

COATI

Computing Tree-decompositions of Graphs

Julien Bensmail Nicolas Nisse

julien.bensmail@unice.fr , http://www-sop.inria.fr/members/Julien.Bensmail/nicolas.nisse@inria.fr, http://www-sop.inria.fr/members/Nicolas.Nisse/

Graph decompositions and treewidth. *Tree-decompositions* of graphs are a way to decompose a graph into small "pieces" (called bags) with a tree shape. To every tree-decomposition of a graph a measure is associated (its width). In the last decades, graph decompositions have been studied a lot for their algorithmic applications (among others, they are an important ingredient of the celebrated Robertson and Seymour work on Graph Minors). Indeed, once a graph admits a good decomposition (the smaller the width is, the better the decomposition is), many hard problems can be solved efficiently using dynamic programming (e.g., the famous Courcelle's Theorem). Unfortunately, computing a good decomposition is a hard task by itself. More precisely, computing an optimal tree-decomposition of a graph is an NP-hard problem. There are algorithms that decide if a graph has treewidth at most k in polynomial time (for a fixed k) but none of them is practical even for small graphs. Therefore, a research effort has to be done to find efficient algorithms to compute tree-decompositions.

One way to tackle this question is to focus on different measures of tree-decompositions [KLNS15, Seymour16]. For instance, the *treelength* (measuring the diameter of the bags) [DG07,CDN16] and the *treebreadth* (corresponding to the radius of the bags) are known to be NP-hard to compute but admit efficient approximation algorithms in general graphs (e.g., [DLN16]). Moreover, the treelength and the treewidth are equivalent (up to a constant ratio) in large graph classes [CDN16]. For these reasons, it is important to investigate the computational complexity of treebreadth in such graphs.

Objectives of the internship. The ambitious objectives of the internship may be some of the following:

- Study the computational complexity of treelength (or treebreadth) in the class of planar graphs.
- Propose better approximation algorithms for treelength or treebreadth in general graphs.
- Turn the result of [CDN14] into an algorithmical one (i.e., find an algorithm that, given a tree-decomposition with small length, computes one with small width).

References:

- **CDN16** David Coudert, Guillaume Ducoffe and Nicolas Nisse, To Approximate Treewidth, Use Treelength! SIAM J. Discrete Math. 30(3): 1424-1436 (2016)
- **DG07** Yon Dourisboure, Cyril Gavoille: Tree-decompositions with bags of small diameter. Discrete Mathematics 307(16): 2008-2029 (2007)
- [LN16 Guillaume Ducoffe, Sylvain Legay, Nicolas Nisse: On the Complexity of Computing Treebreadth. in Proceedings of 27th International Workshop on Combinatorial Algorithms (IWOCA) 2016: 3-15
- **KLNS15** Adrian Kosowski, Bi Li, Nicolas Nisse, Karol Suchan: k-Chordal Graphs: From Cops and Robber to Compact Routing via Treewidth. Algorithmica 72(3): 758-777 (2015)
- Seymour16 Paul D. Seymour: Tree-chromatic number. J. Comb. Theory, Ser. B 116: 229-237 (2016)