
Report for the GameSimulations.

What is the GameSimulations project.

Is an Java implementation of well known theoretical graph games, played turn-by-turn by two players.

Why we did it.

Our initial motivation for the GameSimulation project was to implement some theoretical graph games
to help recherches to actually play the games and see their token on the screen. Later, we focused on
implementing some existing strategies for those games, to allow people to play against "the computer"
and try their own strategies.

Our work.

We focused on two players turn-by-turn games in graphs: The “Cops and Robbers” and the
“Surveillance” game. In both games, each player has a team of tokens to place or move.

In cops and robber games, a team of cops aims are capturing a robber moving in a graph. It is a turn by
turn game with full information: at each step, the cops may move to adjacent neighbors, then the
robber moves to one of its neighbor. The robber is captured if it occupies the same node as a cop. The
problem is to determine the smallest number of cops that ensures the capture of the robber in a graph.
Plenty of strategies have been proposed to allow the cops to capture a robber in particular graph
classes or in general (also, is exists few strategies for the robber to escape). There are also plenty of
extension of these game. (e.g., see [1] and reference therein, see also Section 2 of [2]).

The surveillance game, is another two-players game similar to Cops and Robber Games in graphs. The
first player, a fugitive, starts on a marked vertex of a graph G. The second player, an observer, marks k
≥ 1 vertices, then the fugitive moves along one edge/arc of G to a new vertex, then the observer marks
k vertices, etc. The observer wins if he prevents the fugitive to reach an unmarked vertex. The fugitive
wins otherwise, i.e., if he succeed to enter an unmarked vertex. The surveillance number of a graph is
the minimum k ≥ 1 allowing the observer to win against any strategy of the fugitive.

GameSimulations is a Java application, written in an object oriented way, aiming to be flexible for
hosting as many games and strategies is possible.

The basic components of this applications are:

• The classes defining a game and its rules (e.g.: Game, CopsRobbers, Surveillance).

• The classes describing the rules of a team or a strategies. (e.g.: CopMobilityModel,
RobberMobilityModel, Agent, Token)

• The classes responsible for the interaction between the program and the user (interaction models).
(e.g.: InteractionBasedOnConfigFile, InteractionBasedOnGUI)

UML Diagrams... small java doc what the basic classes does...

The following picture, shows the relation between some of the most basic classes.

The Game class contains the common data and methods that a turn by turn game could have. Such
informations are, the graph, the number of the agents or the tokens and the current round.

An other piece of information the Game class has, is a list with the Interaction Models associated to the
current game.

An interaction model describes how the required information for the initialization of the game, will be
collected and what processes has to be done when important phases of the game occur (e.g.: when the
game is started and some information has to be displayed to the user).

For example the InteractionBasedOnGUI initializes the game asking the user to chose between the
available games, the number of agents and the strategies each agent should have. On the other hand, the
InteractionBasedOnConfigFile gets the above information through a configuration file.

The classes CopsRobbers and Surveillance are the implementation of the two games introduced earlier
at this document. Those two classes extends the Game class and in addition, contain the agent teams
for each player. The agents teams: 'cops' and 'robber' for the first class and the 'tokens' and the 'robber',
for the other.

The Agent class contains all the properties for an agent (such as the location of the agent in the graph)

alongside with the Mobility Model that is assigned to him. Each agent has a mobility model, allowing
him to move in the graph. The mobility model, is actually the strategy of the agent (a full list of the
strategies follows later). Notice that a token is an unmovable agent, thus a token does not have a
mobility model.

Both games are turn by turn games, so at any turn (or 'step' according to the step method at the above
two classes) the simulation handles the agent teams according to the strategy assigned to them.

Robber Strategies

Name of strategy Cops &
Robber

Surveillance Description

MoveRobberByUser ✔ ✔ Displays some dialog boxes
asking the user to move each
agent at the desired
location or pass.

MoveRobberRandomly ✔
Avoiding

Cop
locations

✔
Looking for
unmarked
vertices

Moves the agent randomly to
his valid neighborhood.

MoveRobberSimpeStrategy ✔ ✖ Searches for a vertex that
is not adjacent to a cop. If
such a vertex exists, he
move there, otherwise he
stays at the same position.

Cop Strategies

Name of strategy Description Special Info

MoveCop_ByUser Displays some dialog
boxes asking the user to
move each agent at the
desired location or
pass.

-

MoveCop_Randomly Moves the cop randomly
to his valid
neighborhood. If the
robber is inside the
cop's neighborhood he
captures the robber.

-

MoveCop_CopWinStrategy Computes an tree for the
cop win graph and moves
the agent toward the
robber choosing vertices
that are ancestors of the
robber's position.

Only if the graph is a
cop win graph.

MoveCop_CopWinGeneralGraph
s

This is the Cop win
strategy generalized for

-

all graphs.

MoveCop_ControlPathWithOne
Agent

Uses one agent to control
a shortest path

(preventing Robber to
visit the path).

MoveCop_CopWinGeneralGraph
s

MoveCop_FollowAgentOnPath Uses at most 5 agents to
control a shortest path.

Extends the capabilities
of the

MoveCop_ControlPathWithOne
Agent strategy

An other important class is the Utilities class, which contains methods that are,
responsible for generating a graph topology and general graph methods, like finding an
ancestor of a vertex that belongs to a tree.

Finally, the classes under the 'simulations.gui' package are responsible for the graphical
interface between the user and the application. The UInputs class contains most of the
dialog boxes displayed to the user waiting for an input.

How you can run it.

First make sure you have Java installed on your system. You can verify that Java is installed by typing
into the command terminal:

The application requires a Java Virtual Machine library of version 1.6 or higher (You can download
one from http://java.com/en/download/index.jsp).

Then you can run the application, as any runnable jar file, by executing the file or through a terminal by
the command:

By default the application runs in gui mode, and displays dialog boxes asking the user to chose the
game and it's parameters. However, the application contains a configuration mode too, where the user
can input a configuration file with the parameters of the game. For full control of the application it is
advised to use the command line mode.

Full example:

Inside the project folder there are some input configurations files. You can find a description for them

java -version

java -jar GameSimulationsName.jar

Usage: simulation_file_name.jar [options] [input-file]

Options:

 -s Silent Configuration Mode (for command terminal).

 -h Displays this help message.

java -jar Simulations.jar -s inputConfig1.txt

http://java.com/en/download/index.jsp

at the files “input_Cops_N_Robbers.txt” and “input_Surveillance.txt” along side with some other
example input-files.

How to Import/Export a project to Eclipse.

There is a tutorial there:

http://agile.csc.ncsu.edu/SEMaterials/tutorials/import_export/

It is advised to have a Java Virtual Machine library of version 1.7 or higher to build correctly this
project.

After importing the project from the archive file, if there are some errors, maybe you
have to update the required libraries.

To do this: Right click on the project and go to 'Properties'. At the new window, go to
“Java Build Path” then go to “Libraries” tab. There will be some libraries with a 'red x
icon'. Remove all the libraries except the JRE System Library and go to “Add External
JARs” Then add all the libraries under the “required_libraries” folder inside the project's
folder (it should be at …/EclipseWorkspaceFolder/Gamesimulations/required_libraries).
Then click 'ok' and 'Refresh' the project (Right click on the project and refresh or F5).

Bibliography
[1] Jérémie Chalopin, Victor Chepoi, Nicolas Nisse and Yann Vaxès, Cop and robber games when the
robber can hide and ride.
SIAM Journal of Discrete Maths, Volume 25(1), pages 333-359, 2011.
http://hal.archives-ouvertes.fr/inria-00448243/fr/

[2] Adrian Kosowski, Bi Li, Nicolas Nisse and Karol Suchan. k-Chordal Graphs: from Cops and Robber
to Compact Routing via Treewidth.
In Proceedings of 39th International Colloquium on Automata, Languages and Programming (ICALP),
track C, Springer LNCS 7392, pages 610-622, 2012.
http://hal.inria.fr/hal-00671861

[3] Surveillance... To Satisfy Impatient Web Surfers Is Hard

http://hal.inria.fr/hal-00671861
callto:610-622,%202012
http://hal.archives-ouvertes.fr/inria-00448243/fr/
callto:333-359,%202011
http://agile.csc.ncsu.edu/SEMaterials/tutorials/import_export/

	Robber Strategies
	Cop Strategies

