
University Côte d’Azur Graphs
Master 1 : Informatique et Interactions June, 14th, 2024

Algorithms and Graphs :

2 hours

No electronic document is allowed. You may have one page of manuscript notes.
You can answer in french or english. All answers must be formally explained. All
sections are independent. Times and points are given as informal indications.

Recall that vertex means “sommet” in french and edge means “arête” in french. The degree
of a vertex is the number of its neighbours.

1 Load Balancing (5 pts, about 20 minutes)

The Load Balancing problem takes as inputs a number n of processors and a set T =
{Ti}i≤r of r tasks such that, for every 1 ≤ i ≤ r, Task Ti has processing time ti, and asks
for an assignment lb : {1, · · · , r} → {1, · · · , n} (each task is assigned to exactly one processor)
minimizing the makespan (the maximum time taken by each processor to deal with all tasks it
is assigned to), i.e., such that max1≤i≤n

∑
j∈lb−1(i) tj is minimum. Equivalently, we ask for an

optimal (minimizing the makespan) partition (A1, · · · , An) of T such that Ti ∈ Aj if and only
if lb(i) = j.

Question 1 Give an optimal solution when r ≤ n.

During the lecture, we have studied the following algorithm (Algorithm 1) that considers the
tasks in non-increasing order (T1, T2, · · · , Tr) of their processing time (i.e., t1 ≥ · · · ≥ tr) and,
for every i from 1 to r, assigns Task Ti to a least loaded processor (a processor that has the least
work to do after Tasks T1, · · · , Ti−1 have been assigned).

Algorithm 1 LoadBalancing(n, T = {Ti}i≤r)
Require: n ∈ N and (t1, · · · , tr) ∈ (R+)r.

1: Order T such that t1 ≥ t2 ≥ · · · ≥ tr.
2: sol = (A1, · · · , An) = (∅, · · · , ∅)
3: (l1, · · · , ln) = (0, · · · , 0)
4: For i = 1 to r do :
5: Let j, such that lj = min1≤k≤n lk.
6: Aj ← Aj ∪ {i} // assign Ti to processor j.
7: lj ← lj + ti.
8: EndFor
9: return sol.

Question 2 Give the time-complexity of Algorithm 1 as a function of r (explain your answer).

During the lecture, we have seen that Algorithm 1 is a c-approximation for the Load Balan-
cing problem for c ≤ 3

2 .

1

Question 3 Explain what means to be a c-approximation for the Load Balancing problem (des-
cribe the main 3 properties that must be satisfied).

Consider the following instance with n processors and 2n + 1 = r tasks T = {T1, · · · , Tr}
such that (t1, · · · , tr) = (2n− 1, 2n− 1, 2n− 2, 2n− 2, 2n− 3, 2n− 3, 2n− 4, · · · , n+ 4, n+ 3, n+
3, n + 2, n + 2, n + 1, n + 1, n, n, n), i.e., t2k−1 = t2k = 2n− k for 1 ≤ k ≤ n and t2n+1 = n.

Question 4 Apply Algorithm 1 to the above instance (explain which task is assigned to which
processor). What is the obtained makespan ?

Question 5 Give a solution for the above instance that has makespan at most 3n.

Question 6 Show that Algorithm 1 is not a c-approximation for c < 4
3 −

1
3n .

Actually, it can be proved that Algorithm 1 is a c-approximation for c = 4
3 −

1
3n .

2 Domination in trees and dynamic programming (8 pts, about
50 minutes)

Given a graph G = (V,E) and a subset S ∈ V , let N [S] be the set of closed neighbours of
S, i.e., N [S] = S ∪ {u ∈ V | ∃v ∈ S, {u, v} ∈ E}, i.e., N [S] consists of all vertices in S and each
vertex that has a neighbour in S. A set D ⊆ V of vertices is a dominating set if V = N [D], i.e.,
if every vertex of G is in D or neighbour of some vertex of D.

In the first part of this section, we aim at describing an algorithm that computes a
dominating set of minimum size in trees. Recall that a tree is a connected acyclic graph.

Question 7 Let T be the tree with vertices {a, b, c, d, e, f, g} and edges {ab, bc, cd, de, ef, eg}.
Draw T and give a dominating set of T .

From now on, let us consider rooted trees. That is, each tree is given with a particular vertex
r called its root and the notions of children, parents, ancestors, descendants are well defined. A
leaf is any vertex that has no children (in particular, a leaf has degree at most 1).

Question 8 Let T be a rooted tree. Let v ∈ V (T) with at least one child that is a leaf. Show
that there exists a dominating set of T with minimum size that contains v.

Hint : In other words, show that, if there exists a dominating set D of T , then there exists
a dominating set D′ of T with v ∈ D′ and |D′| ≤ |D|.

To describe a recursive algorithm that computes a minimum dominating set, we need to
consider a more general problem. Let T be a tree and C ⊆ V (T) be a subset of vertices (we
say the vertices in C are covered). A C-dominating set is a set of vertices D ∈ V (T) such that
V (T) \C ⊆ N [D]. That is, D only needs to dominate the vertices that are not already covered.
Note that covered vertices may be part of D.

Question 9 Let T be the tree with vertices {b, c, d, e, f, g} and edges {bc, cd, de, ef, eg} and let
C = {b, d, f, g}. Draw T and give a minimum C-dominating set of T (explain why it is mini-
mum).

2

The recursive algorithm MinDom(T, r, C) we propose proceeds as follows. It takes a tree T
rooted in r ∈ V (T) and C ⊆ V (T) as inputs and aims at returning a minimum C-dominating
set D of T . Recursively, it first removes the leaves in C from T . Then, it considers a vertex v
whose all children are leaves and add it to D. Then it adds the parent of v to C. Then it is
applied recursively to T ′ which is the tree obtained after the removal of v and its children.

Question 10 — Write a pseudo code for the algorithm MinDom(T, r, C) ;

— Apply MinDom(T, r, C) to the example described in Figure 1 (describe the steps and give
the result) ;

— What is the time-complexity of MinDom(T, r, C) as a function of |V (T)| ?
— How to use MinDom to compute a minimum dominating set of any tree T ?

r

21 3 4

5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28

Figure 1 – A tree T rooted in r with covered vertices depicted in blue (C = {4, 9, 15, 17, 19, 24}).

In the second part of this section, we consider a rooted tree T and add a weight-function
w : V (T)→ R+. The goal is to design an algorithm computing a dominating set with minimum
weight, i.e., a dominating set D of T such that

∑
v∈D

w(v) is minimum.

Question 11 Let T be the tree with vertices {a, b, c, d, e, f, g} and edges {ab, bc, cd, de, ef, eg}
and let w(e) = w(b) = 10 and w(a) = w(c) = w(d) = w(f) = w(g) = 1. Draw T and give a
dominating set of T with minimum weight (Explain why the weight is minimum).

For this purpose, given a tree T rooted in r and with weight-function w, we expect an
algorithm that computes, by dynamic programming, three outputs : a dominating set D of T
with minimum weight ; a dominating set Dr of T which contains r and has minimum weight
among all dominating sets containing r ; and a C-dominating set DC of T with C = {r} with
minimum weight among all C-dominating sets (i.e., all sets that dominate every vertex but
possibly r).

Question 12 Give the pseudo-code of an algorithm that takes a weighted rooted tree (T, r) as
input and computes the three outputs described above (D,Dr, DC).

Hint : start with basic cases : T is empty ; T has a single node ; T is a star.
What is the time-complexity of your algorithm ?

3

3 Set-Cover (7 pts, about 50 minutes)

The Set Cover problem takes as inputs a ground set (a universe) U = {e1, · · · , en} of
elements, a set S = {S1, · · · , Sm} ⊆ 2U of subsets of elements such that

⋃
1≤i≤m Si = U . The

goal is to compute a smallest set K ⊆ {1, · · · ,m} such that
⋃

j∈K
Sj = U . In “optimization”

words, the Set Cover problem aims at computing a minimum number of sets in S covering all
elements in U 1. The goal of this section is to study the performance of the following greedy
algorithm.

Algorithm 2 : Greedy algorithm for Set Cover.

Require: (U,S = {S1, · · · , Sm} ⊆ 2U) such that
⋃

1≤i≤m Si = U .
Ensure: K ⊆ {1, · · · ,m} such that

⋃
j∈K

Sj = U .

1: Let K = ∅.
2: while

⋃
j∈K

Sj 6= U do

3: Let i ∈ {1, · · · ,m} \K such that |Si \
⋃

j∈K
Sj | is maximum

4: K ← K ∪ {i}.
5: return K.

Question 13 Explain with ”words” how Algorithm 2 works (what is it doing ?).

Question 14 Prove that the above algorithm (Algorithm 2) is correct, i.e., that it terminates
and returns a valid solution, i.e.,

⋃
j∈K

Sj = U .

What is its time-complexity as a function of n and m ?

Note that the number of iterations of the while-loop is precisely |K|, the size of the returned
Set-Cover K.

In the remaining part of this section, we study the approximation ratio of Algorithm 2.
Without lost of generality, let us assume that K∗ = {1, · · · , OPT} is an optimal solution

(for some OPT ≤ m), i.e.,
⋃

1≤i≤OPT

Si = U and OPT is the smallest size of a set cover.

On the other hand, let K = {i1, · · · , ik} be the solution computed by Algorithm 2 so that
the sets Si1 , · · · , Sik are added to the solution in this order (that is, in the while loop, Sij is
added before Si` for j < `). For every 1 ≤ ` ≤ k, let X` =

⋃
1≤j<`

Sij (so, let X1 = ∅). Therefore,

for every 1 ≤ ` ≤ k, Si` is a set maximizing |Si` \X`|.

Question 15 Show that, for every 1 ≤ ` ≤ k, |Si` \X`| ≥ n−|X`|
OPT .

Hint : let F` ⊆ K∗ \ {i1, · · · , i`−1} be an inclusion-minimal set such
that U \X` ⊆

⋃
j∈F`

Sj. Show that |F`| ≤ OPT and, by the pigeonhole principle, that there exists

j ∈ F` such that |Sj \X`| ≥ n−|X`|
OPT . Conclude.

1. As an example, consider a set U of persons, each one speaking only its own language (English, French,
Spanish...) and a set S of translators, each ones speaking several langages (the first translator S1 knows French,
Chinese and Russian, the second one S2 knows French and Spanish...). What is the minimum number of translators
required to be able to communicate with all persons ?

4

Question 16 Deduce from previous question that, for every 1 ≤ ` < k,

|U \X`+1| ≤ (1− 1

OPT
)|U \X`|.

Then, by induction on 1 ≤ `, show that

|U \X`| ≤ n(1− 1

OPT
)`−1.

Question 17 Show that, if t = OPT log n
OPT , then |U \Xt+1| ≤ n(1− 1

OPT)t ≤ OPT .
Hint : use the fact that 1− x ≤ e−x for every x ∈ R.

Question 18 Deduce from previous questions that there are at most OPT (1 + log n
OPT) itera-

tions of the while loop in Algorithm 2.
Hint : by previous questions, after t = OPT log n

OPT iterations of the while loop in
Algorithm 2, it only remains at most OPT vertices not covered yet.

By previous question, the size of the computed set K is k = |K| ≤ OPT (1 + log n
OPT).

Question 19 Explain why Algorithm 2 is a O(log n)-approximation algorithm for Set-Cover.

4 Bonus : Train driver (5 pts, remaining time)

This question may be not as easy as it looks like ! !
Assume that you are the driver of a train and want to go from A to B. Since you are driving

a train, you cannot take a sharp turn. Could you find such a walk from A to B ? That is,

Question 20 In the picture on Figure 2, find a walk (you can use several times a same segment)
from A to B without acute angles.

To formalize this problem, let us consider graphs with forbidden transitions. That is, we are
given a graph G = (V,E) and, for every vertex v ∈ V , let Ev = {e1, · · · , ed(v)} be the set of edges
incident to v (so, v has degree d(v)). For every 1 ≤ i ≤ d(v), we are also given a set Av

ei ⊆ Ev.
Informally, when arriving at vertex v by edge ei, we are only allowed to leave v by some edge in
Av

i (the allowed edges).
More formally, a valid walk in (G, {Av

ei | v ∈ V, 1 ≤ i ≤ d(v)}) is any sequence of vertices
(v0, v1, · · · , v`) such that {v0, v1} ∈ E and, for every 1 ≤ j < `, {vj , vj+1} ∈ E

vj
{vj−1,vj}.

Question 21 Describe an algorithm that takes a graph with forbidden transitions and two ver-
tices A and B as inputs and computes a valid walk from A to B (or states that such a valid walk
does not exist).

5

Figure 2 – The train track.

6

7

8

9

10

