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Abstract 
 
Today world is growing faster and faster every day. New cities, suburbs, streets 

appear everywhere. And the problem of building optimal and quick paths from 
one place to another becomes more and more complex. For this project we 
consider to study a large metropolitan area (Santiago, Chile) to improve 
transport system of this megapolis. First we examine what we have, our group 
has access to numerous data about the city : transportation system, education 
system, health system. We need to clean this data from errors and create good 
structures to work with. Also we will describe main metrics that we use for 
measuring the accessibility of basic services (health, school, police buildings) and 
predict the most suitable regions to build new ones. Then we will introduce some 
solutions that improve accessibility in this city by proposing a way for 
calculating best direction between two points and proposing good locations to 
place new important services like schools, police dept. and others. The sizes of 
data is huge, in this report we’ll give a clean view how we solve a problem with 
processing big data amounts.  
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1. Intro 
 

In this project we will dive into work with big data amounts and huge 
graphs. For our work we consider to examine large metropolitan area of 
Santiago city. We have a connection with Adolfo Ibañez University in Santiago, 
so they provide all important data to work with. 

Main part of the internship will cover cleaning the data from errors, 
choosing the correct data structures for faster work and formalizing the data. 
We’ll show 3 main types of errors that we faced with in this project and the 
ways of handling them. After the first stage we’ll get errorless, preprocessed 
graph (almost all the parts will be connected). We propose a special technique 
that helps to fix lost connections in graph that can’t be fixed automatically by 
implementing special algorithm (combining automatic and manual fix).  

At the end of section six we will errors in data and show the obtained 
results. After that we will integrate our graph into SAGEMath. This module will 
provide us clean representation of what we have and also provide clean proofs 
of error handling correctness.  

Section eight will show the main ideas that was proposed for shortest 
path calculation on this graph, we will test them and compare with traditional 
solutions, but before doing that we examine related work for this project in 
section three.  

Section nine will give ideas connected with optimization of transport 
system in examined metropolitan area. We will show our techniques that used 
for selecting the most suitable places for building important objects like 
hospitals, police dept., schools and others. 

In the end we will give a conclusion what we have done, and what we 
are planning to do. Summary will cover the results achieved during the 
internship work, show how it helps and simplifies the work with ours graph 
(Santiago city map) and explain how to postpone the algorithms to similar 
graph. 
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2. Describe the problem 
 

The topic of my internship is « Optimizing the transport network of a 
large metropolitan area to improve citizen accessibility ». When we have a first 
meeting we start discussing what exact problems exist in this topic? Why we 
need to optimize? For this project we will examine Santiago city. It is the 
capital of Chile and the biggest city in that area. It has long suburbs and very 
complex transport network. The population of this megapolis grows up and a 
mission of getting work every day and back in reasonable time becomes more 
and more complicated. Also there is a big problem of accessing existing and 
locating new basic services in this city like schools, hospitals, police offices. We 
have a co-working team that located in Santiago. They provide as a big dumps 
of row data that describe Santiago city roads and infrastructure. 

 We have a big problem that hides in data. All the records in databases 
were inputted manually by group of workers during a couple of years. It’s 
mean that it has a lot of data repetitions, bugs and inaccuracies. 

In this work, we deal with the following problems: 
 Normalizing the data grid. 
 Fixing errors in data. 
 Proposing the algorithm for shortest path computation. 
 Introducing the algorithm for placing basic services. 
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3. Related work 
 

Studying the related work on this topic was very important step. It 
shows main techniques how other researches solve problems of shortest path 
calculation, traffic jams and transport system optimization. 

First article[1] faces with problem of congestion control of public 
transport in Santiago city. They show the strategy of bus route optimization 
that gives us optimal holding time that minimizes user-waiting times on bus 
stop. The results of this work will help us to design new bus lines and reduce 
bus bunching via mathematical programming models.  This article gives me 
understanding of basic principles of public transport route optimization and 
idea how to implement them in our project. 

Next we study document[2]  that solve the transportation problem of 
Berlin city the results give incredible increase in revenues by 22 %. From the 
article authors show how changing of frequency in main lines and suburbs 
improves the total utilization and travel times of passengers. We will use 
techniques from this article for our algorithm of bus route planning to improve 
passenger’s utilization.  

The third paper [3] gives us a clean view how researchers work on 
problem of urban area transport optimization. From the document we can see 
the techniques for evaluating of public transport networks and then how to 
use heuristic algorithms for improvements in transportation network. It give 
us ideas for algorithm optimization in future work. 

Research study[4] work with problem of bus network optimization, 
authors transform network into pure grid and show that optimal bus routes is 
sensitive to demand distribution in area. The results of this work will be useful 
for designing new public transportation networks and also giving evaluation to 
existing ones.  
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4. Describe the data 
 

Let’s introduce basic definitions that will be used in our work. Graph is 
an ordered pair G = (V, E) comprising a set V of nodes or points together with a 
set E of edges or lines, which are 2-element subsets of V. We consider Nodes as 
featureless and indivisible objects and represent a unique point on map (i.e. 
crossroad point). Pair of nodes creates an edge that is represented by a street 
fragment. In our project we will consider only directed edges (ordered pairs of 
nodes), the direction of particular edge is set by nodes position: from start node 
to the end node. Record is a row from our dump that represents and object of 
node or edge on graph. 

We receive 3 different files that gives us full information about 
transportation network in Santiago: 

1. EJES – this file represents the edges in our graph 
2. ALLPOINTS – in this file we have representation of all nodes in our 

graph 
3. ENDPOINTS – in last file we have also nodes that create a backbone, 

it is mean that ENDPOINTS is a reduced version of ALLPOINTS, we keep only 
start and end node of each street and crossroad nodes for each street. 

 
Let’s consider each file more precisely and examine what we have 

inside. 
EJES file represents connections between each two nodes in our 

graph. It has 209 thousands of records. From the file we can get following 
information about the edge from graph:  

 OBJECTID – unique identifier for each edge 
 FENAMEID – many-to many relation, that connects to nodes and 

represents unique street on map. Each street can consist of many edges. 
 DIR – stores information about street direction, can have 3 different 

options : 
1. 0  – bi-directional street 
2. 1  – direction from start to end of the street. 
3. -1 – direction from end to start of the street. 

 Hierarchy – this metric describes the level of the road. The value 
could be from 1 to 5, where 1 is a highway and 5 is a country road. We should 
say, if we have an intersection of two edges with hierarchy of one and 
different, they will not create a crossroad (it is impossible to cross a highway 
by suburb street). This parameter is very important and will be widely used in 
future computations. 

 Id_eje – primary key of this table 
 Shape_length – the length of the current street. 
(Next attributes will describe speed limits for edges, they are constant 

for all the edges.) 
 V_libre – maximum allowed speed limit for this road 
 V_peak – speed on traffic jam. 
 V_valle – normal speed during the day 
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 V_cam – walking speed of pedestrians. 
 
Next let us examine the ALLPOINTS and ENDPOINTS files. Both of 

them have the identical structure, but ENDPOINTS has 419 thousands of 
records, ALLPOINTS has more than 600 thousands of records. From these files 
we retrieve information about: 

 Id – primary key for this table. 
 FENAME_ID – many-to-many relation that connects with EJES table 

and represents a unique street on map. 
 Hierarchy – represents hierarchy of this street (the same from 

ERES). 
 Ejes_id – foreign key that connects particular node with edge. 
 X – represents x coordinate of node. 
 Y – represents y coordinate of node.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Img 1. Relation diagram of initial data 
 
We get this not very pretty database with redundant relations 

between records. But exploring deeply the data, we find even more 
fundamental problems in our data that makes impossible to continue work 
with this data: 

 
1. Fename_Id relation actually relate to nowhere. After some tests 

we make a decision that this parameter in some streets gives totally opposite 
values that it should be. 

2. Repetitive data. The databases are totally not normalized, so we 
have a lot of data repetitions that just slow down the computations. 
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3. Unique ids of edges stop being unique after some point. 
 
The main reason why we have all this kind of problems is because of 

the process of initial data collecting. It was done in this way: worker just drives 
through the Santiago streets and manually input all the data and EVEN 
primary keys were inputted manually.  

From the other hand we have more serious problems like data 
repetitions or lost connections between nodes (we don’t have relations 
between nodes where they should be). 

 So, we made a decision to develop new structures for our data. 
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5. New data formats 
 

In this chapter we’ll introduce new data structures and start moving 
to fix errors in data. We are trying to make our data clean and simple. We 
should get rid of useless parameters, structure and normalize our datasets. 
From previous chapter we have two separate tables that represent edges and 
nodes in our data. Both of them are used to represent the graph. 

 Our proposition is to reduce data amounts to work with. First let us 
introduce a representation of a single node in our graph by instance of class 
Point, it has fields: 

 Id – primary key. 
 X – X coordinate of node. 
 Y – Y coordinate of node. 
 Edge_id – foreign key to the edge corresponding to this node 
 Cell – is a number that represent a sector on map, where our node 

is situated. We will describe them in this chapter later. 
 
For comparing of two distinct nodes we use hash functions, which 

helps us to determine if the two nodes are actually one. For doing that we 
apply hash function to their x and y coordinates: 

 
ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒1. 𝑥, 𝑛𝑜𝑑𝑒1 . 𝑦)? = ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒2. 𝑥, 𝑛𝑜𝑑𝑒2 . 𝑦) 

 
We use this idea to refuse the idea if ids and compare two node objects 

for equality we just use coordinates of particular node 
For representation of edges we introduce Segments, each segment 

gives us a relation between just two different nodes, it has very simple 
structure: 

 From – Point that start this segment 
 To – Point that end this segment 
 Length – length of this segment, for the clearance of experiments, 

we recalculate all the segments distances. 
All the segments are unidirectional and goes from start point to end 

point (from and to parameters). After creating the segments, we create a 
special dictionary that stores hash of each node as a key and a list of all 
possible segments connected with this node as a value. This gives us rapidly 
fast data access (because of the usage of dictionaries) and clear data 
structures. 

 Also we keep Edges table, because it gives us explicit information 
about each edge related to nodes. But we made normalization of this table by 
separation of information about speed limits and edges data into different 
tables. The structure is following: 

 Id – as a primary key. 
 Hierarchy  - to represent edge hierarchy 
 Direction – the direction of current road 
 Street_id – unique street identifier 
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Edges are also represented as a dictionary with a key as id of each 

edge. To create a relation in bidirectional street, we just create two different 
segments. One for one direction and another for the opposite. 

 
 
 

 
 

Img 2. Part of Santiago graph 
 

Let’s look to the Img. 2. On this image we can see a part from our map 
with an example of new data structures. So each violet point represents a 
unique node on map and each line an edge. Edges link only to two points from 
both sides. 

 
 Now let me explain the first difficulty we face with. As you 

remember we have a quite big graph. It starts with 630k of nodes and 210k of 
edges in raw data. From our side its mean: 

 Very big amount of data 
 Difficult to proceed 
 Hard to update 

 
To deal with it let me introduce algorithm that will allow us to deal 

with existing problems. We call this method map segmentation. To make the 
process more clear let us first look into Img. 3. 
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Img. 3. Segmentation of Santiago graph 
 

 The idea is simple. First we calculate the size of our graph using 
Euclidean distance algorithm. Then we separate our graph into thousands of 
cells. The size of the cell was selected by practical tests. We come to decision 
that 100K cells is the best metric for our graph in terms of correctness of work 
end speed. Each node from our graph referenced to particular cell by cell_id 
attribute. This separation helps us to divide big graph into many subgraphs, 
now we can proceed each of them separately and also use in particular 
algorithms for routing in our transportation network.  
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6. Error classes 
 

Finally we structure and formalize our initial data. But we did not 
solve other problem: Data errors. After examining the graph on map and 
computational tests of streets and edges connections we come to idea that not 
all relations between nodes are set correctly and not all nodes have proper 
coordinates. We determine three main error types in data: 

1. Near Points errors. 
2. Intersection errors. 
3. Near segments errors.  
 
For each error type we develop specific algorithm that will be 

described in this chapter. But first we want to introduce general idea of 
handling the error situations. Each error case represents failure when 
inputting the data by worker, it’s mean that one node can be repeated several 
times, or there is no node in edges intersection or other. If we process the 
initial graph, it will take a lot of time (around 15m just from initial loading), 
resources and still be slow. So we’ll use segments from previous chapter to 
process the grid. The general algorithm will consist from the next steps: 

1. Iterate through each cell from graph. 
2. Check the cell for error situations. 
3. Fix error case. 
 
The idea was good. But after practical tests we find out that we did not 

take into account all frontier cases.  
 
 
 
 
 
 
 
 
 
 
 

Img. 4. Segmentation problem 
 

Take a look at image 4. We have 2 different cells and in red circle you 
see two different points that should have a relation but actually they don’t. 
Naturally will be to detect this error case and to create the connection. But 
because they are in different cells it was impossible.  

 The idea how to deal with it is to proceed not only the central 
square but also with neighbors.  To illustrate this take a look at image 5. 

 
 
 
 



 OPTIMIZING THE TRANSPORT NETWORK OF A LARGE METROPOLITAN AREA TO 
IMPROVE CITIZEN ACCESSIBILITY 

 

14 

 
  

 
 

Img. 5. Map processing algorithm 
 
 Here we want to examine red cell. But to prevent loosing errors on 

edges we will also consider all his neighbors (cells from 1 to 8). And create a 
graph that consists of all nine cells. And do this algorithm for each cell. In this 
case we can be sure that all error situations will be determined and handled. 

 

6.1 Near Points Error 
 

 Now we move to error classes handling. We will start form near 
points error. This is the most common error type (almost 400 thousand error 
cases). It can happen everywhere: in one street, in crossroad, in highway or in 
parking. And the problem that we have multiple nodes in area, where it should 
be only one. Let’s examine an image 6 to get clear view how it’s happening.  
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Img. 6. Near points error 

 
We see two different streets 1 and 2. And they create a crossroad, but 

actually not. Here we have 4 different edges with 4 different nodes and no 
connections between them. Possible answers why we get this error type is: 

 GPS failure. 
 Human factor. (Don’t forget that all the data are inputted 

manually) 
 
To fix near points error we develop near point fix algorithm: 
 Get the list of neighbor cells and create a subgraph based on nodes 

from current cell and neighbors. 
 Create all possible combinations of nodes in this subgraph. 
 For each pair of nodes check the relation. They should be from the 

same street and have the same hierarchy. It’s very important tip. Because we 
don’t want to merge two nodes from different street that just pass by. Also we 
should check nodes for the hierarchy, because we don’t want to merge for 
example highway node with parking under that highway. 

 After that we calculate the Euclidian distance between two nodes, 
and if it’s less than merge radius attribute we start merge them. Merge radius is 
a special attribute that determine the reasonable radius in which we can 
merge two nodes. On image 6 it is represented by green circle. The ‘golden’ 
merge radius was selected by practical experiments and is 1 meter. If we select 
a bigger radius, it will merge some small edges into one point, but if we select 
smaller radius we will omit a lot of error situations. 

 For merging the points we use introduced in section four hash 
sums. Because comparison of two distinct nodes is based on calculation of X 
and Y coordinates hash sums, to merge two nodes we just need to set the equal 
coordinates. This coordinates are calculated as an average from X and Y 
coordinates of each point respectively.  
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After the near points error handling we test the graph and we get 211 
thousands of fixed error situations. It helps us to reduce total number of nodes 
to 417 thousands and resume map connections. 

6.2 Intersection errors 
 
Next error type is intersection errors. It happens on street crossroad 

and in most cases connected with human factor. Workers forgot to place nodes 
in their places and we can get situation like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Img. 7. Intersection error. 
 

We have two different edges 1 and 2. They have the same hierarchy 
and should cross. For crossroad they should have a node in intersection point 
to split them. But there is not.  To make data free from intersection errors we 
develop intersection fix algorithm: 

 For current cell get all the neighbors and create a subgraph. 
 Inside subgraph distinguish all the segments (unique edges). 
 Create all combination of edges that is part of different streets and 

has the same hierarchy. 
 Calculate the presence of intersection. 
 If we have an intersection, create a new Point and split the edges 1 

and 2 into 4 different edges. 
Correction of intersection error classes give us near 2 thousand of 

fixed situation and make our graph more accessible by adding missing 
crossroads. 
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6.3 Near Segment Error 
 
The last error class is near segment errors. This error case happens on 

street that are connected to another by one edge, but don’t cross the street 
(like T-type crossroad). In the illustration we can see exact situation how it 
happen: 

 
Img. 8. Near Segment Error. 

 
  
 From the image we can see that we have two different streets that 

crates T-type crossroad. The relation between node from street 1 and street 2 
is not established, so we don’t have direct access street 2 from street 1. To fix 
this we implement near segments fix algorithm: 

 For each cell get all direct neighbors and build a subgraph on 
them. 

 Create sets based on all edges and nodes from distinct streets. 
 Create all possible combinations on prepared sets and check them 

for the same hierarchy. 
 Calculate the distance from node to edge, if its closer then merging 

radius separate edge into two distinct ones and associate corresponding 
endings of them with node. 

 
This fix gives us just 30 error situations, but this help us to finalize 

error handling and represents clearance of the final data set.  
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6.4 Finalize the data cleaning 
 
 
Now we finish cleaning and normalizing the data. Small summary of 

achieved results. From the beginning we receive a huge dataset with a lot of 
repetitions, data collisions and errors. Applying our algorithms give us 200 
thousand near points error fixies, around two thousands of added 
intersections and corrected segments errors. Finally we get a clean graph on 
415,321 nodes that has: 

 Clear and quick data structures with two-way access (Nodes -> 
Edges, Edges -> Nodes). 

 Proper connections between objects. 
 213 thousands of fixed errors 
 Easy to update and get. 
 Normalization of dataset 
Now we finish working with data and move to more interesting part. 

Making tests on our dataset and checking the algorithms for finding shortest 
paths and predicting the places to put important buildings. 
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7. Introduction in SAGE 
 

 In next chapters we’ll start presenting algorithms that was 
proposed by us to deal with main problems of this work. But before that we 
want to create a big graph with all the nodes and relations between them and 
collect different metrics that can be useful for us in future computations.  

As you remember we have quite a big graph. And processing of big 
graphs means big problems for execution time and correctness check. Also we 
wanted to find a good tool for calculating different graph parameters and 
metrics. My supervisor propose to use SageMath[5] software. So the idea is to 
import SageMath package into our project and to convert our graph into 
SageMath graph. SageMath is mathematical software that was created by 
scientists from university of Washington and covers many aspects of 
mathematics including graph theory. SageMath give us full access to variety of 
graph algorithms and metrics that we can use. We determine the most 
important SageMath functions and attributes that we will use for our tests: 

 Vertices – number of nodes in graph 
 Edges – number of edges in graph 
 adjacency_matrix – gives us the adjacency matrix for our graph 
 average_degree – returns the average degree of the graph 
 average_distance – returns the average distance of the graph 
 blocks_and_cut_vertices – computes the blocks and cut vertices of 

our graph 
 bridges – calculate total number of bridges in graph 
 centrality – there are two options betweenness and closeness 

centrality for graph. 
 is_connected – check if graph is connected. 
 Connected_components – gives explicit information about 

connected components in graph 
 Density – returns number of edges divided by total number of 

possible edges. 
 Diameter – returns the maximum distance between two nodes 
 
We import our graph into SageMath and start running the test 

functions. And almost all of them fail. But the most interesting parameter here 
is connected_components_number it gives us 307 connected components. Then 
we check the sizes of this connected components and what we get: [410693, 
302, 297, 208, 108, 97, … ].  

So as you see we have one big subgraph that is on 410 thousand nodes 
and near 300 hundred of subgraphs smaller sizes.  
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Img. 9. Segments gap. 
 

The most reasonable explanation why it so is this is also Near Points 
Error class problem but the distance between points is bigger than predicted 
by our merging parameter and because of that we did not connect these 
subgraphs together. On image 9 you can see particular case found by me on 
map how the gap between segments happens. 

 Generally the easiest way to continue the computation is to respect 
only the biggest component and continue all the computations on it (as we did 
first), but then we come to very interesting idea how to merge all this 
subgraphs into big one.   

Now let us explain the main idea of subgraph merger algorithm: 
1. We get a list with all border cells (remember the cell is a map 

sector with nodes and edges inside) of both subgraphs. 
2. Search for the direct (touch each other from one side) border cells 

with neighbor subgraphs and if they are present mark them as a candidate for 
connection between subgraphs. 

3. For each selected cell get list of neighbor cells considering only 
cells from the subgraph it belongs to and create a new subgraph on them. 

4. Because merge radius parameter is useless (the distance to node is 
bigger) in this case we’ll do a trick. In both cell subgraphs check edges for the 
same street ids. And if we find a match, its mean that we actually should have 
an edge in this place. 

5. Find the endings of detected street in both cell subgraphs and 
create a new edge between them. 

 
This algorithm help us to automatize the process of merging 

disconnected components and makes our graph connected. 
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8. Shortest path finding algorithm 
 
 Next big goal in our work is to calculate shortest paths between two 

nodes in our graph. In small graph you can just apply Dijkstra's algorithm and 
get the result, but our graph is built on more than 400 thousand nodes, so we 
need to find a more clever way to perform this. 

 First algorithm we want to propose lets name as fast cell path 
finding. The main idea of this algorithm is to use segments for our graph and 
processing them independently. 

 Fast cell path finding algorithm starts from preprocessing phase. In 
this phase we determine each cell as independent objects and create 
something like a blackbox from each of them. The preprocessing algorithm has 
next steps: 

 For each cell in graph we create a subgraph based on nodes 
 Then we get a list of all ‘boundary’ nodes (its mean all the nodes 

that has connections to another cells). 
 And calculate the distance matrix for boundary nodes in the 

subgraph. 
 
We should also mention about weights in our graph. You remember 

that after creating a new data structures we recalculate the distances for each 
edge. Naturally will be to use this parameter as a weight of one edge in 
subgraph. But it’s not the best metric. From initial data for each street we also 
store information about speed limits. Time that you spend to move through 
the edge is: traveling_time = edge_length / speed_limit[10]. And now we 
propose to use traveling time on edge as a measure of weight in graph. Also it’s 
good for dynamic path updates during the day, because of speed changings 
during the morning and afternoon traffic jams (it will update automatically, 
because we have different speed limits for each street depending on part of the 
day). 

 The main part of algorithm. We select two points (nodes) where to 
start and to finish. Next we look at our map as a matrix. Each element of matrix 
is one cell from map. In first version we decide to use A*[6] algorithm with 
Euclidean heuristics but with the rule don’t cross the corners of the cells to 
find the shortest distance. And we build the path from the cell where we have 
the start point to the cell with finishing point. 
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Img. 10. Fast cell path finding algorithm. 
 

 From the image you can see exact work of the algorithm. We create 
a path start -> finish represented by blue line. Than we are going to second 
phase: Cell path routing.  

 As you can see from the image, for easiness of computation we do 
not consider corner crossings. First let’s take a look to the cells where start and 
finish points are situated. Because this points are not laying on the edge of the 
cell, we cannot use our blackboxies from preprocessing phase.  And it is mean 
that we should proceed this cells manually. We will use A* with the same 
heuristics algorithm for any shortest path finding needs. 

 We consider the start cell of our path. To begin the route building 
we determine the position of next cell to our position and then calculate the 
path to nearest edge node of the cell. 

 Each next cell of the route we will consider as a blackbox with 
node-connectors on edges. The algorithm of work on intermediate nodes looks 
like this: 

1. We determine the node on which we stop the route computation 
from previous step and mark it as a current start node. 

2. Consider current cell on map to detect the position of next cell and 
border to which we should move. 

3. Take calculated routes data from preprocessing phase. 
4. Build path from current start node to the edge node with the next 

cell. 
5. Extend existing shortest path to finish node by path from current 

cell and go to the next step. 
 
When you come to the cell with finish point you should repeat the 

calculation as with start point. In runtime (during the main program 
execution) calculate the path from border node to finish node. After that 
finalize the computation and return the founded path.  
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 It can happen that during the algorithm execution there is no direct 
relation between two cells, that we create cell extension algorithm to fix this 
issue. If there is no direct border edge between two cells we start considering 
neighbors of current cell to find the shortest path. We do it recursively, until 
the time we find the match. It can happen that we will emit the direct next cell 
and build the path through neighbor cell directly to the next cell.  

Now we are in blackbox computation phase. After finishing the 
computations we will start our tests on selecting best heuristics and 
compering achieved results. 

8.1 Highway Shortcuts 
 

 As an improving for fast cell path finding algorithm we propose to 
test nodes hierarchy separation technique.  From the raw data for each edge 
we have special hierarchy attribute that plays important role in our graph. This 
attribute represents the level of the road (starting from highway until byroad).   

 The proposition is to split our graph into 4 different ones by 
hierarchy levels[7], then collect and examine metrics and propose 
improvement for existing algorithm.  

 The results give us the next proportion of nodes comparing to 
each other: 1:2:2:4 (this is the ratio of nodes number in each subgraph, built by 
different hierarchy, See Appendix 1). The smallest group is for hierarchy 1 who 
creates a graph of highways on our map it is only based on 25 thousand nodes. 
Than we have fast routes and big streets and more than 100 thousand nodes 
create a graph for small streets on suburbs. 

 The idea behind this segmentation is to provide alternative routes 
to main algorithm. Sometimes it can happen that shortest path on map is not 
optimal route (in terms of spent time). It happens because we respect only 
cells that lay on shortest path. 

 
 

 
 

Img. 11. Highway shortcut 
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 On image 11 we schematically draw a possible highway that lay 

from start to the end square but it is not laying on optimal path, so this way 
will be emitted. 

 For the algorithm we will consider 4 different graphs and made 
preprocessing phase as in initial algorithm. Then we check the approximate 
distance between start and finish nodes (Euclidian formula). If it’s more than 5 
km, it will be a good idea to use highway instead of regular roads. 

 First we consider the cell with start node. Depending on distance 
to finish point we will consider number of neighbors to proceed. We add one 
more circle of neighbors per each 10 km of way. Then we create a subgraph 
based on selected cells and start searching for the entrance to highway (nodes 
with hierarchy 1). And do the same with finish node. After that we use our 
subgraph based on nodes with hierarchy 1 to calculate the shortest path 
between two points. If path exist, we will propose it as alternative one. 

 Considering the highways we keep in mind that it’s a problem 
sometimes to use them (they can be far, payed enter, few exits). Because of 
that we search path through highway only if the distance between start and 
finish points is big.  

 For the graphs of hierarchy 2 and 3 the algorithm will be different. 
If we can’t build the path through highway, we’ll try to build it only through 
edges with hierarchy 2 and 3. But these streets are big enough and can exceed 
the cells on the shortest rode, to fix it for each cell on path we will consider 
neighbors to expand the observed area and create a subgraph on selected cells 
based on graph with hierarchy 2 and 3. If the path exists, it will be also 
proposed as alternative one.   

8.2 Evolutionary path optimization 
 

Considering basic or even improved shortest path finding algorithms 
give us a good guess what can be a perfect route from initial point to 
destination. But in fact it happens very often that proposed path is not optimal 
or totally not acceptable for particular user. 

We propose to create a special tool that will allow us to get feedback 
from user based on his experience on proposed route. It will be a mark that 
shows the correctness, simplicity and fastness of created path. Also we want to 
collect additional data from every trip that will help us to update the data and 
verify shortest paths.  

To do that we should update our data structures. For each edge from 
our graph add an attribute called passing time, its’s an automatically calculated 
attribute. It will represent the difference between predicted traveling times 
and actual time on edge (we will retrieve this data from users feedback).  So in 
future path finding techniques we will take into account this value to correlate 
the optimal path. 

After each trip user can give a feedback about the trip if it was good 
and well planned. He will put a mark from zero to ten. This mark will be 
recorded for each edge that was used in path building. For doing that we add 
new attribute called customer mark. 
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After 10 trips per edge we can make a new suggestion about it and 
recalculate the metrics of particular edge. Based on our observation, we can 
change the time that needed to pass the edge. And if the mark of particular 
edge is low (minimum than 5) its mean that this street is not handling the 
amounts of cars and we will set the new hierarchy of current edge to lower 
value. It will show us that the actually the maximum allowed speed cannot be 
reached and that we should avoid this edge because of traffic. 

Still this work is related to future steps. For now we have a view how 
it should be implemented and pseudocode of algorithms for developing. 
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9. Placing administrative building on map 
 
Calculating the paths in large metropolitan area is a big issue we faced 

with. The other one is creating the algorithm for placing important buildings 
like hospitals, schools, police departments and others. The algorithms for 
doing this was not developed yet, but I want give you general idea how we 
plan to deal with this problem. For each type of service you should calculate all 
the parameters individually, taking into account the specialization and costs. In 
my particular example I will describe the algorithm for placing new schools in 
area.  

We will consider the cell of initial graph as a minimum unit for 
performing the calculation. When designing the algorithm for placing schools 
we should consider that the frequency of school placing is directly related to 
population in area.  We will create 3 conditional zones on map that will 
represent city center, districts and suburbs. 

For making the placement we should study the demand of particular 
area. As we don’t have information about population in each region, we can 
create it based on number of nodes in area.  

We will create cluster of cells for calculation. The minimum size is 5 
square kilometers; this is the minimum area on which we can place schools 
one by one. The predicted parameter is to place a school in region that has 
more than 2 thousand of nodes. To place a particular school we should be 
aware from highways and roads with hierarchy 2 and 3. If it’s not possible 
than go from bottom (search the place near road of hierarchy 3 and up). 

Also we should consider already built schools. We have a dump with 
data structures that represent information about school system in Santiago. 
We will create a key-value storage with keys as a cell id’s.  Then after each 
calculated area for placing a new school we will check if we already have any 
school there and make a decision for placing new ones.  

The frequency of placing schools in city center will be high. But for the 
suburbs to meet the predicted nodes number value we will cover very huge 
area. So it will be difficult for children to get to the school and back. The idea is 
to create a system of school buses for suburb area that will be save and 
functional.  
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Img. 12. Bus path. 
 

Let’s consider the particular suburb from image 12. To get all the 
children bus should drive through all the cells. To build the bus path we try to 
calculate the shortest circuit for driving through each cell exactly one time (or 

minimum number of times). The other point is that for calculating the bus path 
we consider only graph with hierarchy level 4 and 3 (for safety reasons). 

As a conclusion we can say that this algorithm will help us to place 
near 200 schools. From that number almost 100 schools will be in suburbs so 
we will create a strong system of schools buses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 OPTIMIZING THE TRANSPORT NETWORK OF A LARGE METROPOLITAN AREA TO 
IMPROVE CITIZEN ACCESSIBILITY 

 

28 

10. Future steps 
 

Our project is not finished yet. We worked on formalizing and 
normalizing the datasets, fixing errors, researching and checking the 
algorithms that will be the most efficient for our problem this work was 
fundamental and should be done qualitatively. We start calculating shortest 
paths on our graph and blackbox processing.  

For the future steps we can put next jobs that will effect on our data 
and paths by correlating fastest directions and updating blackboxes: 

1. Finalize blackbox calculation for all the cells, now we still have 
errors in data, because of that some blackboxes are calculated not properly or 
completely corrupted. 

2. Test the average time of shortest path calculation on map. 
3. Study the cases when finding optimal path in graph is NP hard 

problem, find particular examples on our map and propose the way how to 
avoid them.  

4. Develop online application that will help us to connect particular 
customers and our system. Start gathering feedbacks and data form them and 
test if evolutionary path optimization is an officiant way of updating the data.   

5. Start work connected with social layer of grid (information about 
schools, police dept., hospitals). Apply algorithm of placing important objects 
on map to existing data and check if prediction of new places work properly. 
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11. Conclusion 
 

As a conclusion of this internship report I can say that I like it. The 
problem we were working on relay to real people demands. And giving the 
solution of this problem will help many citizens to improve quality of their life. 

 We start the work by structuration of the initial data. Then we 
determine and correct three main error types: near point errors, intersection 
errors and near segment errors. After that we do a research and propose our 
own ideas of the most suitable shortest path finding algorithm for our graph. 
The graph was big so we separate into many subgraphs by hierarchy levels 
and sectors it give us many independent subgraph that can be used for 
building shortest paths. The next step was calculating the blackboxies (paths 
between all border edges for each cell) and testing initial shortest path 
algorithm. 

The results that we get during graph processing and shortest path 
calculation give us clean ideas of correctness of our work. Each step of data 
processing gives us more clean and correct graph, each calculated shortest 
path help us to so improve and fix existing errors in algorithm. 

The next idea is to develop a real time application that every citizen 
could use in their everyday life and collect the data from shortest paths that 
customer builds. This information will give us the most relevant data about 
particular edge or street. 

Also we should mention that this algorithm is universal and can be 
applied to any city graph using the special intermediate layer that put the data 
into readable for the application data structures. 
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13. Appendix 1. Sage Tests Results.  
 
 

 
 

Img. 1. Subgraph with nodes of hierarchy 1 test. 
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Img. 2. Subgraph with nodes of hierarchy 2 test. 
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Img. 3. Subgraph with nodes of hierarchy 3 test. 
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Img. 3. Subgraph with nodes of hierarchy 4 and more test. 
 


