
Master 2, Informatique et Interactions
Final Exam Advanced Graphs, February 2022

3 hours
Documents are allowed, but, NO computers, NO cellphones!!

Instruction and comments: the points awarded for your answer will be based on the correctness
of your answer as well as the clarity of the main steps in your reasoning. All proposed solutions
must be proved. All the 3 sections are independent.

1 Diameter of trees. (5.5 points, 40 minutes)

Reminder. A tree is a connected graph without cycle. A leaf in a tree is any vertex with degree
one (with a single neighbour). A path (v1, · · · , vp) between v1 ∈ V and vp ∈ V in a graph
G =: (V,E) is a sequence of distinct vertices (vi ∈ V for every 1 ≤ i ≤ p and vi 6= vj , for
1 ≤ i < j ≤ p) such that {vi, vi+1} ∈ E for every 1 ≤ i < p. The length of a path (v1, · · · , vp)
is its number of edges p − 1. The distance distG(u, v) between two vertices u, v ∈ V is the
minimum length of a path between u and v in G. The diameter diam(G) of a graph G is the
maximum distance between two vertices of G, i.e., diam(G) = max

u,v∈V
distG(u, v).

Given a graph G = (V,E) and r ∈ V , a BFS (Breadth First Search) rooted in r is an
algorithm that computes, in time O(|E|), the distance between r and every vertex in G, i.e.,
that computes distG(u, r) for every u ∈ V .

Question 1 (0.25 point) What is the diameter of a tree with one vertex? with two vertices?

Question 2 (1 points) Let T = (V,E) be a tree with |V | ≥ 3. Show that there exists v ∈ V
that is not a leaf. hint: by contradiction

The goal of this problem is to understand the goal and the time-complexity of the following
algorithm.

Algorithm 1
Require: A tree T = (V,E) with |V | ≥ 3
1: Let r ∈ V which is not a leaf (r is then called the root) and do a BFS of G rooted in r.
2: Let u ∈ V be any vertex that maximizes distT (u, r).
3: Do a BFS of G rooted in u.
4: Let w ∈ V be any vertex that maximizes distT (w, u).
5: return distT (w, u).

Let T0 be the tree with 9 vertices defined as follows. V (T0) = {a, b, c, d, e, f, g, h, i} and
E(T0) = {ab, bc, cd, de, ef, cg, gh, hi}.

Question 3 (1 point) Draw T0. Apply Algorithm 1 on the tree T0 with root r = c. Give the
results of each line of the algorithm (in particular, what is u? what is w? what is the result of
the algorithm?).

Question 4 (1.5 points) What is the time-complexity of Algorithm 1 in function of |V |?

Question 5 (1.5 points) Show that, during the execution of Alg. 1, the vertex u is a leaf of T
and the vertex w is a leaf of T .

Question 6 (0.25 point) What does compute Algorithm 1? (no proof is required)
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2 Coloring in graphs on surfaces. (6.5 points, 40 minutes)

Reminder. A planar graph is any graph that can be drawn in the plane without crossing edges.
Given k ∈ N∗, a k-colouring of a graph G = (V,E) is a function c : V → {1, · · · , k} such that
c(u) 6= c(v) for all {u, v} ∈ E. The chromatic number χ(G) of a graph G is the smallest k such
that G admits a k-colouring.

Question 7 (0.5 point) Draw a graph G such that χ(G) > 4 (explain).

Question 8 (1 point) (planar Euler’s formula) Given a connected planar graph G = (V,E)
with planar embedding (drawing) with f faces, prove that |V | − |E|+ f = 2.

Question 9 (1 point) Prove that K5 (the complete graph with 5 vertices and all possible edges)
is not planar.

Question 10 (0.5 point) What is the “four colours theorem"?

Now, we want to go beyond planar graphs. That is, we would like to consider graphs that
can be embedded (without crossing edges) in other surfaces than plane. Precisely, we consider
torus (roughly, donuts or buoy...).

Question 11 (1 point) Prove that K5 can be embedded (drawn) in a torus (see it as a donuts)
without crossing edges (i.e., draw K5 on a torus without crossing edges).

In what follows, we admit the following theorem:

Theorem 1 (Torus Euler’s formula) Given a connected planar graph G = (V,E) with an
embedding on a torus (without crossing edges), with f faces, then |V | − |E|+ f = 0.

Question 12 (1.25 point) Show that a graph that can embedded on a torus (without crossing
edges) has a vertex of degree at most 6.

Question 13 (1.25 point) Show that, for any graph G that can embedded on a torus (without
crossing edges), χ(G) ≤ 7.

3 Vertex Cover in planar graphs (Baker’s technique). (9 points,
1 hour 40 minutes)

Reminder. Let G = (V,E) be a graph. Recall that a vertex cover of G is a set K ⊆ V such
that e∩K 6= ∅ for all e ∈ E (i.e., K hits every edge of G). Recall that the diameter of G equals
maxu,v∈V dist(u, v) where dist(u, v) denotes the distance (length of a shortest path) between u
and v.

We admit the following result:

Theorem 2 Let G be a planar n-node graph with diameter D. A minimum vertex cover of G
can be computed in time 2O(D)n.

Notation: A schematic representation of the notations is depicted in Figure 1.
Let G = (V,E) be a planar n-node graph and r ∈ V . Let us consider a BFS (Breadth First

Search) of G rooted in r. For every ` ∈ N, let Layer(`) = {v ∈ V | dist(r, v) = `} be the set of
vertices at distance (exactly) ` from r. For instance, Layer(0) = {r}.
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Let k ∈ N∗. For every 0 ≤ i ≤ k, let G0,i be the subgraph induced by the vertices in⋃
0≤`≤i

Layer(`). For every j ∈ N∗ and every 0 ≤ i ≤ k, let Gj,i be the subgraph induced by the

vertices in
⋃

k(j−1)+i≤`≤kj+i

Layer(`). Note that, for all j ≥ 0, V (Gj,i)∩V (Gj+1,i) = Layer(kj+i).

Let i ∈ {0, · · · , k}. For every j ∈ N∗, let G′j,i be the graph obtained from Gj,i by adding
one vertex rj,i adjacent to all vertices of Layer(k(j− 1)+ i) and one vertex uj,i adjacent to rj,i.
Moreover, G′0,i = G0,i.

Layer(0)

Layer(1)

Layer(i)

Layer(k(j-1)+i)

Layer(kj+i)

G0,iG0,i

Gj,iGj,i

r

Layer(k(j-1)+i)

Layer(kj+i)

G0
j,iG0
j,i

rj,irj,i

uj,iuj,i

Layer(k(j+1)+i)

Gj+1,iGj+1,i

Figure 1: Schematic representation of the BFS of the graph G rooted in r (on the right) and of
the notations.

Question 14 (0.5 point) Let 0 ≤ i ≤ k and j ∈ N. Show that G′j,i has diameter at most
2(k + 1).

Question 15 (2 points) Let 0 ≤ i ≤ k and j ∈ N∗.
Show that any minimum vertex cover of G′j,i contains exactly one of rj,i and uj,i.
Deduce that for any minimum vertex cover K of G′j,i, then K \ {rj,i, uj,i} is a minimum

vertex cover of Gj,i.
Show that, for every j ∈ N, a minimum vertex cover of Gj,i can be computed in time 2O(k)n.

The remaining of this section consists of the analysis of the following Algorithm 2.

Question 16 (2 point) Show that Algorithm 2 computes a vertex cover of G. What is its
time-complexity?

Let OPT be a minimum vertex cover of G and, for each 0 ≤ i ≤ k, let OPTi = OPT ∩⋃
`≡i mod (k+1)

Layer(`), i.e., OPTi is the set of the vertices of OPT at distance i mod (k + 1)

from r. Note that
⋃

0≤i≤k
OPTi = OPT and that the sets OPTi are pairwise disjoint, i.e.,

(OPT0, · · · , OPTk) is a partition of OPT .
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Algorithm 2
Require: A connected planar graph G = (V,E) and k ∈ N∗.
1: Let r ∈ V and do a BFS of G rooted in r.
2: for every 0 ≤ i ≤ k do
3: for every 0 ≤ j ≤ n do
4: Use Question 15 to compute a minimum vertex cover Kj,i of Gj,i.
5: Let Ki =

⋃
0≤j≤n

Kj,i.

6: Let 0 ≤ p ≤ k be such that |Kp| = min{|Ki| | 0 ≤ i ≤ k}.
7: return Kp

Question 17 (1 point) Show that there exists 0 ≤ q ≤ k such that |OPTq| ≤ 1
k+1 |OPT |.

hint: by contradiction

Let 0 ≤ q ≤ k be defined as in previous question, i.e., such that |OPTq| ≤ 1
k+1 |OPT |. For

every j ∈ N, let Kj,q be a minimum vertex cover of Gj,q.

Question 18 (1 point) Show that |OPT ∩ V (Gj,q)| ≥ |Kj,q|.

Question 19 (1.5 points) Let Kq =
⋃

0≤j≤n
Kj,q. Show that |Kq| ≤ |OPT |+ |OPTq|.

Question 20 (1 point) Deduce from previous questions that Algorithm 2 computes a vertex
cover of G of size at most (1 + 1

k+1)|OPT | in time 2O(k)poly(n), where |OPT | is the minimum
size of a vertex cover of G.
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