Graphs :

2 hours

Handwritten documents are allowed, no more. You may answer in french if you prefer. Each of your answers must be explained/detailled.

1 Notations and definitions

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of edges. For any $v \in V$, let $N(v) = \{w \in V \mid \{v, w\} \in E\}$ be the set of neighbours of v.

A matching in G is a set $M \subseteq E$ of pairwise disjoint edges, i.e., for every $e, f \in M, e \cap f = \emptyset$. Note that \emptyset is a matching in G. Let $\mu(G)$ be the maximum size of a matching in G.

A vertex cover in G is a set $K \subseteq V$ of vertices that "touch" all edges, i.e., for every $e \in E$, there exists $v \in K$ such that $v \in e$. Note that V is a vertex cover in G. Let vc(G) be the minimum size of a vertex cover in G.

An **independent set** in G is a set $I \subseteq V$ of vertices that are pairwise non-adjacent, i.e., for every $u, v \in I$, $\{u, v\} \notin E$. Note that \emptyset is an independent set in G. Let $\alpha(G)$ be the maximum size of an independent set in G.

A graph G = (V, E) is **bipartite** if its vertex-set can be particulated into two independent sets, i.e., $V = A \cup B$, $A \cap B = \emptyset$ such that A is an independent set and B is an independent set.

Let $n, m \in \mathbb{N}^*$ be two non-zero integers. The $n \times m$ grid $G_{n \times m}$ is the graph defined as follows. Its vertex set is $V(G_{n \times m}) = \{(i, j) \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ and two vertices (i, j) and (i', j') are adjacent if and only if |i - i'| + |j - j'| = 1. See Figure 1 for various examples.

FIGURE 1 – From left to right, the grids $G_{2\times 2}$, $G_{5\times 2}$, $G_{4\times 4}$ and $G_{5\times 6}$

Question 1 Prove that the 4 grids in Figure 1 are bipartite. To do so, describe a possible partition (A, B) of the vertex-set into two independent sets by coloring the vertices.

Question 2 Prove that the grid $G_{n \times m}$ is bipartite for any $n, m \in \mathbb{N}^*$ (Describe a possible partition of the vertices into two independent sets).

The goal of the following is to revise the basics on graphs and algorithms and, more precisely, to compute $\alpha(G_{n \times m})$ for every $n, m \in \mathbb{N}^*$.

2 Maximum matching in bipartite graphs

Let G = (V, E) be a graph and $M \subseteq E$ be a matching. A vertex $v \in V$ is **covered** by M if it is "touched" by some edge of M, i.e., if there exists $e \in M$ such that $v \in e$. Otherwise, v is said **uncovered** by M. An M-augmenting path is a path (v_1, \dots, v_p) $(p \ge 2)$ such that v_1 and v_p are uncovered by M and, for every $1 \le i \le \lfloor p/2 \rfloor$, $\{v_{2i}, v_{2i+1}\} \in M$.

Question 3 Prove that if there exists an M-augmenting path, then the matching M is not maximum, i.e., $|M| < \mu(G)$.

Algorithm 1

Require: A bipartite graph $G = (A \cup B, E)$, i.e., A and B are independent sets, a matching $M \subseteq E$ of G and $a \in A$ not covered by M. 1: $X = \{a\}.$ 2: $Z = \emptyset$. 3: Continue = true. 4: while Continue do Continue = false and $X' = \emptyset$. 5:for every $v \in X$ do 6: 7:for every $w \in N(v) \setminus Z$ do if w not covered by M then 8: **return** an M-augmenting path from a to w9: else 10: Continue = true and let $u \in A$ such that $\{u, w\} \in M$. 11:Add w to Z and u to X'. 12: $X \leftarrow X'$ 13:14: return False.

Question 4 Apply Algorithm 1 on the instance depicted in Figure 2(left). Describe precisely the evolution of the variables X, Z and Continue after each iteration of the while-loop.

Question 5 Apply Algorithm 1 on the instance depicted in Figure 2(right). Describe precisely the evolution of the variables X, Z and Continue after each iteration of the while-loop.

FIGURE 2 – Two examples of bipartite graphs with a given matching M (in bold red).

Question 6 (*) What is the goal of Algorithm 1. Argue your answer.

The next two questions are independent from above questions.

Question 7 Give (draw) a maximum matching in each of the grids depicted in Figure 3. Give arguments that the matchings you propose are maximum.

Question 8 Express $\mu(G_{n \times m})$ for every $n, m \in \mathbb{N}^*$ (and prove it by exhibiting a matching of this size and showing that no larger matching exists).

FIGURE 3 – Examples of grids

3 Minimum vertex cover in bipartite graphs

Question 9 Prove that, in any graph G, $vc(G) \ge \mu(G)$.

Question 10 Let $G = (V = (A \cup B), E)$ be a bipartite graph with $A \cap B = \emptyset$ and A and B being independent sets. Let $M \subseteq E$ be a maximum matching of G, i.e. $|M| = \mu(G)$. Show that, if all vertices of A are covered by M, then A is a vertex cover of G and then, $vc(G) = |A| = \mu(G)$.

Given a matching M, an M-alternating path is a path (v_1, \dots, v_p) $(p \ge 1)$ such that, for every $1 \le i , exactly one edge among <math>\{v_i, v_{i+1}\}$ and $\{v_{i+1}, v_{i+2}\}$ belongs to M.

Question 11 Let $G = (V = (A \cup B), E)$ be a bipartite graph with $A \cap B = \emptyset$ and A and B being independent sets. Let $M \subseteq E$ be a maximum matching of G, i.e. $|M| = \mu(G)$. Assume that M does not cover all vertices in A and let $X \subseteq A$ be the vertices in A not covered by M.

Let U be the set of vertices linked to some vertex in X by an M-alternating path. Let $U_A = U \cap A$ and $U_B = U \cap B$. Note that $X \subseteq U_A$.

- 1. Prove that $|M| = |A \setminus X|$.
- 2. Prove that all vertices in U_B are covered by M.
- 3. Let $N(U_A) = \{ u \in B \mid \exists v \in U_A, \{u, v\} \in E \}$. Prove that $U_B = N(U_A)$.
- 4. (*) Prove that $U_B \cup (A \setminus U_A)$ is a vertex cover of size $|M| = \mu(G)$.

Question 12 Deduce that, in any bipartite graph G, $vc(G) = \mu(G)$.

4 Maximum independent sets in grids

Question 13 Prove that, in any graph G = (V, E), if $K \subseteq V$ is a vertex cover in G, then $V \setminus K$ is an independent set in G.

Question 14 Prove that, in any graph G with n vertices, $\alpha(G) = n - vc(G)$.

Question 15 For every $n, m \in \mathbb{N}^*$, express $\alpha(G_{n \times m})$ (and prove your statement).