Part 2: Multiway cut Problem

8. (1 point) Let G be a graph without multiple edges (i.e., any two vertices are linked by at most one edge) with n vertices and m edges. Show that $m=O\left(n^{2}\right)$.
\qquad
\qquad
\qquad
\qquad
9. (2 points) Let Π be a minimization problem and let $c>0$. What is a c-approximation algorithm for Π ? (in particular, recall the 3 properties of such an algorithm)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The goal of this part is to analyze a 2-approximation algorithm for the Multiway cut Problem (defined below).

In this part, we consider a connected undirected graph $G=(V, E)$ with a weight-function on edges $w: E \rightarrow \mathbb{R}$. That is, each edge $e \in E$ is assigned a real $w(e)$, called its weight. Given a set $A \subseteq E$ of edges, the weight $w(A)$ of A is defined as the sum of the weights of the edges in $A: w(A)=\sum_{e \in A} w(e)$.

Cut between two vertices

Let $s, t \in V$ be two vertices of G. A subset $C \subseteq E$ of edges of G is called a st-cut if s and t are in two distinct connected components of $G \backslash C=(V, E \backslash C)$. That is, there are no paths from s to t once the edges of C have been removed (note that only the edges are removed, not their endpoints).
For instance, in the graph G depicted in Figure 1, the set $\{\{g, i\},\{h, i\}\}$ is a aj-cut (that is, removing these edges disconnects vertices a and j) of weight $w(\{g, i\})+w(\{h, i\})=3+6=9$.
10. (1 point) In the example of Figure 1, explain why the set $\{\{a, b\},\{c, h\},\{g, i\}\}$ is not a aj-cut.
\qquad
\qquad

Figure 1: Example of a graph G. The integers on the edges represent their weights.
11. (1 point) In the example of Figure 1, give a aj-cut of weight at most 5.

Given a graph $G=(V, E)$ with weight w on edges and two vertices $s, t \in V$ of G, the Minimum st-cut Problem aims at computing a st-cut with minimum weight.
The Minimum st-cut Problem can be solved in polynomial-time, for instance using the Ford-Fulkerson Algorithm in time $O\left(m^{3} \max _{e \in E} w(e)\right)$ where $m=|E|$. From now on, we assume that the Ford-Fulkerson algorithm can be used for solving the Minimum st-cut Problem in polynomial-time.

Cut between one vertex and a subset of vertices

Let $s \in V$ be one vertex of G and $T \subseteq V \backslash\{s\}$ be a set of vertices not containing s. A subset $C \subseteq E$ of edges of G is called a $s T$-cut if every vertex $t \in T$ is disconnected from s in $G \backslash C$. That is, for any $t \in T$, there are no paths from s to t once the edges of C have been removed (note that only the edges are removed, not their endpoints).
12. (1 point) Let $T=\{d, h\}$. In the example of Figure 1, give a $a T$-cut of weight at most 9 .
13. (3 points) Using the Ford-Fulkerson algorithm, give a polynomial-time algorithm that takes a graph $G=(V, E)$ with weighted edges, a vertex $s \in V$ and a subset $T \subseteq V \backslash\{s\}$ of vertices as inputs and returns a minimum weight $s T$-cut.

Hint. Consider the graph G^{\prime} obtained from G by adding a new vertex t adjacent to every vertex of T. Moreover, for any vertex $x \in T$, the weight of the edge $\{x, t\}$ is $w(\{x t\})=\infty$. (see Figure 2 for an illustration of G^{\prime}).

Figure 2: Example of a graph G, a vertex s, a subset $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ and the obtained graph G^{\prime}.
\qquad

Multiway Cut

Let $G=(V, E)$ be a graph with edge-weight $w: E \rightarrow \mathbb{R}$, let $r \geq 2$ be an integer and $T=\left\{t_{1}, \cdots, t_{r}\right\} \subseteq V$. A T-multiway cut $C \subseteq E$ is a subset of edges that pairwise disconnect the vertices in T, that is, for any $i<j \leq r$, there are no paths from t_{i} to t_{j} in $G \backslash C$.
Given an edge-weighted graph $G=(V, E)$ and a subset $T \subseteq V$ of vertices, the Multiway Cut Problem consists in computing a T-multiway cut with minimum weight.
14. (1 point) Let $T=\{e, d, h\}$. In the example of Figure 1, give a T-multiway cut of weight at most 10 .

Let $T=\{a, d, i, j\}$. In the example of Figure 1, give a T-multiway cut of weight at most 33 .
\qquad
\qquad
15. (1 point) Explain why, if $|T|=r=2$, the Multiway Cut Problem can be solved in polynomial-time.
\qquad
\qquad
\qquad

Unfortunately, if $r>2$, the Multiway Cut Problem becomes NP-hard.
16. (1 point) Explain what this implies (can this problem be solved in polynomial-time?).

Hint: the answer is neither yes nor no.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
What follows is dedicated to a 2-approximation algorithm for this problem.
17. (3 points) Give an exponential-time algorithm that computes a minimum multiway cut in arbitrary graphs. Provide its time-complexity as a big-O of a function of m (the number of edges) and prove it.
\qquad

Let us consider the following algorithm.

```
Algorithm 1 A 2-approximation algorithm for Multiway-Cut
Require: A weighted graph \(G=(V, E)\) with \(w(e)\) the weight of edge \(e \in E\). A set of \(r\) vertices
    \(T=\left\{t_{1}, t_{2}, \ldots, t_{r}\right\} \subseteq V\).
    for Every \(i \in\{1, \cdots, r\}\) do
        Let \(T_{i}=T \backslash\left\{t_{i}\right\}\).
        Let \(C_{i}\) be a minimum weight \(t_{i} T_{i}\)-cut in \(G\)
    return \(C=\bigcup_{i \leq r} C_{i}\).
```

18. (1 point) Explain why Algorithm 1 returns a T-multiway cut.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19. (1 point) Explain why Algorithm 1 performs in polynomial-time.
\qquad
\qquad
\qquad
\qquad
20. (3 points) Why Algorithm 1 is a 2-approximation algorithm for the Multiway Cut ProbLEM?
\qquad
