University Côte d'Azur Master 1 : Informatique Fondamentale

Graphs January, 2025

TD 1 :

Basic mathematics 1

Question 1 Among	the following expressions,	what are the ones that are	e O(some polynomial
in n) ?		(here, k is a fixed con	stant, i.e., $k = O(1)$)
1. $2^{5 \log n}$	4. n^{π}	7. n^{2025}	10. $n^k * 2^k$
2. $n^2 + 6n + \frac{1}{2^n}$	5. $\frac{n}{\log \log n}$	8. n^n	11. $k^2 + k \log k$
3. $2^{\sqrt{n}}$	6. $\log^6 n (\log \log n)$) 9. $n^{\log n}$	12. 7

Question 2 — What is the number of subsets of a set with n elements?

- What is the number of sequences with n elements (each between 0 and n) so that each element appears exactly one?
- What is the number of numbers with 10 digits (each between 0 and 9) such that there are exactly two "4" and at least one "5"?
- What is the order of magnitude of $\sum_{i=0}^{n} (i^2 \sum_{j=0}^{i} j)$?

Question 3 What is the time complexity of the following two algorithms?

Algorithm 1 Example 1	
1: For $i = 1$ to n do:	
2: For $j = 1$ to ℓ do :	
3: For $k = 1$ to n do : Print "Hello"	
	1

Algorithm 2 Example 2 : Fib
Require: $n \in \mathbb{N}$
1: If $n \leq 1$ Return n
2: Else Return $Fib(n-1) + Fib(n-2)$.

2 Graph Algorithms and Complexity

Question 4 What is the class P? the class NP? Give an intuitive explanation of what means to be NP-complete.

Question 5 For each of the following problems : say if it is known to be in P, give its formal definition (input + output) and name an algorithm to solve it and give its time-complexity.

- 1. **Sort** *n* integers;
- 2. Compute a Minimum Spanning tree in a weighted graph;
- 3. Compute a shortest path between two vertices in a weighted graph;
- 4. Compute a maximum matching in a graph;
- 5. Load balancing problem;
- 6. Compute a minimum vertex cover in a graph;
- 7. Decide if a graph is Hamiltonian;
- 8. Decide if a graph admits an Eulerian cycle;

Question 6 Give an algorithm that decide if a n-node graph is **connected**. Give its timecomplexity.

Question 7 A set of vertices of a graph is **stable** if its elements are pairwise non-adjacent. Give an algorithm that computes a maximum stable set in an n-node graph. Give its time-complexity.

Question 8 A graph is **bipartite** if its vertex-set can be partitioned into two stable sets. Prove that a graph is bipartite if and only if it does not contain a cycle with odd length.