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Abstract

Collaboration networks can be naturally represented as hypergraphs, where vertices
correspond to authors and hyperedges correspond to publications. In the past decades,
several random hypergraph models have been proposed. However, these models do not
generate power-law degree distributions with an exponential cutoff, which we observe
in real-world collaboration networks. We present a novel mathematical model, which
utilizes the preferential attachment and the vertex deactivation mechanisms to generate
random hypergraphs. We prove that, under a few assumptions, the degree distribution
of such random hypergraphs follows a power-law distribution with an exponential cutoff.
Finally, we show simulation results, which demonstrate the close correspondence between
the degree distribution of a hypergraph generated according to the proposed model and
a theoretical power-law distribution with an exponential cutoff.
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1 Introduction

The field of complex networks investigates structures with complex topology. Many
real-world systems can be described as complex networks: consider, for example, the
World Wide Web, which consists of web pages and hyperlinks, or social networks, which
consist of people and connections between them.

In the past decades, numerous researchers analysed empirical data to study differ-
ent features of complex networks [5, 11, 14, 19]. In particular, a lot of research has been
conducted to estimate degree distributions of various real networks and to develop math-
ematical models, which would explain how these degree distributions could be generated.
It is often believed that many real-world networks have power-law degree distributions,
which is why numerous existing models aim to generate random networks whose degree
distribution follows a power law [2,3,10]. However, several studies of collaboration net-
works show that their degree distributions rather follow a power-law distribution with
an exponential cutoff [23–25]. This renders the existing models unsuitable for modelling
collaboration networks.

1.1 Motivation

Initiatives d’Excellence (IDEX) and Laboratoires d’Excellence (LABEX) are French
funding programs that aim to promote scientific collaborations between different coun-
tries, universities, researchers, research teams and disciplines by providing funds for
interdisciplinary research. The main goal of these programs is to increase the produc-
tivity of researchers and reinforce the partnership between institutions and teams.

This thesis is a part of the Scientific Networks and IDEX Funding (SNIF) project
conducted by Inria Sophia Antipolis, I3S, GREDEG and SKEMA Business School. The
purpose of the SNIF project is to measure the success of the aforementioned funding
programs by studying the impact of funding on the evolution of the collaboration net-
work.

To the best of our knowledge, there are no existing mathematical models, which
generate random hypergraphs whose degree distribution follows a power-law distribution
with an exponential cutoff. As such models would be useful for modelling collaboration
networks, in this thesis, we aim to develop a novel mathematical model producing such
random hypergraphs.
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1 Introduction

1.2 Contributions

We present a novel mathematical model, which combines the existing and well-studied
growth and preferential attachment mechanisms with the vertex deactivation mechanism
to generate random hypergraphs that are suitable for modelling collaboration networks.
Then, we conduct a deep analysis of the proposed model and, under a few assumptions,
prove a theorem, stating that the degree distribution of a generated hypergraph follows
a power-law distribution with an exponential cutoff. At last, we also discuss a method
to precisely calculate the parameters of this theoretical distribution.

1.3 Thesis Organization

The thesis is organized as follows.

• In Chapter 2, we discuss the background of complex networks and mention the
most influential related works in the field.

• In Chapter 3, we formally define the random hypergraph model. Also, we state and
prove several theorems, related to the degree distribution of hypergraphs generated
according to the model.

• In Chapter 4, we discuss hypergraphs that were simulated according to the model.

• Finally, we conclude the thesis with Chapter 5.
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2 Background

Complex networks can naturally be represented as graphs or, in a more general case,
hypergraphs. Such a representation enables us to apply mathematical tools in order to
study the properties of these networks, such as the degree distribution, the structure of
communities, distances between participants, and many other metrics. Another method
that can be applied to study complex networks is random models, which often define a
random process, describing how a graph or a hypergraph evolves over time. In this way,
we can approximate the evolution of a real network by specifying a set of simple rules,
which can later be rigorously analysed.

In this thesis, we focus on the analysis of collaboration networks. There are several
ways to represent a collaboration network. The first being a collaboration graph, where
each vertex represents an author, and there is an edge between two authors if they col-
laborated on a publication. However, one of the limitations of this representation is that
we lose all the information about publications (neither do we know how many publi-
cations each author published, nor how publications are distributed between authors;
we also lose information about publications that were published by a single author). In
order to overcome this problem, one could consider other representations of the network,
such as weighted or bipartite graphs, or collaboration hypergraphs. In a collaboration
hypergraph, each hyperedge represents a publication, connecting co-authors together.

A B C

D E F

(a)

A B C

D E F

(b)

Figure 2.1: Different representations of a collaboration network, consisting of 6 authors and
the following publications: {A,B,C,E}, {A,B,D}, {E,F} and {C}. A publication corre-
sponds to a clique in a collaboration graph and a hyperedge in a collaboration hypergraph.
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2 Background

2.1 Power Laws

The degree distribution of a network, which is defined as

P (k) =
number of vertices of degree k

number of all vertices
, (2.1)

can give us a good preliminary insight into the structure of the network. It is often
believed that most real-world networks are scale-free, meaning that their degree distri-
bution follows a power-law distribution [21, 26] of the form

P (k) ∼ Ck−α, (2.2)

where α > 0 is the exponent parameter and C > 0 is the scaling constant.1 In the past
years, a lot of research has been conducted to establish scale-free properties of complex
networks. The power-law distributions have been observed, for example, in citation
networks [11], software dependency networks [19], the Internet [14] and others.

However, more recent studies [6, 28] question the ubiquitousness of power laws and
show that scale-free networks do not appear as often as previously expected. More
importantly, an investigation of a real-world collaboration network confirmed that a
power-law distribution is a poor fit to the degree distribution, meaning that the network
that was being investigated was not scale-free [22–25]. Instead, it was shown that a
power-law distribution with an exponential cutoff of the form

P (k) ∼ Ck−αγk, (2.3)

where 0 < γ ≤ 1 is a constant parameter of the distribution, is a significantly better fit.
Furthermore, we confirmed this observation by analysing a different real-world collabo-
ration network, based on data collected from the Scopus database [27]; we discuss this
analysis further in Section 2.2.

Note that by letting γ = 1, we obtain the “pure” power-law distribution. Hence, the
power-law distributions with an exponential cutoff define a broader family of distribu-
tions, which implies that it will always be a better fit. Therefore, it is important to
understand whether the difference between these distributions is significant to see if a
power-law distribution is a good fit.

1For two real functions f(k) and g(k), we denote f ∼ g if f(k)/g(k)→ 1 as k →∞.
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2 Background

2.2 Analysis of a Real-World Network

We studied a real collaboration network, based on 239 414 publications in computer sci-
ence between the years 1990 and 2018 that were extracted from the Scopus database [27].
The corresponding collaboration graph contained 258 145 vertices and 1 849 527 edges.
Our main goal was to establish whether the constructed collaboration graph and hyper-
graph were scale-free or not. In order to check that, we applied state-of-the-art statistical
tools [9] to fit and compare different theoretical distributions, including the power-law
distribution and the power-law distribution with an exponential cutoff.

As a result, it turned out that neither the collaboration graph, nor the collabora-
tion hypergraph was scale-free. In fact, the difference between the fits of the power-law
distribution and the power-law distribution with an exponential cutoff was statistically
significant. Figure 2.2 demonstrates the difference between the empirical degree distri-
bution and the two fits.

100 101 102 103

Degree k

10−6

10−5

10−4

10−3

10−2

10−1

100

P
(k
)

Power-Law

Power-Law with Cutoff

Empirical

Figure 2.2: Comparison of the fit of different theoretical distributions to the degree distribu-
tion of a real-world collaboration network. From the figure, it can be seen that the difference
between the fits of the power-law distribution and the power-law distribution with an expo-
nential cutoff is significant. For example, one of the necessary (but not sufficient) conditions
for a distribution to follow a power-law distribution is that it must appear as a straight line
on a log-log scale plot. However, as can be seen above, the empirical degree distribution does
not seem to be a straight line, and we observe the presence of a cutoff in its tail.
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2 Background

2.3 Related Works

In the last 50 years, numerous random graph models have been proposed. To name a
few: the Erdős–Rényi model [12, 13], which uniformly selects a graph from a set of all
possible graphs of a certain size; the Barabási–Albert model [3], which generates scale-
free graphs using the growth and preferential attachment mechanisms; the Cooper et al.
model [10], which generates scale-free graphs similarly, but also considers the vertex
deletion; the Chung–Lu model [7], which generates graphs with the expected degree
sequences; and many others.

Also, a few models that generate random hypergraphs have been developed. The first
work in this field was conducted by Bollobás and Erdős [4], and it aimed to investigate
cliques in random graphs. Later, another work by Ghoshal et al. [17] studied how ran-
dom hypergraph models can be applied to analyse complex networks. In 2010, Wang et
al. [29] published the first random hypergraph model, which used the preferential at-
tachment mechanism. Recently, Avin et al. [2] proposed a mathematical model, which
generates random scale-free hypergraphs using the growth and preferential attachment
mechanisms, similarly to the Barabási–Albert model.

However, as we discussed in the previous sections, it appears that the real-world
collaboration network are not scale-free, and their degree distribution rather follows a
power-law distribution with an exponential cutoff. Currently, only several models that
generate such distributions have been proposed [15, 16]. These models also utilize the
growth and preferential attachment mechanisms, but they introduce the vertex deletion
and deactivation mechanisms to make the exponential cutoff appear. Nevertheless, the
problem is that these models are not described in terms of graphs and hypergraphs, and
they cannot be directly applied to generate random collaboration networks. Hence, we
aim to adapt the ideas discussed in [16] to develop a mathematical model, which gen-
erates random hypergraphs whose degree distribution follows a power-law distribution
with an exponential cutoff.
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3 Model

Many mathematical models, which generate scale-free graphs or hypergraphs, utilize
the growth and preferential attachment mechanisms [2, 3] to achieve a power-law de-
gree distribution. Informally, by growth, we mean that some evolution of the initial
hypergraph is involved: that is, we start with some configuration, and we keep adding
vertices and hyperedges over time as the process continues. The notion of preferential
attachment is often informally described as the “rich get richer” phenomenon, meaning
that the greater the degree of a vertex is, the greater the probability that it will be
selected to a hyperedge to increase its degree. These two mechanisms were employed
in the Barabási–Albert model [3] for random scale-free graphs and in the Avin et al.
model [2] for random scale-free hypergraphs.

Another model, introduced by Fenner et al. [16], also uses these mechanisms. However,
they consider another mechanism, namely vertex deactivation, to achieve a power-law
distribution with an exponential cutoff. The idea of vertex deactivation is that during the
process, vertices may also get deactivated with probability proportional to their degree
(according to the preferential attachment mechanism). Such vertices are not removed
from the graph, but they cannot be selected in the future, and thus, their degree freezes
and never changes again. We can think of deactivation as if authors retire and stop
publishing.

In this thesis, we generalize the Avin et al. model [2] by combining it with the
Fenner et al. model [16] to generate random hypergraphs whose degree distribution
follows a power-law distribution with an exponential cutoff. In Sections 3.1 and 3.2,
we discuss notation and provide a formal definition of the model, and in Section 3.3,
we analyse the degree distribution of random hypergraphs, generated according to the
model.

3.1 Definitions and Notation

We define a hypergraph as a pair H = (V,E), where V is a set of vertices and E is a
multiset of non-empty sub-multisets of V , called hyperedges. We allow a hyperedge to
appear multiple times in E since the same set of authors may publish several publications
together. We also allow a vertex to appear in the same hyperedge multiple times in
order to simplify further analysis of the model; however, as the model evolves, with high
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3 Model

probability each vertex will be selected no more than once, given that sizes of hyperedges
are appropriately small.

We define the degree of a vertex v ∈ V in a hyperedge e ∈ E, denoted dege v, to be
the multiplicity of v in e, that is, the number of times v appears in e. The degree of the
vertex v in the hypergraph is defined as deg v =

∑
e∈E dege v. The degree distribution

P (k) of a hypergraph H is the fraction of vertices of degree k, or formally,

P (k) =
|{v ∈ V | deg v = k}|

|V | . (3.1)

Finally, the preferential attachment mechanism states that the probability to select a
vertex v from some subset of vertices A ⊆ V of a hypergraph H is proportional to the
degree of v in H. Formally,

pA(v) =
deg v∑
u∈A deg u

. (3.2)

Then, when we say “a vertex is selected preferentially”, we mean that a vertex is selected
randomly according to the preferential attachment mechanism.

3.2 Model Description

The model can be described with a 5-tuple of parameters H(H0, pv, pe, pd, Y ), where

• H0 = (V0, E0) represents the initial hypergraph. For simplicity, we are going to
assume that |V0| = 1 and |E0| = 1. However, we only require that it contains at
least a single vertex v ∈ V0 with deg v ≥ 1, as it can be shown that the initial
configuration does not affect the asymptotic behaviour of the model.

• pv, pe and pd are probabilities of different events that occur during the process.
Naturally, pv + pe + pd = 1 must hold.

• Y = (Y1, Y2, . . . ) is a sequence of independent random variables, where Yt repre-
sents the size of a hyperedge that is added in step t ≥ 1.

Define a random process which lets the hypergraph grow over time.

• Step t = 0. Initialize the process with H0 and consider its vertices active.

• Step t > 0. Form Ht from Ht−1 by performing one of the following actions:

(a) with probability pv, add a new active vertex v and also preferentially select a
hyperedge e of size Yt−1 among active vertices of Ht−1, and then add {v}∪e
to Ht;

(b) with probability pe, preferentially select a hyperedge of size Yt among active
vertices of Ht−1 and add it to Ht;

11



3 Model

(c) with probability pd, preferentially select a single active vertex to deactivate it;
deactivated vertices remain in the hypergraph, but they cannot be selected
during the following steps of the process.

Whenever we need to select a hyperedge of size Yt in step t ≥ 1, we perform Yt
independent selections of vertices in Vt−1 using the preferential attachment mechanism.
Note that the same vertex may be selected several times to the same hyperedge. However,
the probability of that happening approaches 0 as t → ∞, when Yt is selected to be
appropriately small.

Note that since, on average, we need to add vertices more often than deactivate them,
it is naturally required for pv > pd to hold [16]. Otherwise, the model will eventually
stop working as soon as we run out of active vertices. Nonetheless, it is possible that
the model finishes with this error even when the requirement holds. We consider such
cases invalid, and we restart the model whenever such an event occurs.

Remark 1. The model generalizes Avin et al. model [2] by introducing the deactivation
of vertices, which leads to an appearance of an exponential cutoff. Hence, by specifying
pd = 0, we remove the vertex deactivation mechanism completely and thus obtain the
Avin et al. model, which generates scale-free hypergraphs.

Remark 2. The model can also be seen as a generalization of Fenner et al. model [16],
which is described in terms of balls with attached pins. In this case, balls correspond
to vertices and pins correspond to hyperedges of size 1. Hence, by specifying Yt = 1, in
each step of the model we can either add a ball with a single pin, or add a pin to an
existing active ball, or deactivate an existing active ball. This is exactly the definition
of the Fenner et al. model.

3.3 Degree Distribution Analysis

In this section, we analyse the degree distribution of hypergraphs, generated according
to the proposed model, and under a few assumptions, prove that it follows a power-law
distribution with an exponential cutoff.

3.3.1 Preliminaries

Let Ak,t denote the number of active vertices and Ik,t denote the number of inactive
vertices of degree k at step t ≥ 0. Then, the total number of vertices of degree k at step
t can be expressed as Nk,t = Ak,t + Ik,t. Let Nt denote the total number of vertices and
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3 Model

let also At denote the number of active vertices at step t ≥ 0; that is,

At =
∞∑
k=1

Ak,t. (3.3)

Since we start with a single vertex and then, in each step, we add no more than 1 vertex,
we have

At ≤ Nt ≤ 1 + t. (3.4)

We now derive the expectation of the total number of vertices Nt and the number of
active vertices At at step t ≥ 0. First, observe that since in each step we add a vertex
with probability pv and vertices are never removed from the hypergraph, we have

E[Nt] = 1 + pvt. (3.5)

Likewise, since we start with a single vertex and then, in each time step, we either add
a new active vertex with probability pv, or deactivate an active vertex with probability
pd, we derive that the expectation of At can be expressed as

E[At] = 1 + (pv − pd)t. (3.6)

Let Dt denote the total sum of degrees of active vertices at step t ≥ 0; that is,

Dt =
∞∑
k=1

kAk,t. (3.7)

Then, considering that with probability pv + pe we add a hyperedge of size Yt, and with
probability pd we deactivate an active vertex, we now express the expectation of Dt as

E[Dt] = 1 + (pv + pe)
t∑

τ=1

E[Yt]− pd
t∑

τ=1

E[Θτ ], (3.8)

where Θτ is a random variable that represents the degree of a vertex chosen for deacti-
vation in step τ ≥ 1.

Before we move to the main theorem about the degree distribution of generated hy-
pergraphs, we need to define several assumptions about certain distributions associated
with the model. We then also state two technical lemmas, which we will use later in the
proof.

Assumption 1. E[Yt] = µ ∈ R>0, for all t > 0.

Assumption 2. lim
t→∞

1

t

t∑
τ=1

E[Θτ ] = θ ∈ R>0.
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3 Model

Assumption 3. E
[
Ak,t
Dt

]
=

E[Ak,t]

E[Dt]
+ o(1).

Assumption 4. E
[
Y 2
t

D2
t−1

]
= o

(
1

t

)
.

These assumptions are (unfortunately) required to prove the main theorem of this
thesis, and they also arise in [2] and [16]. Essentially, Assumptions 1 and 4 put restric-
tions on sizes of hyperedge, as in reality they are relatively small. Assumption 2 states
that the average degree of a deactivated vertex converges to some constant. Note that
from Assumptions 1 and 2, using Equation 3.8, we obtain

lim
t→∞

E[Dt]

t
= (pv + pe)µ− pdθ, (3.9)

and also, considering that E[Θτ ] ≥ 1 and E[At] ≤ E[Dt], we have

1 ≤ 1

t

t∑
τ=1

E[Θτ ] ≤ 1 +
pv(µ− 1) + peµ

pd
. (3.10)

Finally, note that Assumption 3 is a general technical assumption and is only required to
prove the main theorem. It could be replaced with a more “natural” assumption about
the concentration of Dt around its expectation (if we assume that with high probability
Dt = E[Dt] + o(t)). In Chapter 4, we provide convincing simulation results to support
Assumptions 2 and 3.

Lemma 1 ([8, Chapter 3.3]). Let (at), (bt), (ct) be three sequences such that

at+1 = at

(
1− bt

t

)
+ ct, for any t ≥ t0, (3.11)

limt→∞ bt = b > 0 and limt→∞ ct = c. Then limt→∞
at
t

exists and equals
c

1 + b
.

Lemma 2 ([18, Lemma 4]). Let Nk,t denote the number of vertices of degree k and Nt

denote the number of vertices at step t ≥ 0. Then

lim
t→∞

E
[
Nk,t

Nt

]
= lim

t→∞
E[Nk,t]

E[Nt]
. (3.12)

3.3.2 Main Theorem

Having introduced the notation and assumptions, we proceed to the main theorem about
the degree distribution of hypergraphs generated according to the proposed model.
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3 Model

Theorem 3. Let H be a hypergraph generated according to the model H(H0, pv, pe, pd, Y ),
and suppose that Assumptions 1–4 hold. Then the degree distribution P (k) of H follows
a power-law distribution with an exponential cutoff of the form

P (k) ∼ C

pv

γk

k1/β

(
1

k
+ δ

)
, (3.13)

where constants C, β, γ and δ can be expressed in terms of parameters of the model.

Proof. We closely follow the master equation approach from [2]. The proof is organized
as follows: we first derive and solve a recurrence equation for the expected number of
active vertices of degree k, which then allows us to derive and solve a similar recurrence
equation for the expected number of inactive vertices of degree k. Finally, we use these
two results to evaluate the degree distribution.

Evaluating E[Ak,t]/t as t→∞ Remind that Ak,t denotes the number of active vertices
of degree k at step t. To evaluate limt→∞ E[Ak,t]/t, we use mathematical induction on k.
We first consider the case k = 1. An active vertex remains in A1,t if it had degree 1 at
step t− 1 and was neither selected to a hyperedge, nor deactivated. Also, in each step,
with probability pv, a single new active vertex of degree 1 is added to the hypergraph.
Now, let Ft denote a σ-algebra associated with the probability space at step t. Then

E[A1,t | Ft−1] = pvA1,t−1

(
1− 1

Dt−1

)Yt−1
+ peA1,t−1

(
1− 1

Dt−1

)Yt
+ pdA1,t−1

(
1− 1

Dt−1

)
+ pv. (3.14)

We now derive bounds for E[A1,t]. By taking the expectation of both sides of Equa-
tion 3.14 and by using Bernoulli’s inequality, we obtain

E[A1,t] ≥ pvE
[
A1,t−1

(
1− Yt − 1

Dt−1

)]
+ peE

[
A1,t−1

(
1− Yt

Dt−1

)]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

= pvE[A1,t−1]

(
1− E[Yt]− 1

E[Dt−1]

)
+ peE[A1,t−1]

(
1− E[Yt]

E[Dt−1]

)
+ pdE[A1,t−1]

(
1− 1

E[Dt−1]

)
+ pv − o(1)

= E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+ pv − o(1), (3.15)
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3 Model

where the penultimate equality follows from the assumptions we have made about the
distribution of E[A1,t−1/Dt−1] and the independence of Yt from A1,t−1 and Dt−1. On the
other hand, since (1− x)n ≤ 1/(1 + nx) for x ∈ [0, 1] and n ∈ N, we have

E[A1,t] ≤ pvE
[

A1,t−1
1 + (Yt − 1)/Dt−1

]
+ peE

[
A1,t−1

1 + Yt/Dt−1

]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

= pvE
[
A1,t−1

(
1− Yt − 1

Dt−1 + Yt − 1

)]
+ peE

[
A1,t−1

(
1− Yt

Dt−1 + Yt

)]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

≤ pvE
[
A1,t−1

(
1− Yt − 1

Dt−1
+

(Yt − 1)2

D2
t−1

)]
+ peE

[
A1,t−1

(
1− Yt

Dt−1
+

Y 2
t

D2
t−1

)]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

= pvE[A1,t−1]

(
1− E[Yt]− 1

E[Dt−1]

)
+ peE[A1,t−1]

(
1− E[Yt]

E[Dt−1]

)
+ pdE[A1,t−1]

(
1− 1

E[Dt−1]

)
+ pv + pvE

[
O(t)

(Yt − 1)2

D2
t−1

]
+ peE

[
O(t)

Y 2
t

D2
t−1

]
= E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+ pv + o(1). (3.16)

From Equations 3.15 and 3.16, we thus conclude that

E[A1,t] = E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+ pv + o(1). (3.17)

We now apply Lemma 1 to evaluate limt→∞ E[A1,t]/t. Let

at = E[A1,t], (3.18)

bt =
pv(µ− 1) + peµ+ pd

E[Dt−1]/t
, (3.19)

ct = pv + o(1). (3.20)

From Equation 3.9, we then obtain that

lim
t→∞

bt =
pv(µ− 1) + peµ+ pd
µ(pv + pe)− pdθ

= β, (3.21)

lim
t→∞

ct = pv, (3.22)
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and thus,

lim
t→∞

at
t

= lim
t→∞

E[A1,t]

t
= Ā1 =

pv
1 + β

. (3.23)

Now, assume the induction hypothesis that limt→∞ E[Ak−1,t]/t exists and equals Āk−1.
For k > 1, an active vertex appears in Ak,t if it was active at step t− 1, had degree k− l
and was chosen exactly l times to a hyperedge, or it had degree k and was not selected
for deactivation. Thus,

E[Ak,t | Ft−1] = pv

min{Yt−1,k−1}∑
l=0

Ak−l,t−1P
[
l, Yt − 1,

k − l
Dt−1

]
+ pe

min{Yt,k−1}∑
l=0

Ak−l,t−1P
[
l, Yt,

k − l
Dt−1

]
+ pdAk,t−1

(
1− k

Dt−1

)
,

(3.24)

where

P[l, n, p] =

(
n

l

)
pl(1− p)n−l. (3.25)

We now derive bounds for E[Ak,t]. Let

E[Ak,t] = E[ψ] + pvE[ϕ(Yt − 1)] + peE[ϕ(Yt)], (3.26)

where

ψ = pv

1∑
l=0

Ak−l,t−1P
[
l, Yt − 1,

k − l
Dt−1

]
+ pe

1∑
l=0

Ak−l,t−1P
[
l, Yt,

k − l
Dt−1

]
+ pdAk,t−1

(
1− k

Dt−1

)
= Ak,t−1

(
pv

(
1− k

Dt−1

)Yt−1
+ pe

(
1− k

Dt−1

)Yt
+ pd

(
1− k

Dt−1

))

+ Ak−1,t−1
k − 1

Dt−1

(
pv(Yt − 1)

(
1− k − 1

Dt−1

)Yt−2
+ peYt

(
1− k − 1

Dt−1

)Yt−1)
(3.27)

and

ϕ(n) =

min{n,k−1}∑
l=2

Ak−l,t−1P
[
l, n,

k − l
Dt−1

]
. (3.28)
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We aim to show that only the term E[ψ] is significant and that the terms E[ϕ(Yt − 1)]
and E[ϕ(Yt)] converge to 0 as t→∞. We have

ϕ(Yt) ≤
k−1∑
l=2

Ak−l,t−1

(
Yt
l

)(
k − l
Dt−1

)l(
1− k − l

Dt−1

)Yt−l
≤ O(t)

k−1∑
l=2

(
Yt
l

)(
k − l
Dt−1

)l(
1− k − l

Dt−1

)Yt−l
≤ O(t)

k−1∑
l=2

Y l
t

(
k

Dt−1

)l(
1− 1

Dt−1

)Yt−k+1

≤ O(t)
Y 2
t k

2

D2
t−1

e−Yt/Dt−1ek−1
k−1∑
l=2

(
Ytk

Dt−1

)l−2
= O(t)

Y 2
t

D2
t−1

e−Yt/Dt−1

k−1∑
l=2

(
Ytk

Dt−1

)l−2
. (3.29)

Then, if Yt ≤ Dt−1, we have

ϕ(Yt) ≤ O(t)
Y 2
t

D2
t−1

kk−2 = O(t)
Y 2
t

D2
t−1

. (3.30)

Otherwise, we have

ϕ(Yt) ≤ O(t)
Y 2
t

D2
t−1

e−Yt/Dt−1
(Ytk/Dt−1)k−2 − 1

(Ytk/Dt−1)− 1

≤ O(t)
Y 2
t

D2
t−1

e−Yt/Dt−1
(Yt/Dt−1)k−2

k − 1
kk−2

≤ O(t)
Y 2
t

D2
t−1

e−(k−2)
(k − 2)k−2

k − 1
kk−2

= O(t)
Y 2
t

D2
t−1

.

(3.31)

where the last inequality follows from the fact that e−xxα is maximized at x = α.
Therefore, under the assumptions we have made about the distributions of Yt and Dt−1,
in both cases we have E[ϕ(Yt)] = o(1) and similarly, E[ϕ(Yt − 1)] = o(1). We now derive
bounds for E[ψ], similarly to what we have done for E[A1,t]. We thus have

E[ψ] = E

[
Ak,t−1

(
pv

(
1− k

Dt−1

)Yt−1
+ pe

(
1− k

Dt−1

)Yt
+ pd

(
1− k

Dt−1

))]
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+ E

[
Ak−1,t−1

k − 1

Dt−1

(
pv(Yt − 1)

(
1− k − 1

Dt−1

)Yt−2
+ peYt

(
1− k − 1

Dt−1

)Yt−1)]

≥ E
[
Ak,t−1

(
pv

(
1− (Yt − 1)k

Dt−1

)
+ pe

(
1− Ytk

Dt−1

)
+ pd

(
1− k

Dt−1

))]
+ E

[
Ak−1,t−1

k − 1

Dt−1

(
1− (k − 1)(Yt − 1)

Dt−1

)
(pv(Yt − 1) + peYt)

]
= E[Ak,t−1]

(
1− k(pv(µ− 1) + peµ+ pd)

E[Dt−1]

)
+ E[Ak−1,t−1]

(k − 1)(pv(µ− 1) + peµ)

E[Dt−1]
+ o(1). (3.32)

At the same time,

E[ψ] ≤ E[Ak,t−1]

(
1− k(pv(Yt − 1) + peYt + pd)

Dt−1

)
+ E

[
O(t)

Y 2
t

D2
t−1

]
+ E

[
Ak−1,t−1

k − 1

Dt−1
(pv(Yt − 1) + peYt)

]
= E[Ak,t−1]

(
1− k(pv(µ− 1) + peµ+ pd)

E[Dt−1]

)
+ E[Ak−1,t−1]

(k − 1)(pv(µ− 1) + peµ)

E[Dt−1]
+ o(1). (3.33)

From Equations 3.32 and 3.33, we hence obtain

E[Ak,t] = E[Ak,t−1]

(
1− k(pv(µ− 1) + peµ+ pd)

E[Dt−1]

)
+ E[Ak−1,t−1]

(k − 1)(pv(µ− 1) + peµ)

E[Dt−1]
+ o(1).

(3.34)

Remind that by the induction hypothesis, we assume that limt→∞ E[Ak−1,t]/t = Āk−1.
We apply Lemma 1 to evaluate limt→∞ E[Ak,t]/t. Let

at = E[Ak,t], (3.35)

bt =
k(pv(µ− 1) + peµ+ pd)

E[Dt−1]/t
, (3.36)

ct =
E[Ak−1,t−1]

t

(k − 1)(pv(µ− 1) + peµ)

E[Dt−1]/t
+ o(1). (3.37)

We therefore obtain that
lim
t→∞

bt = kβ (3.38)
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and

lim
t→∞

ct = Āk−1
(k − 1)(pv(µ− 1) + peµ)

µ(pv + pe)− pdθ
. (3.39)

Hence,

lim
t→∞

at
t

= lim
t→∞

E[Ak,t]

t
= Āk = Āk−1

(k − 1)γ

k + 1/β
, (3.40)

where

γ =
pv(µ− 1) + peµ

pv(µ− 1) + peµ+ pd
. (3.41)

We finally have

Ā1 =
pv
β

1

(1 + 1/β)
, (3.42)

Ā2 =
pv
β

γ

(1 + 1/β)(2 + 1/β)
, (3.43)

. . .

Āk =
pv
β

γk−1(k − 1)!

(1 + 1/β)(2 + 1/β) . . . (k + 1/β)
. (3.44)

Hence,

Āk =
pv
βγ

γkΓ(1 + 1/β)Γ(k)

Γ(k + 1 + 1/β)
∼ C

γk

k1+1/β
, (3.45)

where
C =

pv
βγ

Γ(1 + 1/β). (3.46)

Evaluating E[Ik,t]/t as t→∞ We now observe that the expected number of inactive
vertices of degree k ≥ 1 at step t, given Ft−1, can be expressed as

E[Ik,t | Ft−1] = Ik,t−1 + pdAk,t−1
k

Dt−1
(3.47)

since inactive vertices of degree k remain in Ik,t forever and a vertex of degree k becomes
inactive if it was selected in step t − 1 for deactivation. By taking the expectation of
both sides, we obtain

E[Ik,t] = E[Ik,t−1] + pdE[Ak,t−1]
k

E[Dt−1]
+ o(1). (3.48)

We then have that

lim
t→∞

(E[Ik,t]− E[Ik,t−1]) = lim
t→∞

pdk
E[Ak,t−1]

t

t

E[Dt−1]
+ o(1)
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= Āk
pdk

(pv + pe)µ− pdθ
= Ākkδ, (3.49)

where
δ =

pd
(pv + pe)µ− pdθ

. (3.50)

Hence, by Stolz–Cesàro theorem, we obtain

Īk = lim
t→∞

E[Ik,t]

t
= lim

t→∞
(E[Ik,t]− E[Ik,t−1]) = Ākkδ. (3.51)

Degree Distribution Remind that Nk,t denotes the total number of vertices at step t;
that is, Nk,t = Ak,t + Ik,t. Therefore,

N̄k = lim
t→∞

E[Nk,t]

t
= Āk + Īk = Āk(1 + kδ) ∼ C

γk

k1/β

(
1

k
+ δ

)
. (3.52)

To refer to the degree distribution of a hypergraph, we need to consider the limit of the
expected fraction of vertices of degree k as t → ∞. Hence, by applying Lemma 2, we
obtain

lim
t→∞

E
[
Nk,t

Nt

]
= lim

t→∞
E[Nk,t]

E[Nt]
=
N̄k

pv
∼ C

pv

γk

k1/β

(
1

k
+ δ

)
, (3.53)

which thereby concludes the proof.

3.3.3 Evaluating θ

In Theorem 3, we have proved that the degree distribution of a hypergraph, generated
according to the model H(H0, pv, pe, pd, Y ), follows a power-law distribution with an
exponential cutoff. The parameters of this theoretical distribution can be expressed in
terms of pv, pe, pd, µ and θ. Recall that Θt is a random variable that describes the
degree of a vertex selected for deactivation in step t ≥ 1. Also, from Assumption 2,
remind that

θ = lim
t→∞

1

t

t∑
τ=1

E[Θτ ]. (3.54)

However, we do not know how Θt is distributed, and thus, we cannot express θ. In this
section, we discuss a method, which, under a few assumptions, allows us to evaluate θ
with arbitrary precision.
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From the definition of Θt, we can express

E[Θt] = E
[∑∞

k=1 k
2Ak,t∑∞

k=1 kAk,t

]
. (3.55)

We now observe that from the expression of Āk, we can obtain

∞∑
k=1

kĀk =
pv

1 + β

∞∑
n=0

Γ(n+ 1)Γ(n+ 2)Γ(2 + 1/β)

Γ(n+ 2 + 1/β)

γn

n!
=

pv
1 + β

∞∑
n=0

(1)n(2)n
(2 + 1/β)n

γn

n!
,

(3.56)
where (x)n = Γ(x+ n)/Γ(x) is the Pochhammer symbol. We can further nicely express
this series using the Gaussian hypergeometric function [1]

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (3.57)

which is defined for |z| < 1 and c 6∈ Z≤0. Thus,

∞∑
k=1

kĀk =
pv

1 + β
F (1, 2; 2 + 1/β; γ), (3.58)

and similarly,
∞∑
k=1

k2Āk =
pv

1 + β
F (2, 2; 2 + 1/β; γ). (3.59)

If we now assume that E[Θt] can be approximated by

E[Θt] =
E[
∑∞

k=1 k
2Ak,t]

E[
∑∞

k=1 kAk,t]
+ o(1), (3.60)

then, using Equations 3.58 and 3.59, we obtain

lim
t→∞

E[Θt] = lim
t→∞

E[
∑∞

k=1 k
2Ak,t]

E[
∑∞

k=1 kAk,t]
+ o(1) =

∑∞
k=1 k

2Āk∑∞
k=1 kĀk

=
F (2, 2; 2 + 1/β; γ)

F (1, 2; 2 + 1/β; γ)
. (3.61)

We can then apply Stolz–Cesàro theorem to obtain

θ = lim
t→∞

1

t

t∑
τ=1

E[Θτ ] = lim
t→∞

E[Θt] =
F (2, 2; 2 + 1/β; γ)

F (1, 2; 2 + 1/β; γ)
. (3.62)

Remind that
1

β
=

(pv + pe)µ− pdθ
pv(µ− 1) + peµ+ pd

, (3.63)
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and let F1(θ) = F (1, 2; ρ(θ); γ) and F2(θ) = F (2, 2; ρ(θ); γ), where

ρ(θ) = 2 +
(pv + pe)µ− pdθ

pv(µ− 1) + peµ+ pd
. (3.64)

We now define

R(θ) =
F2(θ)

F1(θ)
. (3.65)

We have thus obtained that θ is a fixed point of the function R(θ). One of the possible
ways to find a fixed point of a function is to apply the fixed-point iteration method, which
consists of calculating the limit of the sequence

θn+1 = R(θn), (3.66)

starting from some initial value θ0. However, there are several things we need to consider
before we can apply this method. First, not every such sequence has a limit, and it may
be the case that it will diverge when starting from improper θ0. Second, there may be
several fixed points of R(θ), thus leading to ambiguity. We, therefore, proceed to analyse
the behaviour of R(θ) to show that it always has a unique fixed point, which can always
be found using the fixed-point iteration method.

Lemma 4.

R(θ) = θ − pv
pd

+
1

1− γ
ρ(θ)− 1

F1(θ)
. (3.67)

Proof. We can use the Gauss’ contiguous relations [1], namely

a(F (a+)− F ) =
(c− a)F (a−) + (a− c+ bz)F

1− z , (3.68)

where F = F (a, b; c; z), F (a+) = F (a + 1, b; c; z) and F (a−) = F (a − 1, b; c; z). From
Equation 3.68, we obtain

F (a+) =

(
2a− c+ (b− a)z

)
F + (c− a)F (a−)

a(1− z)
, (3.69)

and thus
F (a+)

F
=

2a− c+ (b− a)z

a(1− z)
+

(c− a)F (a−)

a(1− z)F
. (3.70)

We observe that by definition of the hypergeometric function, F (0, b; c; z) = 1. By
plugging a = 1, b = 2, c = ρ(θ) and z = γ into Equation 3.70, we obtain Equation 3.67.
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We further proceed to analyse the behaviour of R(θ) on the interval [0, θ̂], where

θ̂ =
(pv + pe)µ

pd
. (3.71)

There are several reasons for selecting such θ̂:

1. From Equation 3.10, remind that

1 ≤ θ ≤ pv(µ− 1) + peµ+ pd
pd

. (3.72)

However, we require pv > pd, which implies that θ ≤ θ̂. Hence, the fixed point of
R(θ) that we are looking for must definitely belong to the interval [0, θ̂].

2. ρ(θ̂) = 2, which makes it very easy to evaluate the hypergeometric function at
that point. For example, F1(θ̂) is a simple geometric series with the ratio γ. Then,
using Equation 3.67, we can show that

R(θ̂) = θ̂ − pv
pd

+ 1. (3.73)

3. Remind that the hypergeometric function F (a, b; c; z) is defined for |z| < 1 and
c 6∈ Z≤0. Therefore, since 0 < γ < 1 and ρ(θ) is positive on [0, θ̂], both F1(θ) and

F2(θ) are always defined and positive on [0, θ̂].

4. R(θ) is continuous on [0, θ̂] since both F1(θ) and F2(θ) are continuous and F1(θ)
is positive on [0, θ̂].

5. We know that R(0) > 0 and R(θ̂) < θ̂. Then, since R(θ) is continuous on [0, θ̂],
by the mean value theorem, there exists at least a single fixed point within the
specified interval.

Lemma 5. R(θ) strictly increases on [0, θ̂].

Proof. First, note that the derivative of the hypergeometric function with respect to c
is

F ′(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

(
ψ(c)− ψ(c+ n)

)
, (3.74)

where ψ(x) denotes the digamma function. Since the digamma function increases on
(0,+∞), we can see that F ′(a, b; c; z) is negative when parameters of the function are
positive.

Now, observe that since ρ′(θ) = γ − 1, we have

F ′1(θ) = (γ − 1)F ′(1, 2; ρ(θ); γ) and F ′2(θ) = (γ − 1)F ′(2, 2; ρ(θ); γ), (3.75)
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and thus, given that γ < 1, they are both positive. In order to determine the sign of

R′(θ) =
F ′2(θ)F1(θ)− F2(θ)F

′
1(θ)

F1(θ)2
, (3.76)

we only need to determine the sign of its numerator. By considering the Cauchy product
of F ′2(θ) and F1(θ), we obtain

F ′2(θ)F1(θ) = (γ− 1)
∞∑
k=0

γk
k∑

n=0

(n+ 1)
(2)n

(ρ(θ))n

(2)k−n
(ρ(θ))k−n

(
ψ(ρ(θ))−ψ(ρ(θ) + n)

)
. (3.77)

Similarly, for F2(θ) and F ′1(θ), we have

F2(θ)F
′
1(θ) = (γ − 1)

∞∑
k=0

γk
k∑

n=0

(k − n+ 1)
(2)n

(ρ(θ))n

(2)k−n
(ρ(θ))k−n

(
ψ(ρ(θ))− ψ(ρ(θ) + n)

)
.

(3.78)
Finally, we express the difference between these two expressions as

F ′2(θ)F1(θ)− F2(θ)F
′
1(θ) =

(γ − 1)
∞∑
k=0

γk
k∑

n=0

(2n− k)
(2)n

(ρ(θ))n

(2)k−n
(ρ(θ))k−n

(
ψ(ρ(θ))− ψ(ρ(θ) + n)

)
.

(3.79)

We now check the sign of the inner sum. Observe that the sum of two elements with
indices n and k − n is

(2n− k)
(2)n

(ρ(θ))n

(2)k−n
(ρ(θ))k−n

(
ψ(ρ(θ) + k − n)− ψ(ρ(θ) + n)

)
. (3.80)

Since the digamma function increases on (0,+∞), we conclude that the inner sum is
negative, which implies F ′2(θ)F1(θ)− F2(θ)F

′
1(θ) > 0 and concludes that R′(θ) > 0.

Lemma 6. R(θ) is a contraction mapping on [0, θ̂].

Proof. Remind that a function f : X 7→ X, defined on a metric space (X, d), is called a
contraction mapping, if there exists a constant q ∈ [0, 1), such that for all x1, x2 ∈ X,
we have

d(f(x1), f(x2)) ≤ qd(x1, x2). (3.81)

If f(x) is a differentiable function, such that sup |f ′(x)| < 1, then f(x) is a contraction
mapping with q = sup |f ′(x)|.
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Now, from Equation 3.67, we obtain

R′(θ) = 1 +
1

1− γ
ρ′(θ)F1(θ)− (ρ(θ)− 1)F ′1(θ)

F1(θ)2
. (3.82)

Remind that F1(θ) is positive and increases, and ρ(θ) > 1 and decreases on [0, θ̂], which
implies that the right term of the expression is negative. Since R(θ) also increases on
[0, θ̂], we have that |R′(θ)| ∈ [0, 1) for any θ ∈ [0, θ̂]. Therefore, by the extreme value
theorem, we know that |R′(θ)| achieves some maximum value q ∈ (0, 1). Then, since [0, θ̂]
is a complete metric space and R([0, θ̂]) ⊆ [0, θ̂], we conclude that R(θ) is a contraction
mapping on [0, θ̂].

Theorem 7. R(θ) has a unique fixed point θ∗ in [0, θ̂], such that

lim
n→∞

θn = θ∗, (3.83)

where θn+1 = R(θn) and θ0 can take any value in [0, θ̂].

Proof. The proof directly follows from the fact that R(θ) is a contraction mapping,
defined on a complete metric space, and the Banach fixed-point theorem.

Remark. We have thus shown that the fixed-point iteration method can be used to find θ
as the fixed point θ∗ of the function R(θ). In fact, we can use the constant q to describe
the speed of convergence of θn to θ∗:

d(θ∗, θn+1) ≤
q

1− qd(θn+1, θn). (3.84)

Hence, we can use this method to approximate θ with arbitrary precision by applying
the function R(θ) a certain amount of times to any initial value in the interval [0, θ̂]. The
problem, however, is that we do not know how to evaluate q precisely. We conjecture
that R(θ) is convex on [0, θ̂], which would imply that the maximum value of R′(θ) is
achieved at θ̂. Then, it would enable us to show that

q = R′(θ̂) = 1 +
1− γ
γ

ln(1− γ). (3.85)

However, we leave this question open for further investigation.

Lemma 8.
R(θ) = θ − pv

pd
+ o(1). (3.86)
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Figure 3.1: A visualization of the fixed-point iteration method applied to the model
H(H0, pv = 0.3, pe = 0.49, pd = 0.21, Yt = 3), starting from θ0 = 0. We can see that R(θ)
monotonously increases, it appears to be convex and asymptotically behave as a linear func-
tion; we prove the latter in Lemma 8.

Proof. According to [20], for |arg(1− z)| < π and positive large λ, we have

F (a, b; c− λ; z) = 1− abz

λ
+O

(
λ−2
)
− πλa+b−1

(
z/(1− z)

)λ−c
z

Γ(a)Γ(b) sin
(
π(λ− c)(1− z)

)×
×
(

1 +
(a+ b− 1)(a+ b+ 2− 2c)− 2ab+ 2(1− a)(1− b)z

2λ
+O

(
λ−2
))
.

(3.87)

We observe that from this approximation, we obtain

lim
λ→+∞

λ

F (a, b; c− λ; z)
= 0 (3.88)

whenever z/(1− z) > 1.

Remind from Equation 3.41 that

γ =
pv(µ− 1) + peµ

pv(µ− 1) + peµ+ pd
. (3.89)
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Since pv > pd and µ ≥ 1, we have 0 < γ ≤ 1 and γ/(1− γ) > 1. Then, we plug

a = 1, b = 2,

c = 2 +
µ(pv + pe)

pv(µ− 1) + peµ+ pd
, λ =

pdθ

pv(µ− 1) + peµ+ pd
,

z = γ

into Equation 3.88 to show that the right term of Equation 3.67 approaches 0 as θ →∞,
which in turn gives us Equation 3.86.
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4 Results and Discussion

4.1 Simulations

In order to verify the proposed model, we ran numerous simulations with different con-
figurations of the model to generate random hypergraphs. For example, Figure 4.1
demonstrates the empirical degree distribution of a hypergraph, simulated according to
the model.1 It also compares it with the theoretical distribution, which was calculated
from the parameters of the model according to Theorems 3 and 7.

100 101 102

Degree k

10−6

10−5

10−4

10−3

10−2

10−1

P
(k
)

Theoretical distribution

Empirical degree distribution P (k)

Figure 4.1: The degree distribution of H(H0, pv = 0.3, pe = 0.49, pd = 0.21, Yt = 3) after
t = 500 000 steps and its corresponding theoretical distribution.

In Figure 4.1, we can see that the empirical degree distribution closely corresponds
to the theoretical one, which makes us believe that the assumptions we have made to
prove the theorem are true.

1The model parameters were chosen arbitrarily. We also observed similar results with other parameters.
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4 Results and Discussion

Figure 4.2 demonstrates the evolution of the average degree of a vertex selected for
deactivation and compares it with the value of θ, which was calculated according to
Theorem 7 using the fixed-point iteration method.

0 20000 40000 60000 80000 100000

t

0

10

20

30

40

Empirical E[Θt]

Empirical 1
t

∑t
τ=1 E[Θτ ]

Estimated θ

Figure 4.2: The evolution of the empirical average deactivated degree (grey and black curves)
as compared to the estimated θ (red line) in a simulation of the model H(H0, pv = 0.3, pe =
0.49, pd = 0.21, Yt = 3).

From Figure 4.2, it appears that the black curve, which represents the empirical
average degree of a deactivated vertex, approaches the red line, which represents the
estimated value of θ. This observation supports Assumption 2 about the convergence of
the average deactivated degree to some constant real number θ, as well as our method
for evaluating θ using the fixed-point iteration method.

Finally, we conducted a series of simulations to generate 10 000 hypergraphs according
to the model H(H0, pv = 0.3, pe = 0.49, pd = 0.21, Yt = 3) after t = 100 000 steps. We
used these hypergraphs to approximate the actual E[Dt] by the empirical mean of Dt.
Figure 4.3 shows this empirical E[Dt] as compared to the trajectory of Dt of one of the
generated hypergraphs. We can see that the empirical E[Dt] appears to be linear with
the slope α = 0.32900254. We then calculate the slope of the actual E[Dt] by using
the fixed-point iteration method to compute θ and then plugging it into Equation 3.9,
which yields α = 0.32904168. Hence, we observe that the empirical estimations closely
correspond to the theoretical results, and they thus support the assumptions we have
previously made.
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4 Results and Discussion
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Figure 4.3: The empirical E[Dt] and the trajectory of Dt of a generated hypergraph.

Figure 4.4 demonstrates the concentration of Dt around its expectation. It appears
that Dt can be approximated by E[Dt] + o(t), which thus supports Assumption 3.
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Figure 4.4: The concentration of Dt around its expectation.
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4 Results and Discussion

4.2 Limitations

Even though we have achieved our main goal and developed a mathematical model,
which generates random hypergraphs whose degree distribution follows a power-law dis-
tribution with an exponential cutoff, our model is still limited when it comes to modelling
real-world collaboration networks. For example, in the network, which we discussed in
Section 2.2, there were 239 414 publications and 258 145 authors. Unfortunately, we can-
not apply the proposed model to such networks, since we always have that |Vt| ≤ |Et|.
To overcome this problem, we could try the following.

• Introduce events with probabilities pv, pve, pe and pd. In this case, pve, pe and pd
would correspond to pv, pe and pd in the proposed model, but we would also con-
sider a new event, which occurs with probability pv and adds only a vertex without
a hyperedge. However, the current definition of preferential attachment will not
allow vertices with degree 0 to be selected. Hence, for example, by redefining the
preferential attachment function as

pA(v) =
deg v + ε∑

u∈A(deg u+ ε)
, (4.1)

where ε is some small positive constant, we can ensure that even vertices with
degree 0 can be selected with small probability [18].

• Introduce a sequence of random variables X = (X1, X2, . . .), which would describe
the number of new vertices to add to the hypergraph in each step. In this case,
we would need to require that Xt ≤ Yt, for every t ≥ 1. Then, whenever we add
vertices and a hyperedge in step t ≥ 1, we put Xt vertices to that new hyperedge
of size Yt and also preferentially select Yt −Xt active vertices from Ht−1.

Of course, these modifications would increase the complexity of the model and the
analysis, but it could help us make this model general enough to model arbitrary col-
laboration networks.
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5 Conclusion

In this thesis, we have presented a novel mathematical model that generates random
hypergraphs whose degree distribution follows a power-law distribution with an expo-
nential cutoff. Also, under a few assumptions, we have proved a theorem about the
degree distribution of hypergraphs generated according to the proposed model, and de-
scribed precise methods to evaluate the parameters of the corresponding theoretical
distribution.

5.1 Further Work

There are still several open questions to address in the future work.

1. In order to prove Theorem 3, we have stated Assumptions 1–4 about some dis-
tributions associated with the model. Even though the empirical observations
confirmed the validity of these assumptions, it is necessary to either prove them,
or at least loosen them to make the model more rigorous.

2. In Section 3.3.3, we presented a method to calculate the value of θ by applying
the fixed-point iteration method to the function R(θ). However, we could not
estimate the speed of convergence of this method to the fixed point, as we did not
calculate the q-Lipschitz constant of R(θ). Hence, it is important to find a method
to calculate q (for example, by proving that R(θ) is convex).

3. Address the limitations, which were described in Section 4.2, and find a method
to determine parameters of the model from a real-world network.

33



Bibliography

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables. Dover, 1972.

[2] Chen Avin, Zvi Lotker, Yinon Nahum, and David Peleg. Random preferential
attachment hypergraph. In ASONAM ’19: International Conference on Advances in
Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30
August, 2019, pages 398–405. ACM, August 2019. doi:10.1145/3341161.3342867.
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