
Master 2 Graphs
Final Exam, January 2020

2 hours
No documents are allowed. No computers, cellphones.

Instruction and comments: the points awarded for your answer will be based on the correctness
of your answer as well as the clarity of the main steps in your reasoning. All proposed solutions
must be proved. All the sections are independent.

1 Dijkstra. (4 points, 10 minutes)

Consider the following graph H with weighted edges depicted in Figure 1.
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Figure 1: A weighted graph H. Blue integers denote the length of corresponding edges.

Question 1 Give the definition of a Shortest Path Tree rooted in a in the graph H.

Question 2 Applying the Dijkstra’s algorithm on H, compute a shortest path tree rooted in a.
The first three steps of the algorithm must be detailed (at most two lines per steps).

In particular, indicate the order in which vertices are considered during the execution of the
algorithm, and give the final solution.

2 Basics on planar graphs. (8 points, 50 minutes)

Recall that a graph is planar if and only if it admits an embedding (drawing) on the plane
without crossing edges. Recall also that a tree is a connected acyclic graph.

Question 3 Let T = (V,E) be any tree. Prove that T is planar and that |V | = |E|+ 1.
Hint: induction is your friend

Question 4 For each graph in Figure 2, say whether it is planar or not (justify your answers).

Given a planar (without crossing) embedding of a graph G = (V,E), its dual G∗ = (V ∗, E∗)
is the graph with one vertex per face of G and for every edge e ∈ E, there is an edge e∗ =
{f1, f2} ∈ E∗ where f1 and f2 are the faces (possibly f1 = f2) of G “touching" the edge e. Note
that there is a one-to-one mapping between E and E∗. Given a spanning tree T = (V,E′) of G.
Let E′′ ⊆ E∗ be the set of edges of G∗ that correspond to edges in E′. Let T ∗ be the subgraph
of G∗ induced by the edges in E∗ \ E′′. Recall that we proved that T ∗ is a spanning tree of G∗

that is called the interdigitating tree of T in G∗.
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Figure 2: Three connected graphs

Figure 3: A planar embedding of a graph G and a spanning tree (with edges in bold red).

Question 5 Draw the dual G∗ of the planar graph G whose planar embedding is given in Fig-
ure 3. Then, draw the interdigitating tree of the spanning tree T of G depicted in red in Figure 3.

Question 6 Let G = (V,E) be a connected planar graph together with a planar embedding. Let
F be the set of faces of G. Let T be a spanning tree of T and T ∗ be its interdigitating tree in
G∗. By noting that |E| = |E(T )|+ |E(T ∗)|, prove the Euler’s formula: |F |+ |V | = |E|+ 2.

Question 7 Prove that, for any simple (no loop nor parallel edges) connected planar graph
G = (V,E) with |V | > 2, |E| ≤ 3|V | − 6.

Hint: note that each edge corresponds to at most two faces and each face contains at least
three vertices (so at least three edges).

Question 8 Deduce from previous question that any simple planar graph has a vertex of degree
at most 5.

Let k ∈ N∗. A proper k-coloring of a graph G = (V,E) is any function c : V → {1, · · · , k}
such that c(u) 6= c(v) for all uv ∈ E.

Question 9 Prove that any simple planar graph admits a proper 6-coloring.

Question 10 What is the minimum k such that any simple planar graph admits a proper k-
coloring (no proof is asked here)? Why do we require the graph to be simple?

3 Vertex Cover in planar graphs (Baker’s technique). (8 points,
60 minutes)

Let G = (V,E) be a graph. Recall that a vertex cover of G is a set K ⊆ V such that e∩K 6= ∅ for
all e ∈ E (i.e., K hits every edge of G). Recall that the diameter of G equals maxu,v∈V dist(u, v)
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where dist(u, v) denotes the distance (length of a shortest path) between u and v.
We admit the following result.

Theorem 1 Let G be a planar n-node graph with diameter D. A minimum vertex cover of G
can be computed in time 2O(D)n.

Notation: A schematic representation of the notations is depicted in Figure 4.
Let G = (V,E) be a planar n-node graph and r ∈ V . Let us consider a BFS (Breadth First

Search) of G rooted in r. For every ` ∈ N, let Layer(`) = {v ∈ V | dist(r, v) = `} be the set of
vertices at distance (exactly) ` from r. For instance, Layer(0) = {r}.

Let k ∈ N∗. For every 0 ≤ i ≤ k, let G0,i be the subgraph induced by the vertices in⋃
0≤`≤i

Layer(`). For every j ∈ N∗ and every 0 ≤ i ≤ k, let Gj,i be the subgraph induced by the

vertices in
⋃

k(j−1)+i≤`≤kj+i

Layer(`). Note that, for all j ≥ 0, V (Gj,i)∩V (Gj+1,i) = Layer(kj+i).

Let i ∈ {0, · · · , k}. For every j ∈ N∗, let G′j,i be the graph obtained from Gj,i by adding
one vertex rj,i adjacent to all vertices of Layer(k(j− 1)+ i) and one vertex uj,i adjacent to rj,i.
Moreover, G′0,i = G0,i.
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Figure 4: Schematic representation of the BFS of the graph G rooted in r (on the right) and of
the notations.

Question 11 Let 0 ≤ i ≤ k and j ∈ N. Show that G′j,i has diameter at most 2(k + 1).

Question 12 Let 0 ≤ i ≤ k and j ∈ N∗.
Show that any minimum vertex cover of G′j,i contains exactly one of rj,i and uj,i.
Deduce that for any minimum vertex cover K of G′j,i, then K \ {rj,i, uj,i} is a minimum

vertex cover of Gj,i.
Show that, for every j ∈ N, a minimum vertex cover of Gj,i can be computed in time 2O(k)n.

The remaining of this section consists of the analysis of the following Algorithm 1.
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Algorithm 1
Require: A connected planar graph G = (V,E) and k ∈ N∗.
1: Let r ∈ V and do a BFS of G rooted in r.
2: for every 0 ≤ i ≤ k do
3: for every 0 ≤ j ≤ n do
4: Use Question 12 to compute a minimum vertex cover Kj,i of Gj,i.
5: Let Ki =

⋃
0≤j≤n

Kj,i.

6: Let 0 ≤ p ≤ k be such that |Kp| = min{|Ki| | 0 ≤ i ≤ k}.
7: return Kp

Question 13 Show that Algorithm 1 computes a vertex cover of G. What is its time-complexity?

Let OPT be a minimum vertex cover of G and, for each 0 ≤ i ≤ k, let OPTi = OPT ∩⋃
`≡i mod (k+1)

Layer(`), i.e., OPTi is the set of vertices of OPT at distance i mod (k + 1) from

r.

Question 14 Show that there exists 0 ≤ q ≤ k such that |OPTq| ≤ 1
k+1 |OPT |.

Let 0 ≤ q ≤ k be defined as in previous question, i.e., such that |OPTq| ≤ 1
k+1 |OPT |. For

every j ∈ N, let Kj,q be a minimum vertex cover of Gj,q.

Question 15 Show that |OPT ∩ V (Gj,q)| ≥ |Kj,q|.

Question 16 Let Kq =
⋃

0≤j≤n
Kj,q. Show that |Kq| ≤ |OPT |+ |OPTq|.

Question 17 Deduce from previous questions that Algorithm 1 computes a vertex cover of G of
size (1 + 1

k+1)|OPT | in time 2O(k)poly(n), where |OPT | is the minimum size of a vertex cover
of G.

Such an algorithm is called an EPTAS (Efficient Polynomial-Time Approximation Scheme).

Question 18 Explain why Algorithm 1 is an FPT (Fixed Parameter Tractable) algorithm with
parameter k?
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