Routing in Multimodal
Networks With Bicycles

Mykhailo Zima David Coudert, Nicolas Nisse

SEXSO5AMNS B

Bicycles - An
increasingly popular
means of transport.
Need to develop an
algorithm that finds
an A to B optimal
path.

Cyclists’ paths
preferences depend
not only on distance
but on a lot of other
path features
(slopes, traffic etc)

Personalized route planner for bicycles

e Allows users to navigate road networks optimally.
e Based on individual driving styles as well as personal preferences.

e Takes as input
o 1) Aroad network G = (V, E) and a set of cost functions c, , ¢, , ... ¢ with ¢, : E — [0,00) for
every metric i.
o 2) A starting point
o 3) A destination

o 4) A set of weights (w1 YW, wr) that determine which metrics the optimal path should be
computed based upon.

o 5) A set of parameters that determine some cyclist’s individual riding features.

e Produces as output :

o A set of vertices that corresponds to the path with minimal weighted cost

State of the art - Graph Compression and Dijkstra Variations

e

Direct continuation of N. Vadakke-Palangatt and M. Zima PFE work
Graph compression during preprocessing : A very popular approach (18.0
million vertices and 42.5 million edges : Memory, preprocessing time & Query
time). Dijkstra-0.4 Gb, -, 2.2 s.

a. Hub-labeling - 18.8 Gb, 0:37 h, 0.56 ps [D. Delling, A. Goldberg, R. Werneck, 2013]

b. Contraction Hierarchy - 0.4 Gb, 0:05 h, 110 ps [Robert Geisberger, Peter Sanders, 2012]

c. Customizable Route Planning - 0.9 Gb, 1:00 h, 1650 ps [D. Delling, A. Goldberg, T. Pajor, R.

Werneck, 2014]
d. Pruned Landmark Labeling [T. Akiba, Y. Iwata, Y. Yoshida, 2013]

Dijkstra speedups : Bidirectional Dijkstra, Heuristic Based Dijkstra (A-star)
Tools used: a) OpenStreetMap b) QGIS c) Sagemath

Contribution during the internship

Objectives:

e Find solution for optimal path search that takes into account features
specific for cyclists;

e Create areal-world graph that contains these features;

e Make these features balanced in comparison to each other,

e Find different optimal paths for different users according to their
preferences.

End result:

Working implementation of the algorithm on Nice's graph.

The approach to Graph Compression : K-path Covers (Funke et

al, 2014) & Cover Hierarchy (Akiba et al, 2016
k-Path Cover: In Graph G(V, E), aset C < V such that C N P # @ for any path P of

length k. 8
e Minimum k-path Cover : A NP-Hard problem > '
e k-all-path-cover hierarchy: Based of vertex-covers . @
(Akiba et al, 2016) N\, @ 5 1
e Idea: Nth layers of vertex cover is the 2N-path coverof (@ , ' | 1
the original graph.),
2 ,
! €
o)
Fig : A 2-KPC

. 5 . Example(K-path cover in
(a) Original graph Gy (b) Layers of 2-APCs blue) 6

Algorithm modification during internship

Densifying the graph A vertex cover on densified graph

e Reason: to make the algorithm less dependent on graph topology;

e Before creating overlay layers leave as access nodes only those vertices
which have more than 2 neighbours.

e Proved to be efficient.

The approach to Graph Compression : Overlay Graphs

e Maintain all the routes possible among the compressed vertices.
e Route info: To relate edge to corresponding route in original graph.
e Costinfo (dist, time etc): Single lookup retrieval of the route cost.

) Dist:1 }
Dist :1 Dist :1 Dist :1 Dist :1 Time:2 . BA
Time : 2 Time : 2 Time:2 Time:2 .~ Dist:1
\ 0 > — ¥ — i Time: 2
Dist:5 Dist :5 4 ?::;1 B Dist 3 Dist :1 Dist :1 _
Time : 10" Time:1ov.\® 2 (7)) Time:2 * T|me:gb® Time:2 (10|
9/ - i N’ s
58

e

¥

Route info : [SA]
Dist: 2
)) Time : 4
Route info : [2] Route info : [I Route info : [7] Route info : []
Dist: 2 Dist: 1 Dist: 2 Dist: 2

@ Time: 4 }@ Time : 2 ;@ C@ Time: 4 Time : 4 @
S 3 >

Route info : [SB]
Dist: 10
Time : 20

Client - server socket system

Server: Client:
e oOperates in sage; e operates in QGIS;
e contains precomputed overlay e contains full graph;
graph; e sends queries which contain:
e receives queries from clients, o source node;

O

processes them and sends
responses back.

@)

destination node;
user weights;

o} parameters.
e responses contain lists of vertices e receives responses and presents
that correspond to the optimal path them to users.

and cost of paths

Client and server communicate with each other using socket system

Client part

= . S — e User interface for

Cavrioaag AENANTE R e, <A T 1S S ol simple source and

- AR W L : 08 ‘ destination point,
user weights
selection;

e Theresultis
presented as a
line with
highlighted nodes.

& ¥ openstreetMap

SErHHSANAS
[

Py! e®
Le.-A B & e @F HH b Q xa@ ## ¥

2494, 43.6936659]1, [7.2425833, 43.693697511, "metricsCost": {"slope |-) [client-fixed.py ¥ | = clientmodified.py % (v 5
_desc": 53.583937321, "dist": 4582.882348000001, "slope_asc": 58.46 e 2 {
180000100001, "comfort": 4779.382024299999, "slowdown": 375, "time" import -json -
: 4961.809199500001, "flatness": 6082.590605371161}, "minCost": 146 import t .
09.031902809638} | 3 from PyQt4.QtCore import * 3
Gbisarver is closed [4 from PyQt4.QtGui import -QInputDialog ‘
5
6 parameters = {"speed": 14 /3.6, "uphillCoeff": 13, -"maxMult ticalDe } |
T y D
Toggles the editing state of the current layer Coordinate | 810848,5418527 ¥ scale | 1:14239 |ex & Magnifier| 100% - Rotation | 0,0 .| & Render @ EPSG:3857 (OTF) @

Retrieving the graph

Data downloaded from OpenStreetMap.
Presented as Shapefile (.shp) e T

osm_id name highway waterway aerial way arrier man_made other_tags
. 1 |164192418 "boundary"=>"political","political_division"=>"canton"
Afterwards converted to Sage object 2. [

3 243900477 footway

. 47560091690 pedestrian
(. S O bJ) 5 4246694 Descente Crotti residential
T56009|691 service
774245595 Descente du Marché steps

e Steps to retrieve a working graph:
1) Convert multilines (lines with o s =

11 560091693 pedestrian

®
w
a
3
3
2
a
o
o

pedestrian

. . . 12 243591054 footway "bicycle"=>"dismount","wheelchair"=>"yes"
intermediate points) to edges; s
7560091695 pedestrian
2 M k th h d' -t d _ 15 243591056 footway "bicycle"=>"dismount”,"wheelchair"=>"yes"
akKe the grap Irecite 16 seoo91656 e
. ¢ 0 E 560091697 pedestrian "tunnel"=>"building_passage"
accord|ng 1{0) Oneway tag' 18 560091698 pedestrian “tunnel’=>"building_passage"
19 560091699 pedestrian
20 243591060 Allée Albert Camus footway "bicycle"=>"dismount","lit"=>"yes","wheelchair"=>"yes"
3) Make the graph strongly 1o

22 560091700 pedestrian

connected; show Al Feturess) | G
4) Add cliques to squares - they are Example of OpenStreetMap tags in edges represented

L) in QGIS
denoted with ‘place=square’ tag.

Retrieving the graph

The initial graph

User's input during query

The user has to choose values for these metrics:

e Travel time [0..1] - how fast a user can reach destination;
e Comfort [0..1] - how comfortable is user’s ride;

e Flatness [0..1] - how many slopes will the route contain.

and these parameters:

Speed (m/s);

Uphill penalty - how much uphill ride slows down the user;

Downbhill speed multiplier - maximum value of downhill speed,;

Critical downhill grade - value when maximum downhill speed is achieved.

More detailed information in appendix.

Path features which affect cyclist's choice

Feature Affects Description Tags in
OpenStreetMap
Distance time, length of the edge in m
comfort,
flatness
Slope time, relation of vertices height difference and distance
flatness
Surface time, type of surface which affects speed and comfort smoothness,
comfort (asphalt, cobblestone, gravel etc) surface, tracktype
Highway comfort type of road (cycleway, primary, residential, pedestrian | highway, bicycle,
etc) cycleway
Slowdown | time obstacles that make the cyclist stop (crossings, traffic crossing, highway
signals, steps etc)

Elevation data

e Elevation data absent
from OpenStreetMap;

e Used SRTM 1
Arc-Second Global from
EarthExplorer;

e Every edge given slope
value by this formula:

EERRR (PP AL SNPPRAR/BIER Q& K-8 -REEI=- - B
HCR T) .

-/ B

SBHSSAMNAS & o

ey

SR height(v) — height(u)

distance(u,v)

o e . .
e Positive if uphill, : Y
n eg at ive if d OW n h i I I ' — oo Coordinate 806640,5415634 ¥ Scale[1:90312 | v/ @ Magnifier[100% Rntatio;\ 0,0 =2 I\R.-ender ;Ensc;sss7 (0T @

Slopes metric problems

Elevation (m)
Elevation (m)

Distance (m) Distance (m)

Gentle slopes are easier for cyclists even if they are Less continuous slopes are easier for cyclists.

longer.
Solution: Currently an open question.

Solution: Flatness coefficient which polynomially
depends on gradient value. (Crispin H.V. Cooper,
2016)

Analysis of the algorithm'’s performance on the map of Nice

Overlay | k Constr. | # # edges | D avg D max Dijkstra | Search | Speed
layer time (s) | vertices (ms) (ms) up
Initial - - 100768 | 200155 | 3.97 56 - - -

0 1 12.9 17513 | 43276 | 4.94 56 873 421 2.07

1 2 16.8 9356 35529 | 7.59 146 873 322 2.71

2 4 20.4 5800 36819 12.7 304 873 276 3.16
3 8 24.2 3899 51293 26.31 1183 873 240 3.64

4 16 38.3 2830 137394 | 97.1 9081 873 280 3.12

5 32 287 2190 694848 | 634.56 | 49508 | 873 614 1.42

Overlay layer #3 has the best performance for the graph of Nice with 240 ms of search;

Compare it to 358 ms by the previous version of the algorithm.

Test Machine: Linux machine with 2.10 GHz Intel(R) Core(TM) i3-2310M CPU and 4GB of memory.

York Cit

Analysis of the algorithm'’s performance on the map of New

Overlay | k Constr. | # # edges | D avg D max Dijkstra | Search | Speed
layer time (s) | vertices (ms) (ms) up
Initial - - 240474 | 431371 | 3.59 12 - - -

0 1 27.9 66435 167805 | 5.05 12 2226 1464 1.52

1 2 38.4 38874 153786 | 7.91 24 2226 1206 1.85

2 4 50.3 26105 171377 | 13.13 72 2226 947 2.35

3 8 61 19110 | 231061 | 24.18 172 2226 994 2.24

4 16 81 15100 375574 | 49.74 1129 2226 1061 2.1

About 2.2 times larger than graph of Nice;

Overlay layer #2 has the best performance for the graph of New York with 947 ms of search;

The speed-up is worse than the graph of Nice had.

Conclusions

Achievements

e A shortest path algorithm that takes into account cyclist's needs is
designed and successfully tested;

e Its performance was made more independent on graph topology;

e Areal-world graph with data important for cyclists was created,;

e Implemented the diameter search DiFUB algorithm.

Further development

Find a good default ratio between metrics;

Develop a continuous slopes metric;

Consider individual user’s preferences;

Expand the graph to the whole PACA region;
Implement less curves metric;

Implement several optimal paths search, not only one.

Thank you!

Appendices

The Vertex Cover Problem and solution

Main Steps in my compression implementation :

1. Create an overlay graph where crossroads are access points
2. Find Vertex cover of the previous layer
3. Create overlay graph for the vertex cover.

My Solution: Custom implement a vertex cover heuristic (LR-deg).

LR-deg: Initialize Vertex Cover VC to an empty Set. For each v € V (v picked in
increasing order of degree), add Neighbor(v) to VC if v not already in VC.

Real time Querying: Funke’s algorithm

A fast bidirectional dijkstra using access points (H. Bast et al, 2007)

23

Formulas used in the algorithm

group entity key value r_time r_slowdown r_surface r_trafic
crossing node crossing island 1 20 -1 -1 .
crossing node crossin trafiic_signals 1 30 -1 -1 .
cfossing node crossing unouﬁmgled 1 15 -1 -1] Travel tl me Va I u e .
crossing node crossing unmarked 1 20 -1 -1
crossing node crossing yes 1 15 -1 -1
crossing node crossing zebra 1 15 -1] -1
crossing node highway crossin 1 15 -1 2
crossing node nignwa¥ ﬂaﬁc_s?gnals T 30 -1 3| l{uv)+a;-a (‘U .‘U) 'l(w,v) ¢ § : f 0
dismount way bicycle dismount 04 0 2 -1 q + q(u, 14) *8 1 (l(> N
dismount way footway crossing 04 0 2 -1 I (.u 'l') —_— 1 (uv")
dismount way footway sidewalk 04 0 -105 -1 v - I(u_z_l) th .
dismount wa highway footway 04 0 105 - ('.‘) * "W1S
dismount wa; nignwa¥ foo!wa;':pam 04 0 105 S(U V.S gmax) T1{u.0) 7t aq\u,v s otherwise,
dismount way highway pedestrian 04 0 105
for_bicycles relation route bicycle 1 0 -109
for_bicycles way bicycle designated 1 0 102
for_bicycles way bicycle permissive 1 0 1 -1
for_bicycles way bicycle res 1 0 -1 -1 a a 8,0
b Oyl » @ ds ' wherel(u, v) - edge distance, a(u, v) - edge slope, r1 - r_time coefficient, q(u
for_bicycles way cycleway share_busway 1 0 -10.7 ’) ’ ’ —_— ’ ’
for_bicycles way cycleway shared_lane 1 0 108 I d I d / d d h . I I d I t- I .
for_bicycles wa lewa track 1 0 -104 - - -
o bipses vy oewsy e l 0 —1(V) r_slowaown value, s - spee (m S), S ownnill speed multiplier
for_bicycles way cycleway:left share_busway 1 0 107
for_bi 1 left shared_L: 1 0 -10.8 .
e e e e — () sqmazx if d'(u,v) > d.,
for_bicycles way cycleway:right share_busway 1 0 107 Bl W,V Sdmas) = G _nd' i
for bicycles way Jewayright shared_| 1 0 108 ? Sdmaz—1)d' () e
hr:bi%es wa; g’i’gcnma;'y - iyﬁfw;ya"e 1 0 102 = dr. = +1 othelwme,
motor_roads way highway living_street 1 0 -105
motor_roads way highway primary 1 0 -1 10
motor_roads way highway primary_link 1 0 -1 10] y
d: high idential 1 0 -1 -1

ey v memo 1 ¢ 1 1 where sdmax - maximum downhill speed multiplier, d'(u, v) - edge slope, d'c -
motor_roads way highway secondary_link 1 0 -1 6 - f
motor_roads wa) highway service 1 0 -1 1
e e i ¢ 31 1 critical d’ value when speed equals sdmax
motor_roads way highway tertiary_link 1 0 -1] 2
obstacles way highway steps 0 10 1
obstacles node highway elevator 1 75 7 1
obstacles node highway steps 1 25 10 1
offroad wa) highway bridlewa) 07 0 2 1 .
offroad wa¥ acgoessy agricullu?al 08 0 2 1 CO mfo rt Va I u e .
offroad way access forestry 08 0 2 1
ofroad way highway path 07 0 205
offroad way highway track 0.8 0 205 1 — q W i e
surface wa¥ srlgmomxess bad 07 0 3 -1 CQ(U, l’) s l('f_l, l") 2 1na‘x{ (73(“'* U)., T t(u’f U))}
surface way smoothness excellent 1 005 -1
surface way smoothness horrible 05 0 2 -1
surface way smoothness intermediate 0.8 0 1 -1 .
surface way smoothness very_bad 0.6 0 4 -1 h - r‘f rt - t ff
surface wa; surface oubryblesmne 0.7 0 5 -1 W ere rS r_Su ace, r_ ra IC
surface way surface ccompacted 09 015 1]
surface way surface dirt 0.7 0 3 -1 F I t I .

rfa a) rface 0.65 0 5 -1
a0 R — atness value:
surface way surface ground 06 0 4 -1
surface way surface mud .4 0 5| -1]
surface way surface paving_stones 0.75 015 -1 3 9)
suface way surface sand 06 0 4 I(u,v) - (10128.074 - a(u,v)” — 140.785 - a(u,v)” + 6.693 * a(u,v) + 1) if a(u,v) > 0,
suface way surface sefts 08 0 2 1 (3.3(‘11. v) =

rfa rfa d 075 0 4 1 . ’ 3 e
i 3:; it ad: 065 0 P (u,v) otherwise.

Initial version of the algorithm performance

Analysis of the initial algorithm’s performance on the map of Nice

Overlay | k Constru | # # edges | D avg D max Dijkstra | Search | Speed
layer ction vertices (ms) (ms) up
time (s)

0 1 7.67 100768 | 200155 | 3.97 56 873 1898 0.46

1 2 23.1 55552 119675 | 4.31 146 873 975 0.9

2 4 32.6 30646 79887 | 5.21 322 873 561 1.56

3 8 38.7 17169 71627 | 8.34 1034 873 458 1.91

4 16 49.2 9923 114459 | 23.07 4263 873 358 2.44

5 32 138 6070 365236 | 120.34 | 28338 | 873 466 1.87

Example of optimal path

DEBRERR (YSLLANPPRALSEDER

¥-/ B Sm-"5kT>%8 % 8 B

- I e Theoptimal path
e LT LY O a SR A " avoids:
| ® result_nodes O hi”S;
o major roads;

)
— result_edges
& e result_nodes
> & nodes
[» edges
— edges
v [B n4a3_e007_1arc_v3
| B
1248
& I openstreetMap

SEPHOHDHAMNNA

- 3

Python Console

Le. .2 g & e @F HEH P Q 8 8 #4# ¥
-72813], [7.2555498, 43.728161, [7.2555162, 43.728305111, "metricsC [-) |2 clientfixedpy ¥ = client-modified.py % (v 5
ost “slope_desc": 91.00371045000004, "dist": 8944.334555, "slope - -
asc": 144.51395008999998, "comfort": 14101.650252700001, "slowdown import -json
": 555, "time": 10549.423477499999, "flatness": 14595.271033572906} import socket %
, "minCost": 35826.49655107424} - from PyQt4.QtCore import -* P
45 Server is closed , from -PyQt4.QtGui -import -QInputDialog
49 A 5
5 6 parameters = {"speed": 14 /3.6, "uphillCoeff": 13, "maxMult": 2.5, "criticalDesc": 0.1}
Coordinate 803814,5423426 ¥ scale[1:19830 | v | @ Magnifier[100% 1| Rotation |0,0 .| & Render @ EPSG:3857 (OTF) @

2 legend entries removed.

Diameters of the graph

DEBELR YL LAL LHPPRABIER ¢ K- -&§-BEZ=-° -H
V-V B Sn-5RkiOxxgB-"QREIITRR -&-@

: L o , ‘ ~ The paths which are:
V:; Layers Panel @® o ? & ‘ A W £ P

¢« B ®. V& -HBO ¥ p : v

& — edges_['time']

& © nodes_['time']

& — edges_['comfort'] v
+ & e nodes_['comfort]

& — edges_['flatness]
© nodes ['flatness’]
" nodes
» edges

e the most
: time-consuming;
B D i ' e - : R ¢ o theleast
oricn | comfortable;
e the most hilly.

Tourrettes:
sur-Lale

[0

Roquefort
es-Pins

Python Console ®
ve.a@ ¢o o B

8 F HH P Q 3 8 # # ¥

7326311, [7.2735447, 43.7732566], [7.2730483, 43.7731992], [7.27279 0 B chenbﬂxed.py ® = client—modified.py ® Ov

44, 43.7732959], [7.2725404, 43.7735755], [7.272537, 43.77382691, [s

7.2725148, 43.7741252]1, "metricsCost”: {"slope_desc": 1304.7040542 : from PyQt4.QtCore import *

3, "dist": 41530.49853299995, "slope asc": 1022.71423923, “comfort® 2 import json

: 641008.4803320986, "slowdown": 990, "time": 46023.37423068257, "f 2 Amportesacket

latness": 2263754.7361240303}, "minCost": 2263754.7361240326} < .

- U 6 1= 736, -4 u 5.74174 1
>>> 7 & 2 ¢ 1 o

4 legend entries removed. Coordinate 784643,5423843 ¥ Scale 1:86193 v | @ Magnifier | 100% - Rotation | 0,0 . & Render @ EPSG:3857 (OTF) @

