
Routing in Multimodal
Networks With Bicycles
Student: Supervisors :
Mykhailo Zima David Coudert, Nicolas Nisse

Motivation

● Bicycles - An
increasingly popular
means of transport.

● Need to develop an
algorithm that finds
an A to B optimal
path.

● Cyclists’ paths
preferences depend
not only on distance
but on a lot of other
path features
(slopes, traffic etc)

2

Personalized route planner for bicycles
● Allows users to navigate road networks optimally.

● Based on individual driving styles as well as personal preferences.

● Takes as input
○ 1) A road network G = (V, E) and a set of cost functions c1 , c2 , . . . cr with ci : E → [0,∞) for

every metric i.

○ 2) A starting point

○ 3) A destination

○ 4) A set of weights (w1 , w2 , . . . , wr) that determine which metrics the optimal path should be

computed based upon.

○ 5) A set of parameters that determine some cyclist’s individual riding features.

● Produces as output :
○ A set of vertices that corresponds to the path with minimal weighted cost

3

State of the art - Graph Compression and Dijkstra Variations

1. Direct continuation of N. Vadakke-Palangatt and M. Zima PFE work
2. Graph compression during preprocessing : A very popular approach (18.0

million vertices and 42.5 million edges : Memory, preprocessing time & Query
time). Dijkstra - 0.4 Gb, -, 2.2 s.
a. Hub-labeling - 18.8 Gb, 0:37 h, 0.56 µs [D. Delling, A. Goldberg, R. Werneck, 2013]
b. Contraction Hierarchy - 0.4 Gb, 0:05 h, 110 µs [Robert Geisberger, Peter Sanders, 2012]
c. Customizable Route Planning - 0.9 Gb, 1:00 h, 1650 µs [D. Delling, A. Goldberg, T. Pajor, R.

Werneck, 2014]
d. Pruned Landmark Labeling [T. Akiba, Y. Iwata, Y. Yoshida, 2013]

3. Dijkstra speedups : Bidirectional Dijkstra, Heuristic Based Dijkstra (A-star)
4. Tools used: a) OpenStreetMap b) QGIS c) Sagemath

4

Contribution during the internship

Objectives:

● Find solution for optimal path search that takes into account features
specific for cyclists;

● Create a real-world graph that contains these features;
● Make these features balanced in comparison to each other;
● Find different optimal paths for different users according to their

preferences.

End result:

Working implementation of the algorithm on Nice’s graph.

The approach to Graph Compression : K-path Covers (Funke et
al, 2014) & Cover Hierarchy (Akiba et al, 2016)

k-Path Cover: In Graph G(V, E), a set C ⊆ V such that C ∩ P ≠ ∅ for any path P of
length k.

6

● Minimum k-path Cover : A NP-Hard problem
● k-all-path-cover hierarchy: Based of vertex-covers

(Akiba et al, 2016)
● Idea: Nth layers of vertex cover is the 2N-path cover of

the original graph.

Fig : A 2-KPC
Example(K-path cover in
blue)

Algorithm modification during internship

● Reason: to make the algorithm less dependent on graph topology;
● Before creating overlay layers leave as access nodes only those vertices

which have more than 2 neighbours.
● Proved to be efficient.

Densifying the graph A vertex cover on densified graph

The approach to Graph Compression : Overlay Graphs

● Maintain all the routes possible among the compressed vertices.
● Route info: To relate edge to corresponding route in original graph.
● Cost info (dist, time etc): Single lookup retrieval of the route cost.

8

Client - server socket system

Server:

● operates in sage;
● contains precomputed overlay

graph;
● receives queries from clients,

processes them and sends
responses back.

● responses contain lists of vertices
that correspond to the optimal path
and cost of paths

Client:

● operates in QGIS;
● contains full graph;
● sends queries which contain:

○ source node;
○ destination node;
○ user weights;
○ parameters.

● receives responses and presents
them to users.

Client and server communicate with each other using socket system

Client part

● User interface for
simple source and
destination point,
user weights
selection;

● The result is
presented as a
line with
highlighted nodes.

Retrieving the graph

● Data downloaded from OpenStreetMap.
● Presented as Shapefile (.shp)
● Afterwards converted to Sage object

(.sobj)
● Steps to retrieve a working graph:

1) Convert multilines (lines with
intermediate points) to edges;

2) Make the graph directed -
according to ‘oneway’ tag;

3) Make the graph strongly
connected;

4) Add cliques to squares - they are
denoted with ‘place=square’ tag.

Example of OpenStreetMap tags in edges represented
in QGIS

Retrieving the graph

The initial graph The processed graph

User’s input during query

The user has to choose values for these metrics:

● Travel time [0..1] - how fast a user can reach destination;
● Comfort [0..1] - how comfortable is user’s ride;
● Flatness [0..1] - how many slopes will the route contain.

and these parameters:

● Speed (m/s);
● Uphill penalty - how much uphill ride slows down the user;
● Downhill speed multiplier - maximum value of downhill speed;
● Critical downhill grade - value when maximum downhill speed is achieved.

More detailed information in appendix.

Path features which affect cyclist’s choice

Feature Affects Description Tags in
OpenStreetMap

Distance time,
comfort,
flatness

length of the edge in m

Slope time,
flatness

relation of vertices height difference and distance

Surface time,
comfort

type of surface which affects speed and comfort
(asphalt, cobblestone, gravel etc)

smoothness,
surface, tracktype

Highway comfort type of road (cycleway, primary, residential, pedestrian
etc)

highway, bicycle,
cycleway

Slowdown time obstacles that make the cyclist stop (crossings, traffic
signals, steps etc)

crossing, highway

Elevation data

● Elevation data absent
from OpenStreetMap;

● Used SRTM 1
Arc-Second Global from
EarthExplorer;

● Every edge given slope
value by this formula:

● Positive if uphill,
negative if downhill.

Slopes metric problems

Gentle slopes are easier for cyclists even if they are
longer.

Solution: Flatness coefficient which polynomially
depends on gradient value. (Crispin H.V. Cooper,
2016)

Less continuous slopes are easier for cyclists.

Solution: Currently an open question.

Analysis of the algorithm’s performance on the map of Nice

Overlay
layer

k Constr.
time (s)

vertices

edges D avg D max Dijkstra
(ms)

Search
(ms)

Speed
up

Initial - - 100768 200155 3.97 56 - - -

0 1 12.9 17513 43276 4.94 56 873 421 2.07

1 2 16.8 9356 35529 7.59 146 873 322 2.71

2 4 20.4 5800 36819 12.7 304 873 276 3.16

3 8 24.2 3899 51293 26.31 1183 873 240 3.64

4 16 38.3 2830 137394 97.1 9081 873 280 3.12

5 32 287 2190 694848 634.56 49508 873 614 1.42

● Overlay layer #3 has the best performance for the graph of Nice with 240 ms of search;
● Compare it to 358 ms by the previous version of the algorithm.

Test Machine: Linux machine with 2.10 GHz Intel(R) Core(TM) i3-2310M CPU and 4GB of memory.

Analysis of the algorithm’s performance on the map of New
York City

Overlay
layer

k Constr.
time (s)

vertices

edges D avg D max Dijkstra
(ms)

Search
(ms)

Speed
up

Initial - - 240474 431371 3.59 12 - - -

0 1 27.9 66435 167805 5.05 12 2226 1464 1.52

1 2 38.4 38874 153786 7.91 24 2226 1206 1.85

2 4 50.3 26105 171377 13.13 72 2226 947 2.35

3 8 61 19110 231061 24.18 172 2226 994 2.24

4 16 81 15100 375574 49.74 1129 2226 1061 2.1

● About 2.2 times larger than graph of Nice;
● Overlay layer #2 has the best performance for the graph of New York with 947 ms of search;
● The speed-up is worse than the graph of Nice had.

Conclusions

Achievements

● A shortest path algorithm that takes into account cyclist’s needs is
designed and successfully tested;

● Its performance was made more independent on graph topology;
● A real-world graph with data important for cyclists was created;
● Implemented the diameter search DiFUB algorithm.

Further development

● Find a good default ratio between metrics;
● Develop a continuous slopes metric;
● Consider individual user’s preferences;
● Expand the graph to the whole PACA region;
● Implement less curves metric;
● Implement several optimal paths search, not only one.

Thank you!

Appendices

The Vertex Cover Problem and solution

Main Steps in my compression implementation :

1. Create an overlay graph where crossroads are access points
2. Find Vertex cover of the previous layer
3. Create overlay graph for the vertex cover.

 My Solution: Custom implement a vertex cover heuristic (LR-deg).

LR-deg: Initialize Vertex Cover VC to an empty Set. For each v ∈ V (v picked in
increasing order of degree), add Neighbor(v) to VC if v not already in VC.

Real time Querying: Funke’s algorithm

A fast bidirectional dijkstra using access points (H. Bast et al, 2007)

23

Formulas used in the algorithm

Travel time value:

where l(u, v) - edge distance, a(u, v) - edge slope, r1 - r_time coefficient, q(u,
v) - r_slowdown value, s - speed (m/s), sd - downhill speed multiplier

where sdmax - maximum downhill speed multiplier, d’(u, v) - edge slope, d’c -
critical d’ value when speed equals sdmax

Comfort value:

Flatness value:
where rs - r_surface, rt - r_traffic

Initial version of the algorithm performance

Overlay
layer

k Constru
ction
time (s)

vertices

edges D avg D max Dijkstra
(ms)

Search
(ms)

Speed
up

0 1 7.67 100768 200155 3.97 56 873 1898 0.46

1 2 23.1 55552 119675 4.31 146 873 975 0.9

2 4 32.6 30646 79887 5.21 322 873 561 1.56

3 8 38.7 17169 71627 8.34 1034 873 458 1.91

4 16 49.2 9923 114459 23.07 4263 873 358 2.44

5 32 138 6070 365236 120.34 28338 873 466 1.87

Analysis of the initial algorithm’s performance on the map of Nice

Example of optimal path

● The optimal path
avoids:

○ hills;
○ major roads;

Diameters of the graph

The paths which are:

● the most
time-consuming;

● the least
comfortable;

● the most hilly.

