right, the grids $G_{2 \times 2}, G_{5 \times 2}, G_{4 \times 4}$ and $G_{5 \times 6}$

Question 1 Prove that the 4 grids in Figure 1 are bipartite. To do so, describe a possible partition (A, B) of the vertex-set into two independent sets by coloring the vertices.

Question 2 Prove that the grid $G_{n \times m}$ is bipartite for any $n, m \in \mathbb{N}^{*}$ (Describe a possible partition of the vertices into two independent sets).

The goal of the following is to revise the basics on graphs and algorithms and, more precisely, to compute $\alpha\left(G_{n \times m}\right)$ for every $n, m \in \mathbb{N}^{*}$.

2 Maximum matching in bipartite graphs

Let $G=(V, E)$ be a graph and $M \subseteq E$ be a matching. A vertex $v \in V$ is covered by M if it is "touched" by some edge of M, i.e., if there exists $e \in M$ such that $v \in e$. Otherwise, v is said uncovered by M. An M-augmenting path is a path $\left(v_{1}, \cdots, v_{p}\right)(p \geq 2)$ such that v_{1} and v_{p} are uncovered by M and, for every $1 \leq i \leq\lfloor p / 2\rfloor,\left\{v_{2 i}, v_{2 i+1}\right\} \in M$.

Question 3 Prove that if there exists an M-augmenting path, then the matching M is not maximum, i.e., $|M|<\mu(G)$.

```
Algorithm 1
Require: A bipartite graph \(G=(A \cup B, E)\), i.e., \(A\) and \(B\) are independent sets, a matching
    \(M \subseteq E\) of \(G\) and \(a \in A\) not covered by \(M\).
    \(X=\{a\}\).
    \(Z=\emptyset\).
    Continue \(=\) true.
    while Continue do
        Continue \(=\) false and \(X^{\prime}=\emptyset\).
        for every \(v \in X\) do
            for every \(w \in N(v) \backslash Z\) do
                if \(w\) not covered by \(M\) then
                    return an \(M\)-augmenting path from \(a\) to \(w\)
                else
                    Continue \(=\) true and let \(u \in A\) such that \(\{u, w\} \in M\).
                    Add \(w\) to \(Z\) and \(u\) to \(X^{\prime}\).
        \(X \leftarrow X^{\prime}\)
    return False.
```

Question 4 Apply Algorithm 1 on the instance depicted in Figure 2(left). Describe precisely the evolution of the variables X, Z and Continue after each iteration of the while-loop.

Question 5 Apply Algorithm 1 on the instance depicted in Figure 2(right). Describe precisely the evolution of the variables X, Z and Continue after each iteration of the while-loop.

Figure 2 - Two examples of bipartite graphs with a given matching M (in bold red).

Question 6 (*) What is the goal of Algorithm 1. Argue your answer. $_{\text {(}}$
The next two questions are independent from above questions.
Question 7 Give (draw) a maximum matching in each of the grids depicted in Figure 3. Give arguments that the matchings you propose are maximum.

Question 8 Express $\mu\left(G_{n \times m}\right)$ for every $n, m \in \mathbb{N}^{*}$ (and prove it by exhibiting a matching of this size and showing that no larger matching exists).

Figure 3 - Examples of grids

3 Minimum vertex cover in bipartite graphs

Question 9 Prove that, in any graph $G, v c(G) \geq \mu(G)$.
Question 10 Let $G=(V=(A \cup B), E)$ be a bipartite graph with $A \cap B=\emptyset$ and A and B being independent sets. Let $M \subseteq E$ be a maximum matching of G, i.e. $|M|=\mu(G)$. Show that, if all vertices of A are covered by M, then A is a vertex cover of G and then, $v c(G)=|A|=\mu(G)$.

Given a matching M, an M-alternating path is a path $\left(v_{1}, \cdots, v_{p}\right)(p \geq 1)$ such that, for every $1 \leq i<p-1$, exactly one edge among $\left\{v_{i}, v_{i+1}\right\}$ and $\left\{v_{i+1}, v_{i+2}\right\}$ belongs to M.

Question 11 Let $G=(V=(A \cup B), E)$ be a bipartite graph with $A \cap B=\emptyset$ and A and B being independent sets. Let $M \subseteq E$ be a maximum matching of G, i.e. $|M|=\mu(G)$. Assume that M does not cover all vertices in A and let $X \subseteq A$ be the vertices in A not covered by M.

Let U be the set of vertices linked to some vertex in X by an M-alternating path. Let $U_{A}=$ $U \cap A$ and $U_{B}=U \cap B$. Note that $X \subseteq U_{A}$.

1. Prove that $|M|=|A \backslash X|$.
2. Prove that all vertices in U_{B} are covered by M.
3. Let $N\left(U_{A}\right)=\left\{u \in B \mid \exists v \in U_{A},\{u, v\} \in E\right\}$. Prove that $U_{B}=N\left(U_{A}\right)$.
4. (*) Prove that $U_{B} \cup\left(A \backslash U_{A}\right)$ is a vertex cover of size $|M|=\mu(G)$.

Question 12 Deduce that, in any bipartite graph $G, v c(G)=\mu(G)$.

4 Maximum independent sets in grids

Question 13 Prove that, in any graph $G=(V, E)$, if $K \subseteq V$ is a vertex cover in G, then $V \backslash K$ is an independent set in G.

Question 14 Prove that, in any graph G with n vertices, $\alpha(G)=n-v c(G)$.

Question 15 For every $n, m \in \mathbb{N}^{*}$, express $\alpha\left(G_{n \times m}\right)$ (and prove your statement).

