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Abstract  
 
The concept of smart cities is aiming at combining of information and communication 
technology with Internet of Things solutions to provide a full control over city assets, 
which include everything from schools to industries.  Considering this, mobility is a very 
important aspect of this idea as we should connect them not only in the network but also 
in real life.  In this paper we are dealing with the problem of mobility using the real-world 
example of cities like Nice and Cagnes-sur-Mer. In this context, we start with extracting 
the map of Nice and Cagnes-sur-Mer into the road graph format that can be understood 
by the programming language.   Further, we survey existing shortest path algorithms and 
select the best one for real life dynamic road picture. In the scope of dynamic road 
situation, we then show the approach on how to combine this algorithm in order to 
accommodate it to continuously updating information, by dividing the region into 
sufficiently small zones with the help of linear programming. With the results obtained on 
both artificial and  real-world data we show that our approach has a  big potential and can 
be used for creating the application for mobility in cities.
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1. General Project Description 

1.1 Framework/Context 

 
Smart cities are being thoroughly studied nowadays. The ability to estimate constraints 
required to pursue a route from any place in the city to another one has become very 
important.  These constraints can be anything: from time to number of stops. Minimizing 
them could have a significant impact on the outside world: the less stops driver (or cyclist) 
makes – less effort he or she puts, which itself produces less exhaust. The project is aiming 
at studying already existing solutions of shortest path discovery and finding the most 
efficient one for the bicycle transport system. By using real-world data extracted from 
resources like OpenStreetMap, the algorithms can be tested and the best ones can be 
found. The bicycle study can then be combined with whatever existing means of transport 
by introducing changes into the transport network graph and algorithms so that they 
receive the required information for computation. The difficulties are mainly concerning 
the constraints that affect the itinerary planning and are specific to each way of traveling, 
and the nature of the means of transport (whether it is scheduled or roams randomly). 
 
Having the possibility to build paths from one point to another in the static environment 
(i.e. without any changes in time, itineraries, etc.) is good. However, in the real world we 
can observe that situation changes continuously and preserving the same route as it was 
built from the beginning can drastically delay the actual arrival time with regards to 
estimated one. Based on these assumptions in this work we try to approach the dynamic 
scheme by providing both basic and sophisticated methods to deal with the posed 
problem. 
 
Nowadays when someone wants to go to some destination in time he or she plans the 
route and, with the hope of correctness of the estimated time, goes on a trip. With big 
transport companies and means of transport like airplanes, the estimation is usually 
correct with an error varying in range of several minutes (i.e. a few % of total travel time). 
With public transport like buses, error may increase due to the traffic jams and time that 
passengers spend with boarding or getting of the vehicle. However, with the popular 
means of travel like rental bicycle (e.g. vélo bleu in Nice) there is a very big amount of 
factors influencing the correct estimation and building the itinerary, such as bicycle 
availability at the starting station, possibility to leave a bicycle at the destination, safeness 
of itinerary, number of traffic lights needed to cross and many more. 

1.2 Motivations 

 
The rising popularity of such public transport systems as bicycle is playing a major role 
for searching solution of efficient itinerary planning mechanisms. For example, there are 
two biggest online route-planning systems like Google Maps and OpenStreetMap; 
however, the correctness of produced estimation and scalability of the algorithms needs 
some improvements. An error even of 5 minutes can sometimes be crucial so that the 
preciseness of the solution must be maximized as much as possible. This error influences 
the outcome of the client’s trip and decreases his or her satisfaction of the system, which 
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can also result in the loss of the target audience. Moreover after working with the actual 
real-world data during the PFE, we have verified that the size of it is very huge (e.g. for 
the  map of Nice and Cagnes-sur-Mer the road graph contains around 82 thousands of 
nodes and 88 thousands of edges). This urges the desire to discover ways of reducing the 
working data range to increase the speed of the computation. Along with the 
aforementioned reasons we would like to model the realistic picture of the city which is 
dynamic. Route planning systems as Google Maps and OpenStreetMap have this feature, 
however, it is limited and we want to achieve the level of the dynamicity where even 
malfunctioning traffic lights, road accidents or road works will instantly update the route 
search process. Moreover, if the algorithm is being thoroughly studied and implemented, 
it can be used to build not only efficient itineraries for bicycles, but with some adjustments 
(as changing metrics and modifying graph) it can model routes for various transport 
systems as well as ordinary pedestrian walk planning. 

1.3 Challenges 

 
Itinerary planning of the static system is similar to the search of the shortest path from 
source to the destination in directed graph where all the weights (depending on the 
metrics system implemented in the graph) are known. Even in this case we need to 
consider the problem of choosing the metrics because some users would like to travel as 
fast as possible, some of them could care about safety (less road crossings for children) 
and other preferences. First, it is hard to get the clear static picture of city transport 
network that can be represented as suitable for a graph algorithm as it can be of a very 
big size and even powerful computation machines will take a lot of time to process it. After 
having the data to work with we had to read through many shortest path algorithms to 
pick and implement a fast and efficient one to fit our goals. The main difficulty of this step 
was achieving the exact similarity between the theoretical description of the algorithm in 
the paper and real implementation of it. Then the challenges mainly start arising in the 
dynamic systems such as realistic representation of the city’s global traffic picture. In this 
case weights of the graph as well as arcs can be changed accordingly to the traffic jams, 
repairing works, broken traffic lights and even accidents. This means that now, we cannot 
just compute the route once and provide it to the user all the time. We need to 
continuously look at the values of the weights and arc availability to search for the most 
appealing itinerary from the user’s point of view. Here we cannot permit the updating of 
the full map of the world because it will take a lot of time and resources. So we have 
applied the notion of map partition to reduce the number of the changes that need to be 
forced onto the working data. Very important challenge appears when we try to 
implement the customization of the itinerary planning mechanism: the algorithms 
process linearly expressed constraints normally but when they become non-linear, the 
resolution might be much more difficult. The key is to choose constraints wisely and make 
them feasible for computation. Last but not least, an efficient itinerary planner should 
possess a good trade-off between memory consumed and CPU work. Every system has 
different hardware, however, usually the platforms (e.g. smartphones or tablets) that use 
itinerary planners are not big and have lower computational power than experimental 
machines. 
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1.4 Goals 

 
The main goal of the internship is to implement service offering efficient itinerary 
planning. This requires having a shortest path algorithm capable of providing us with 
exact route from stated source of the trip and its destination as well as being fast and 
flexible in case of weight changes in the graph. The algorithm may not seem flexible for 
the task, however, we can find the way of adapting it to the dynamic case and possibly 
even improve the algorithm for better performance. Other important objective is to 
identify different metrics that will create possibility of user customization of the 
mechanism which will give the system the notion of novelty in comparison to existing 
solutions for route planning.  Additional goal is to learn how to extract and operate the 
graph representation of city’s map on example of Nice using the OpenStreetMap project.  
Having this graph representation, we should be able to run some shortest path algorithms 
on it and try to adapt them to the dynamic scheme, when weights of arcs constantly 
change. Of course, the algorithm can be tested on the manually created graphs but having 
real-world data will prove not only the theoretical but also the practical value of the 
system. 
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2. State of the Art 
 
There has been done a lot of work in the field of finding the shortest path in the recent 
years due to the growing number of cars on the streets and needs of efficient route 
planning in personal or business purpose. In order to produce fresh results one needs to 
survey the existing literature, correct inaccuracies and add new features.  
 
2.1) In the article “Cycling the Green Wave” [1] the problem of creating shortest paths for 
bicycle users is being tackled. The authors are trying to apply the adaptive cruise control 
to bicycles so that we could achieve the same efficiency that the car gets using it, for 
example, spending less energy for starting the movement by reducing number of stops 
required on the path. The approach of the work is based on the usage of classic Dijkstra 
path finding algorithm on the graph, representing the traffic network, which was 
specifically modified for the problem. The modifications are introduced by the notion of 
bypasses, which are the additional arcs that are placed on the traffic light nodes and 
standing for the paths for crossing the traffic lights in each of available direction. The 
weight of the bypass is computed from the time of arrival to the traffic light and shows 
the estimated waiting time at the red light. This means that the graph that is created for 
the Dijkstra algorithm already has a dynamic element, which is also considered in our 
work. So the bypass notion is a very important result which can help us finding the most 
efficient path of all. The paper also shows modifications of Dijkstra algorithm specifically 
for presented task. The difference between the original algorithm is that whenever we 
consider the bypass road we need to ensure that the arcs, which were bypasses will never 
be reviewed in subsequent search. This helps to evade the wrong path (bypass can have 
a longer estimated time than the basic route, as the waiting at the red light is added) 
arising as a shortest. This modification shows an example of possible ways to adjust 
various algorithms to a particular task. 
 
2.2) The article “Route planning in Transportation Networks” [2] similarly to our goal 
surveys current solutions while trying to find a most optimal one to deal with itinerary 
planning task.  
 
Based on it, there are three main algorithms for finding the shortest path in directed graph 
with weighted arcs: Dijkstra algorithm, Bellman-Ford algorithm and Floyd-Warshall 
algorithm. These algorithms are used to find the shortest distance between the source and 
the destination in the graph.  
 
From the results that were found we can now know that Dijkstra algorithm has the time 

complexity in 𝑂((|𝑉| + |𝐴|) ∗ 𝑙𝑜𝑔|𝑉|) using binary heaps. However, if we use Fibonacci 

heaps the time complexity drops to 𝑂(|𝐴| + |𝑉| ∗ 𝑙𝑜𝑔|𝑉|), where V is the set of vertices of 
the graph and A the set of arcs. On the other hand, the Bellman-Ford algorithm worse case 
time complexity in 𝑂(|𝑉| ∗ |𝐴|), but in some situations, it can compete with the Dijkstra 
solution. As for the Floyd-Warshall algorithm, it has time complexity in 𝛩(|𝑉|3), while 
computing distances between all pairs of vertices and for sufficiently dense graph is faster 
than running |V| times the Dijkstra algorithm. This gives us the understanding that 
depending on the graph of the transport network some algorithms will work better but 
for the completely different scenario they will perform poorly. 
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The idea of using the bidirectional search for reducing the search space looks very 
appealing from the computation time point of view: we simultaneously start the forward 
search from the source and the backward search from the destination; it may stop 
whenever the intersection is found, which means that the shortest path is a sum of two of 
them. However, it still needs to be checked whether this solution is good for a dynamic 
system, as we could find the shortest path based on time that has already passed and user 
will stand in a traffic jam that has not been taken into account. 
 
The article [2] goes on to present many different techniques of finding the shortest path: 
goal-directed (e.g. A* search, geometric containers, arc flags, precomputed cluster 
distances, compressed path databases) which reduce number of vertex scanning by 
ignoring the ones that do not go in destination direction. The road networks usually 
cannot be represented as planar graphs, however, it is stated that there are some 
separators of small sizes in them. So some separator-based techniques are shown further: 
vertex separators, arc separators. This can help us find the smaller overlay graph that will 
allow faster computation [3]. There are also hierarchical techniques that do not guarantee 
the discovery of the shortest path but are based on heuristics that long short paths 
eventually have some small arterial network of important roads, such as highways [2]: 
contraction hierarchies (exploit the hierarchy by using shortcuts, order vertices in 
increasing importance and contract them to find a shortcut), reach. Bounded-hop 
techniques (using “virtual shortcuts”) are of great interest because they are dealing with 
precomputed distances between pairs of vertices but not the whole graph which allows 
to have less initial computation: labeling algorithms, transit node routing, pruned 
highway labeling. This overall description gives us the set of algorithms that can possibly 
be chosen in our work. 
 
In the article “Route Planning in Road Networks” [4] similar techniques (hierarchical and 
bounded-hop) are presented which shows us the popularity of those methods. 
 
The article [2] gives some possible approaches for dealing with dynamicity in the system, 
which are of great importance for our research. The approaches divide into two groups: 
one-step solutions and two-step solutions.  One step-solutions mainly consider picking up 
the algorithms that can tolerate the arc-weight changes such as ALT (landmarks and 
triangle inequality algorithm that uses small set of landmarks and distances to them to 
compute a valid lower bound on the distance to every vertex). However, two-step solution 
proposes an idea of dividing the task into metric-independent stages and metric-
dependent. During the first phase, we could compute basic route because the graph in this 
case contains only the network topology (no weights) and can be considered more or less 
static. The second phase is designed to compute the actual cost of the itinerary based on 
arc weights. This approach can save a lot of time; however, it still has to be tested and 
proved correct and efficient. Furthermore, it requires to store a significant amount of data. 
 
Another interesting feature of an itinerary planning is time-dependence, which is also 
briefly mentioned in the paper [2]. It plays a major role in our study because depending 
on the time there could or could not be bicycles available at the station, traffic jams could 
be longer or shorter based on the morning, mid-day or evening time cycles and so on. 
 
The paper [2] also provides some experimental results, which show the performance of 
various algorithms that can be used to pick the initial set of techniques faster.  
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2.3) Among all the shortest path algorithms in our project we decided to focus the 
attention at the Hub-based labeling algorithm by Adrian Kosowski and Laurent Viennot 
[5]. 
 
The main idea of the algorithm is to pick sufficiently small set of edges (which are called 
hubs) for each vertex in the road network graph. The authors give that following 
definition of the hub set: for a network G = (V, E), where V – set of vertices and  E – set of 
edges; we assign a small subset S(u) ⊆ V to each node u ∈ V, in such way that for any pair 
of nodes u, v, the intersection of hub sets S(u) ∩ S(v) contains a node of the shortest uv-
path. 
 
The principle bases on the way these hubs are picked: for each pair of nodes in the graph 
an edge on the shortest path between them is picked. This approach uses precomputing 
to prepare the data for very fast shortest path query response. As to provide the answer 
for the query the only thing that we need is to look at the intersection of hub sets of target 
nodes: the hub that is common between the two of the nodes and has the smallest distance 
to each vertex lies on the shortest path in between them. 
 
The algorithm uses several novel parameters and notations as well as already known 
ones. First authors introduce Tree skeleton. Taking the shortest path tree of the road 
graph G rooted at node u ∈ V we apply the notion  ReachT(v) =  maxx ∈V(T)dT(u, x) to 

create a subtree that is pruned at 2/3 of the distances. In this case we get smaller tree 
consisting of the paths by which you can get to every node in the graph. 
 
The paper uses the notion of geometric realization of the graph, which is a “continuous” 
representation of the graph where each edge is presented as infinite number of vertices 
of degree two. Now, applying this notion to the tree we can define the width of a tree T: 
the maximum number of nodes in it at a given distance from its root.  
 

𝑊𝑖𝑑𝑡ℎ(𝑇) = 𝑚𝑎𝑥𝑟>0|𝐶𝑢𝑡𝑟(𝑇)| 
 
The width of the tree was introduced to present another important parameter called 
Skeleton dimension. It is defined as the maximum width of the skeleton of the shortest 
path tree. 
 
All these parameters and notations are provided to show the efficiency of the algorithm. 
The authors show that their method allows us to find in polynomial time hub sets with 
size 𝖮(k log D) on average and 𝖮(k log log k log D)  in maximum case, where k is a 
skeleton dimension and D is a diameter of the graph. 
 
In addition to hub set size authors present the comparison of algorithm’s speed to other 
shortest path algorithms on the road networks of 20 million nodes, which is shown in 
Table 1. 
 
The speed of the algorithm and research interest in implementation of novel approach 
were the reasons that made us pick it for the project. In chapter 4.3.6 we will discuss the 
algorithm step by step and provide results that have been acquired during the internship. 
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Dijkstra (1959) 1 min 

Bidirectional Dijkstra 10 sec 

Bidirectional A* (1968) 1 sec 

Reach-Pruning, Contaction Hierarchies 
(2005) 

10 ms 

Hub-labeling (2010-13) 10 μsec 

Table 1. Comparison of algorithm shortest path query response time. 
 
 
2.4) All the documents on the topic that we have read consider finding the shortest path 
uniformly for every user. The novelty of this project is also to introduce different metrics 
that depend on the user. This means that based on the user choice, the mechanism will 
compute the weights of the arcs and only then solve the shortest path problem. For 
example, parents would like to choose the safest path for their children and this means 
less road crossing; delivery guy needs the fastest route to get a better tip, so we go with a 
least trip time; some people would like to have a nice view while riding the bike and this 
will need another metrics based on user reviews. This makes the algorithm more user-
friendly and appealing for use. 
 
2.5) OpenStreetMap is a collaborative project that allows people from all over the world 
to create and modify the map of the globe. This resource can provide us with the required 
basis such as a graph representation of the city of Nice including the bicycle stations and 
other important landmarks for our study (e.g., known cycling roads). 
 
One of the main goals is to find a way to get the data from OpenStreetMap and convert it 
to the form that can be recognized by the algorithm. To perform this task, we can use 
existing Python libraries such as NetworkX.  
 
The next step is to summarize the techniques that have been already discovered and pick 
the most relevant for bicycle network. Then we should obtain the metrics considering 
various users’ preferences. 
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3. Contributions 
 
There are two approaches for computing the itinerary: considering static and dynamic 
picture of the traffic. In this work we are studying the first one to discover a good way of 
approaching the latter, presenting the results and implementation of required methods 
as well as the prospective solutions to improve them. 
 
The experimental study of the theoretical developments is based on a real-world road 
network of Nice and Cagnes-sur-Mer with the number of nodes reaching up to 88 
thousands. As the outcome of these experiments, we   provide the visual representations 
of the basic and sophisticated partitions of the map into regions, which are cropped parts 
of the full road network graph. We provide the average and total CPU time to compute the 
shortest paths between all the node pairs within these zones and compare the time 
required to build such a partition. The obtained results show that using naïve partition is 
very time consuming and inefficient. 
 
In addition to performed tests we created a sophisticated division of the map by using the 
linear programming. Implementation and experiments using this approach has shown us 
that there is a better decomposition of the graph into small regions in terms of size and 
time to compute shortest paths. 
 
We have spent an immense part of the internship on examining the hub-labeling shortest 
path algorithm and implementing it with Python programming language. As a result we 
have the procedures that can be used to run this algorithm on graphs of different sizes 
and structures. 
 
All the implementations of the hub-labeling shortest algorithm as well as the partition 
procedure including the disposal of overlapping can be used in future work and be 
modified for an increase of performance. 
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4.  Approach followed in the work 
 

4.1 Tools used 

 
In this section we are describing the tools and their specific choices considering the scope 
of the task and the possibilities that they can provide us with. 
 
In the task of creating the itineraries, we supposed to have sufficient and up-to-date data 
showing the road picture of inspected area. We used OpenStreetMap project to get the 
map of Nice and Cagnes-sur-Mer. To extract data we used QGIS, which is a cross-platform 
open-source desktop Geographic Information System. As every GIS system, QGIS is 
created to capture, store, manipulate, analyze, manage and present spatial or geographic 
data; however, unlike ArcGIS it is a free software. The map provides us with a detailed 
picture of streets, traffic lights and many more features that we might need. 
 
Unfortunately, the only thing that is important for us – VeloBleu stations’ location is not 
present on the downloaded map. In order to find them and combine with already collected 
data we found the website Open Data Nice Cote d’Azur. It has all information about 
Velobleu stations including their coordinates, names, short description and other. 
Moreover, it is stored in convenient for QGIS format – json. By importing this file into QGIS 
we got two layers in our application. The crucial thing at this point was to connect the 
obtained points of VeloBleu with the map itself, because otherwise the algorithm would 
not be able to build path between them. In order to perform the procedure we used GRASS 
GIS embedded into QGIS. GRASS GIS is a Geographic Resources Analysis Support System 
software suite to allow the geospatial data and analysis image processing, producing 
graphs and maps, spatial and temporal modeling, and visualizing. This packet has 
operation v.net.connect, which creates nodes from a vector points file (in our case it is 
json file downloaded from Open Data website) and adds these nodes to an existing vector 
network of arcs (the extracted map of Nice and Cagnes-sur-Mer from OpenStreetMap). By 
performing this, we obtain the map with VeloBleu stations on it, and these stations are 
connected to the map with a shortest distance. By the shortest distance, we presume the 
perpendicular one, which is the shortest interval between a point and a fixed line in 
Euclidian geometry. 
 
As a main programming language, we have chosen Python. It is a scripting language, which 
allows writing programs very quickly and has enormously large number of open-source 
libraries, which can be easily downloaded and even modified in order to fit better into the 
scope of a problem (which was exactly the point in our research). 
 
Having the desired data, we had to convert it into the file format that could easily be 
understood by Python in order to run algorithms on it. We chose the Shapefile that is a 
geospatial vector data format for geographic information system (GIS) software. The 
shapefile format can spatially describe vector features: points, lines, and polygons, 
representing, for example, VeloBleu stations. Each item usually has attributes that 
describe it, in our case we can transfer bicycle station information, like geographical 
coordinates, name, number of bicycles available directly into python code. 
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Among all available Python libraries we chose NetworkX to work with graphs. NetworkX 
is a Python language software package for the creation, manipulation, and study of the 
structure, dynamics, and functions of complex networks. In particular, it provides a built-
in Shapefile reader with the help of which we can convert data into convenient 
representation of directed graph. 
 
In addition to this, we used several Python packages in order to perform visualization 
(Matplotlib), generate the cell-grid of the map (Numpy), search the outgoing edges of each 
cell (Shapely) and measure time taken (Time). To plot the results of the work we used MS 
Office Excel. 
 
For the part with partitioning the map into regions we had to deal with linear 
programming. To solve the program that we created we used SageMath which is a free 
open-source mathematics software system licensed under the GPL. Combining this 
system with two different solvers such as GLPK and CPLEX allowed us to obtain the 
solution of the problem. As we have predicted CPLEX has shown itself to be more efficient 
and fast than GLPK, so all the final results are produced by running programs under CPLEX 
solver. 
 

4.2 Difficulties and modifications 
 
This part contains the details of the obstacles we have stumbled upon and what were the 
solution that we implemented in order to overcome them and achieve posed goal. 
 
The native NetworkX method read_shp decomposes the Shapefile into points and 
linestrings (specific class in Shapely Python package for representing lines) in order to 
add them to DiGraph as nodes and edges respectively. However, for our task it is not 
enough. In order to visualize the solution we need to add specific attributes like “position” 
with geographical coordinates explicitly. This will allow us to plot the results using 
MatPlotLib package of Python. 
 
Moreover, as each linesting consists of the list of points we need to add every one of them 
to DiGraph in order to avoid lost paths. In the figure below (fig. 1) we can observe the “lost 
path” situation. Let us take the point in the top as a VeloBleu station; after using the 
v.net.connect method in QGIS we combined map with bicycle stops, however, as was 
noticed sometimes it does not divide already formed linestrings on the line intersections. 
This leads shortest path functions to ignore the newly added path as one that does not 
exist. These methods work vertex-by-vertex, so if there is no node in between edge start 
and end points, it will assume that there is no path attached to this edge. 
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A

C

B
D

 
Figure 1. Representation of “lost path” problem. In case of junction absence on the lower 
line (point D) algorithms for shortest paths, which start working from point A, will ignore 
point C and interval DC and go straight to point B. The cross represents the skipped path. 
 
Next chapters include difficulties that arose during the shortest path algorithm 
implementation and linear program solving. We will explain them further in the context 
of the problem. 

4.3 Approach to the dynamic picture of roads 

 

4.3.1 Motivation 

 
Having the possibility to build paths from one point to another in the static environment 
(i.e. without any changes in time, itineraries, etc.) is good. However, in the real world we 
can observe that situation changes continuously and preserving the same route as it was 
built from the beginning can drastically delay the actual arrival time with regards to 
estimated one.  
 
Many factors influence the length of the path; in our case length can be seen not only as a 
physical distance that a person should travel but also it can be time, number of traffic 
lights on the way, etc. The dynamic assumption tells us that in case when something 
changes along the path we need to consider it and recalculate the way to be optimal.  
 

4.3.2 Basic idea 

 
We used the idea of local areas used in Highway Hierarchies [4] to create our partition of 
the map. In the work mentioned these areas are defined by introducing the neighborhood 
radius for each node u. Thus, neighborhood of u (local area around u) consists of all nodes 
whose shortest path distance from u does not exceed the neighborhood radius. This is 
used to perform a search in local zone around the source and the target and after that 
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switch to another level of highway network that is much thinner than the initial graph in 
terms of number of edges included on this level. 
 
However, we just take the notion of local areas and not the multiple-level scheme. The 
primitive realization of this approach can be splitting the map into cells of different size.  
 
The core idea, which we want to implement, is having our map divided into small regions 
(see appendix A). For each pair of the nodes of graph that are located in the region we 
want to have the shortest paths between them. This will allow us instantly (without 
computing the paths) have the list of routes between the nodes located on the end of edges 
that cross the boundary of the computed cells. This precomputing is much faster than 
computing the shortest paths as we go, however, it is taking more memory. 
 
One possibility to reduce the memory consumption is to store shortest paths between the 
outgoing nodes (i. e. the nodes that are in the beginning of the arcs, the end-node of which 
is located outside the region). In this case, on the entrance to the region we will see the 
possibilities to exit the area, which would be helpful if the node is not in the region, 
otherwise we should compute the path inside. This incentive urges us to create local 
regions of small size to optimize the number of nodes inside the area while having a low 
quantity of outgoing arcs from it. 
 
We will also get significant benefits of this partition in case of any changes in the road 
picture of the city. If anything happens on the map, we will just update the zone where we 
had change and then recompute the shortest paths within the region instead of doing it 
for the whole map. This will lead to enormous time savings and get us closer to the 
dynamic view of the city. 
 

4.3.3 Experiments with map of Nice and Cagnes-sur-Mer 

 
In order to create an efficient algorithm of itinerary computation within the dynamic 
constrains we need to perform the experiments to find the optimal (in terms of number 
of nodes and edges in the zone) set of regions, which will allow us to get closer to the best 
possible performance. 
 
Using the NetworkX library we have succeeded in converting the Shapefile into the 
directed graph. As a result, we have a graph with 82895 nodes and 88263 edges. Naturally, 
the task of computing the shortest paths between all the pairs in this graph is very heavy 
for CPU and memory. The testing machine with 6 GB Ram and CPU Intel ® Core™ i3-
2350M, 2.30 GHz could not perform all_pair_shortest_paths function due to memory 
limitations. The most important reason for this is that method all_pair_shortest_path of 
NetworkX library returns the dictionary of shortest paths, keyed by source and target, 
which is very inefficient. 
 
We performed three experiments with different cell sizes of 1, 5, 7 kilometers 
respectively. For each cell size we have measured the average and total time spent for 
computing shortest paths inside the regions, average time to extract the regions from the 
global map that we have. Each experiment was performed 10 times to get the mean 
approximation of time elapsed among these runs. 
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The time that we used was counted with the help of the method time.clock() from Python 
library time. This method returns the wall-clock time expressed in seconds elapsed since 
the first call to this function, so we can estimate the time that it takes for CPU to start and 
finish certain functions. 
 
In the table 2 the average number of nodes and edges is shown per zone of each size. In 
this output, we do not consider the empty zones (i.e. without any edges or nodes in it). 
The outgoing edge is an arc for which one side of it lies inside of the region and other does 
not. 
 
 

Zone sizes (km) 1 5 7 
Total number of 

zones 
307 25 13 

Number of nodes 295 3767 6376 
Number of edges 304 3985 6752 

Number of outgoing 
edges 

10 26 36 

Table 2. Representation of average number of nodes, inside edges and outgoing edges in 
each zone of different partitions. 
 
We can see that the number of nodes in one-kilometer zone is very low in comparison to 
5 km one, which explains why the average time of shortest paths computation is lower 
(fig. 3). Another interesting observation is that we have a very small quantity of outgoing 
edges in comparison to number of nodes, which means that in case when we store 
shortest paths only between the outgoing nodes the memory savings will be massive. 
 
 
The following graph will show the total CPU time elapsed for computation of all the paths 
in all the regions. 
 

 
Figure 2. Total CPU time that takes to compute all pair shortest paths in all the regions 
(1,5,7 km zones) 
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The following figure (fig. 3) shows the average time spent for computing shortest paths 
between all the pairs of nodes in the region. The search of shortest paths was performed 
by using the all_pairs_shortest_path(graph) method from NetworkX library. 
 

 
Figure 3. Average CPU time spent for all pair shortest path computation in each region of 
the partitions (1, 5, 7 km zones) 
 
From the fig. 3, we can see that the computation time inside the regions grows with the 
size of the area. It is obvious because the more nodes we have the more paths we should 
evaluate. 
 
We see that despite of low computation time inside the region we observe massive 
aggregated sum, as number of regions in the 1-kilometer partition is much higher than in 
5 km zone (307 against 25). The more detailed explanation of this outcome will be 
presented further. 
 
In addition to these diagrams, we have the visual representation of the total time spent to 
extract all regions of the partitioning for further shortest paths computation (fig. 4). 
 

 
Figure 4. Time taken from the start to the end of partitioning process (1,5,7 km zones) 
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As shown above (fig. 4) the difference between 1 km and 5 km zones is enormous: average 
time for 5 km zone to be partitioned is 17.7 seconds, however, for 1 km zone it is 409.7 
seconds, which is almost 23 times more.  
 
One of the reasons of such colossal gap is that the algorithm for partitioning is not 
optimized enough. In order to select either node or edge to the region we walk through 
the whole initial graph. The approach could be possibly improved by sorting the nodes 
and edges. However, we have no guaranties that it will work properly. The problem hides 
in the representation of DiGraph. When we were trying to sort the nodes and edges in 
order to access specific intervals for each zone, some isolated nodes (edges) were 
observed, meaning that they were outside the presumed interval. This also can happen in 
case of edges that cross several zones; in this case the order also can be disrupted.  
 
The table 3 shows the results for all three regions. As we can observe the difference 
between 5 and 7 km regions is almost 2 times. 
 

Zone sizes (km) 1 5 7 
Time to build (sec) 409,7 17,7 9,6 

Table 3. Time taken to build the partitions of sizes 1, 5, 7 km. 
 

4.3.4 Idea of partition improvement 
 
The crude method of splitting the map into cells shows its potential, however, we want to 
have more sophisticated approach of zone computation, which can possibly decrease the 
number of nodes in the area to perform even faster shortest path computation inside the 
region. We have decided to use a linear program to find a good division of map into the 
regions. 
 
Let us introduce some variables for the problem: 

 Region with the center in node u: 

Ru = {
1, if region centered in u is selected

0, otherwise
 

 Ball(u) 

Let Ball(u) will be a set of vertices at distance at most k from u 
 Boundary(u) 

Let Boundary(u) be a set of edges (x, y) such that x ∊ Ball(u) and y ∉ Ball(u) 
 

We present the complete linear program below: 

𝑚𝑖𝑛 ∑ 𝑅𝑢 ∗ |𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑢)|

𝑢

 

𝑠. 𝑡. ∀𝑢 ∑ 𝑅𝑣 ≥ 1

𝑣∈𝐵𝑎𝑙𝑙(𝑢)

 

 
The constraint ensures that we will cover all the nodes in the regions. 
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There is also a possibility to combine multiple sizes of the regions. To allow this we simply 
need to add the parameter k to all the variables, ensuring that for each node there can be 
only one radius of the ball: 

𝑚𝑖𝑛 ∑ ∑ 𝑅𝑢,𝑘 ∗ |𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐵𝑎𝑙𝑙(𝑢, 𝑘))|

𝑣∈𝐵𝑎𝑙𝑙(𝑢,𝑘)𝑘

 

𝑠. 𝑡. ∀𝑢 ∑ ∑ 𝑅𝑣,𝑘 ≥ 1

𝑣∈𝐵𝑎𝑙𝑙(𝑢,𝑘)𝑘

 

∑ 𝑅𝑢,𝑘 ≤ 1

𝑘

 

In perspective, the solution of these linear programs can give us good partition of the map. 
However, there is a problem of nodes in multiple regions. There can be at least two 
possibilities: 
 

a)   b)  
Figure 6. The problems that can arise after running the linear program. a) The selected 
node belongs to two regions at once. b) The selected node lays in the intersection of three 
different zones. 
 
The problem creates a set of tasks. At first we want to ensure that a vertex belongs to a 
unique region. At the same time we have to minimize the number of edges at the boundary 
as we described in the linear program. 
 
The first one (a) can be solved as the minimum cut problem; however, the second one (b) 
may require manual correction of the deviating nodes. The main caveat is to avoid 
disconnected nodes after finishing the process. Because the presence of such nodes will 
not allow to perform shortest path search in the region.  
 

4.3.5. An improved partition idea development during the internship 
 
We have extended the solution we used during the PFE by adding Ru: 
 

𝑚𝑖𝑛 ∑(𝑅𝑢 ∗ |𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑢)|

𝑢

+  𝑅𝑢) 

This  allows to pick the same balls every time we run the program. 
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4.3.5.1. Challenges faced during the test runs 
 
We met several problems while conducting the experiments. However, there were two 
main ones: first with the covering of the vertices and second with overlapping. 
 

4.3.5.1.1. Covering problem 
 
Considering the fact that our linear program is a simple covering problem, the result of it 
should contain the set of balls, the union of which must include all the nodes in the graph. 
However, in our case we had some vertices missing from the covering. 
 
After double-checking the linear program we could not find a problem in it, performing 
the experiments of the covering on various artificial grid and non-grid graphs we had full 
covering. This fact made us look into the representation of the road graph of Nice and 
Cagnes-sur-Mer.  
 
On the figure 7 we can observe the situation when two black nodes in the circle are not 
covered by selected balls because they lie in between the intersection of the three picked 
regions. The problem is in the form of the road graph, these nodes are outside the purple 
(zone 1) and red (zone 2) regions because of the radius constraints (distance to the center 
is more than 500 meters); however, it would have been covered by the pink (zone 3) ball 
if only the constraint of connectivity between all the nodes was satisfied. 

Figure 7. Black nodes omitted by the linear program after the first run.   
 
To deal with this problem we decided to run the linear program twice. First run is over all 
the nodes in the graph. Second one is over the set of uncovered nodes that were left by 
the first round. Using this approach, we achieve full covering. We tested this assumption 
by using regions of zones with radii 250, 500, 750 meters. 
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4.3.5.1.2. Overlapping problem 
 
Another important problem is the overlapping of the regions. When it occurs, we have to 
store the superfluous information for the repeating nodes. When the number of 
duplicated vertices is not big, the problem can be tolerated. However, in our case, over the 
half of nodes in the graph were residing in multiple regions, which could lead to crucial 
memory loss. 
 
In the previous chapter about the ideas of partition, we have mentioned two cases of 
overlapping, but in practice we got a third one, when node was covered by four regions 
simultaneously. As we also mentioned before the two-zone overlapping can be dealt by 
solving a minimum cut problem; however, we decided to create an approach, which could 
cope with all cases of overlapping. 
 
The algorithm that we created consists of two steps and can be seen on the figure below.  
    
 

Dictionary
Keys: region centers

Values: nodes in the regions

Connected? Connect

Overlapping?

Connected dictionary
without overlapping

Remove 
overlapping

No

Yes

Yes

No

 
Figure 8. Algorithm for dealing with overlapping and node connectivity in the region 
 
We pursue the idea of having small regions nodes of which are connected and no zones 
have the same vertices inside. Before the procedure we have a dictionary with region 
centers as keys and the set of nodes in those regions as values. 
 
We start with checking the connectivity inside each region. If there are any disconnected 
vertices from the central node of the zone we rearrange them to avoid it. After doing 
several test runs we obtained the best way to remove disconnected nodes. The procedure 
takes first detached node and looks at its neighbors within the full graph picture. Initially, 
we connected it to the first neighbor we saw, however, this leads to zones overflowing 
with vertices. Then we decided to look though all the neighboring zones and pick the one 
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with the smallest number of nodes inside. In this case we balance the size of the regions 
and make them more or less equal. 
 
Moving forward, we go back to the initial idea of removing the overlapping.  Having the 
function that returns the node and all the regions it is in, we simply check the distances 
from the overlapping node to the overlapping zone centers and remove the vertex from 
every overlapping region except for the closest one. Doing this we remove the 
overlapping, however, some vertices can become isolated in the region. That is why the 
algorithm goes back to verifying whether regions are connected inside. The whole 
procedure finishes only when all the zones are connected and there is no overlapping. 
 
The application of this procedure can be widened as there are cases when the graph is 
being modified (e.g. station has no available bicycles or the road is closed). In this case the 
node is removed from the graph and the regions may become disconnected, so we start 
the procedure and it removes any detached nodes that might have appeared. The same 
thing is when new parts of the graph are being added. In this case we run the linear 
program to create regions, then start the overlapping procedure which then gives us the 
connected zones without any overlapping. The main feature of the algorithm is that all the 
changes will be done locally with a very small probability of major zone changing during 
the rearrangements. 
 

4.4. Enhanced shortest path algorithm used in project 
 

4.4.1 Motivation 
 
After conducting shortest path search experiments on artificial and real-world data using 
implemented functions from NetworkX library, which used Dijkstra or Bidirectional 
Dijkstra depending on the parameters provided to the function, we had an urge to 
discover and implement an algorithm that is fast and exact, improving the time 
computation seen before. 
 
As it was already stated in the State of Art section, we had decided to pick the hub-labeling 
shortest path algorithm. Its authors Adrian Kosowski and Laurent Viennot have presented 
outstanding results: sufficiently small size of hub sets and incredible response time to 
shortest path query. One of the biggest parts of the internship was devoted to delving into 
the mechanisms of the algorithm and then implementing it to test its efficiency and 
whether it can be fit into the frames of the project. In this section we will discuss the 
algorithm step by step, providing the results we have got on the way. 
 

4.4.2 General principle and algorithm structure 
 
The key idea of the algorithm is to use preprocessing to be able to respond to a shortest 
path query in a very short period of time. Preprocessing in this case means the 
computation of the hub sets for each vertex in the graph and storing the distances to them. 
In addition to having just hubs and distances we can also store the shortest path, which 
then can be returned as a query response. 
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In the paper [5] the hub set is defined as follows : for a network G = (V, E), where V – set 
of vertices and  E – set of edges; we assign a small subset S(u) ⊆ V to each node u ∈ V, in 
such way that for any pair of nodes u, v, the intersection of hub sets S(u) ∩ S(v) contains 
a node of the shortest uv-path. 
 
This means that algorithm by itself consists of two main parts. Hub computation and then 
query answering by picking relevant hubs. 
 

4.4.3. Hub computation 
 
Using the paper [5] definition hub is an edge of the graph on the shortest path between 
two target nodes that satisfies certain conditions in order to decrease average and 
maximum hub set size. 
 

4.4.3.1. Skeleton trees 
 
However, before we introduce these conditions we should start with one of the most 
important features of the algorithm – skeleton trees. As we have already mentioned 
before, skeleton tree is a pruned shortest path tree of the graph. 
 
The notion of skeleton trees significantly reduces the search space for finding shortest 
paths between the target nodes and thus picking the hubs into sets. One important detail 
about the algorithm is that all the shortest paths in the graph have to be unique. This is 
necessary because otherwise the intersection of two skeleton trees can be disjoint 
resulting in absence of the path between the nodes while it exists in full graph. 
 
Having this figured, we ensure that all the paths are unique, for example, in grid graphs it 
can be done by adding insignificant value to the length of the non-unique path in sense 
that it will not have any influence onto the distance between the nodes except from 
differentiating each and every shortest path. 
 
In order for algorithm to work we need to build shortest path trees starting from each and 
every node in the graph. Using NetworkX library in Python this task is very easy and takes 
only moments for each tree to build. 
 
When we have all the shortest path trees we can proceed to the next step of pruning them 
and leaving only nodes that are within the 2/3 of the initial distance to the leaves. Using 
the depth-first search principle we move from the root of the tree and check if the distance 
to the leaf of the node is less than half the distance to the root we mark it as a false node. 
After labeling all the redundant for the skeleton tree nodes we call a function to remove 
them. 
 
We have discovered a possibility of having smaller skeleton trees than needed. The 
described situation can be observed on the Fig. 9. This happens if the graph contains a 
number of edges that greatly exceeds the average length of edges. In this case, the furthest 
node from the root of this edge will not be considered as a part of the skeleton and 
enormous part of the tree will be lost (the longest edge on the first picture). We can deal 
with this problem by checking the edge that can be potentially removed from the divided 
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perspective (second picture). This means that we subdivide the edge by parts of length 
1/12 and check whether more than a “parameter” (in our case half) of it can be considered 
as a part of the skeleton. If so, then the whole edge is included in the output of the skeleton 
function (third picture).  
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    

 
Figure 9. Longer skeleton tree situation. Considering the fact that over half (tuned 
parameter) of nodes fit the skeleton tree we include whole edge into the result. Blue 
(ticked) – nodes accepted nodes, red ones (crossed) – superfluous. 
 

4.4.3.2. Hub selection stage 
 
Another key aspect of the algorithm is how to reduce the hub size in order to use less 
memory on storing data. For these purposes the authors of the paper suggest preliminary 
edge labeling with random real values in range [0,1] which are uniform, independent and 
considered distinct. 
 
After labeling the edges and constructing skeleton trees, follows the phase where we pick 
the hubs for each vertex in the graph, storing the distance to them. 
 
Based on the fact that shortest paths in the graph are unique we can easily walk through 
every pair of nodes in the graph combining their skeleton trees obtaining the exact 
shortest path that we search for. 
 
In order to minimize the size of the hub sets we consider the central subpath of shortest 
path between two vertices. It is defined as a set of middle edges of the whole path which 

lie between the nodes on this path bounded by 
5

12
∗  length of the path  and  

7

12
∗

 length of the path. It also reduces the number of edges we should consider as potential 
hubs.  
 
After restricting the search area we pick the edge with the least random value which we 
have assigned to each edge on the preliminary stage. This allows us not only to fulfill the 
nature of hub, by picking it directly on the shortest path but also gives a high possibility 
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that during hub selection for the other vertex shortest path of which coincides with this 
middle subpath the same hub will be picked and the overall hub set size will not increase. 
 

4.4.3.3. How to use the hub set to give the shortest path query response 
 
After computing the hub sets for each vertex in the graph the first stage is over. Now we 
have the array which contains the list of hubs for each node with distances and exact 
shortest paths to them. 
 
Remembering the part of hub set definition from the paper [5]: “the intersection of hub 
sets S(u) ∩ S(v) contains a node of the shortest uv-path” we look only at the arrays for the 
two target nodes.  
 
The idea is to walk through those arrays in parallel (as hubs are sorted by the name) until 
we stumble upon the same hub name in both of them. The combined sum of the distances 
from each vertex to this hub is considered the shortest one between them. After finding 
the first mutual hub we look further to find another one with lower distance. We consider 
the path and its length through the hub that is picked after looking though both arrays as 
the shortest one. 

4.4.4. Implementation testing 
 
After careful reading of the paper and implementing the algorithm comes the phase of 
testing. The main purpose of it was to check whether the program is doing the exact task 
for which it was created and in fact gives back the hub set of the region that we provide 
on the input. During the implementation we conducted experiments on many graphs 
ranging from small to big as well as artificial or real life. 
 
For the purposes of being brief we decided to put two major test cases into the paper. The 
first one is an 11 by 11 grid graph and another one is a real-world map of Nice and Cagnes-
sur-Mer. 
 

4.4.4.1. 11x11 grid graph results 
 
Before running the test over the real-world map of Nice and Cagnes-sur-Mer we had to 
ensure that the implementation was correct. Testing each stage of the algorithm we 
eliminated the errors which were occurring and for final test before applying the program 
we decided to pick an 11x11 grid graph. 
 
This graph contains 121 nodes and 220 edges. In the beginning all the distances were 
equal, however, after adding sufficiently small random value to the length of each edge we 
ensured that all shortest paths are unique. For the reasons of algorithm quality assurance 
we also need to know the diameter - 20 and the skeleton dimension of the graph – 4, we 
remind that this parameter is the maximum width (the maximum number of nodes in it 
at a given distance from its root) over all the skeletons of shortest path trees starting from 
each node in the graph. 
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By using the formulas shown in the paper [5]: 
    𝖮(k log D), average 
    𝖮(k log log k log D), max number of hubs 
we can see that in our case we achieved the numbers of 30 on average and 40 at maximum. 
These numbers are in the same order of magnitude, so we can consider our 
implementation sufficient. 
 
However, what do these numbers mean in real life? In a trivial case whenever we want to 
compute the shortest path between two nodes we can store shortest paths to each vertex 
from the target one, which needs N-1 memory units. Using hub-labeling algorithm we 
dramatically drop this number as many shortest paths go through the same initial routes. 
Looking at the 11x11 grid example, we can observe that instead of storing 120 shortest 
paths we need to save only from 30 to 40 distances to hubs. 
 

4.4.4.2. Experiments on the map of Nice and Cagnes-sur-Mer 
 
Having our implemented algorithms successfully applied on the small grid example, we 
decided to use it on the real-world map that we have extracted from the OpenStreetMap 
project. 
 
On the Figures 10 and 11 the comparison of the full map and the skeleton tree from one 
(black) node can be seen. This skeleton tree representation shows that all the shortest 
paths from the black node start from a relatively small number of edges. 

 
Figure 10. Shortest path tree of Nice and Cagnes-sur-Mer starting from the black node 
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Figure 11. Skeleton tree from the same node as on Fig 10.  
 
Creation of skeleton trees for the region has taken a very small amount of time, however, 
computation of hubs for the whole region occurred to be much more time consuming than 
we have predicted. After taking the idea of dynamicity into take account (where hub 
recomputation is inevitable), we have reached the conclusion that we need to use the 
partition of the region into smaller zones in order for the algorithm to be effective. 
 
By using our sophisticated partition method we have broken the region into 127 zones of 
approximate radius of 500 meters having number of nodes inside ranging from 106 to 
799. In the table 4 we provide sample of 10 run regions of different size showing their 
number of edges and nodes along with the average and maximum hub set size. 
 

Zone # # of nodes # of edges Average hub 
size 

Maximum hub 
size 

1 328 366 47 79 

2 445 457 49 76 

3 487 508 44 63 

4 412 448 48 76 

5 249 309 37 55 

6 293 295 35 58 

7 246 249 39 54 

8 245 268 41 68 

9 188 232 35 55 

10 296 310 40 66 

Table 4. 10 random runs of our partitioning method. 
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Observing the results we can summarize that in average number of hubs is 5.3 times 
smaller than number of edges in maximum case and in average it is 8.3 times smaller. This 
justifies that the usage of the algorithm will decrease memory consumption and at the 
same time will give us the ability to give a fast response on a shortest path query. 
 

4.4.5. Summary and future algorithm improvements 
 
Applying the hub-labeling approach for shortest path computation provided us with good 
results and has shown that it can improve the overall response time. However, we should 
underline that all experiments were conducted on the undirected graph of roads of Nice 
and Cagnes-sur-Mer. This means that in a directed case we will need to generate two 
different skeleton trees for each node (outgoing and ingoing shortest path trees) and in 
hub computation stage just merge appropriate trees to obtain a real shortest path. This 
should not be a problem regarding the fact that every major step of the algorithm 
(shortest path tree generation, skeleton tree pruning, hub picking) can be done in parallel 
which dramaticallyincreases the performance. 
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5. Discussion 

5.1 Conclusion 

 
While there exists a lot of ways to compute shortest paths considering static traffic 
picture, such as Dijkstra, A* search, geometric containers, arc flags, precomputed cluster 
distances, compressed path databases we have tried to develop the method to work with 
the dynamic, continuously changing scenario.  
 
As the result of the performed work we obtained theoretical and practical outcomes that 
confirmed our assumptions and encouraged us to pursue the topic. The effectiveness of 
initial graph partitioning proved that dynamic scenario can possibly be solved this way 
with efficiency.  The fact that we used the real-world data (map of Nice and Cagnes-sur-
Mer) to perform practical tests is of significant importance, because it helps investigating 
the problem closer to the reality and shows its potential. 
 
Using the already created approaches as Highway hierarchies, we were able to create our 
own way to find a partition with the help of linear programing. The minimization of region 
number combined with low quantity of outgoing edges can reduce memory consumption 
of the algorithm and bring us the good trade-off between the preprocessing and on-the-
flight computing to achieve the high performance. 
 
We have completed most of the tasks that were stated in the description of work and 
planned for the internship period. During this work period, the literature considering new 
approaches was surveyed as well as the documentation of the tools we used to perform 
experiments. We were able to extract the data and build the graph representation of it, 
which allowed us to understand the effectiveness of the solution by running specific 
algorithms that we developed.  
 
Implementation of the sophisticated partition has given us the opportunity to compare it 
to the straightforward cell partitioning. By doing this, we proved that it provides us with 
better performance and reduces memory consumption. 
 
Dealing with the provisioned problems of overlapping allowed us to think of situation of 
graph modification (i.e. inclusion of new nodes into the graph or removal of already 
existing ones). 
 

5.2 Future work 

 
The performed work has given promising results, which shows that there is a possibility 
of effective itinerary computation mechanisms that consider the changing traffic scheme. 
There are several tasks that are planned for further work and solving them will advance 
the research of the topic. 
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First, we need to optimize our implementation of hub-labeling shortest path algorithm 
and possibly pick more efficient programming language than Python. Having the 
algorithm implemented in Python allowed us to test its usefulness and looking at its 
performance in Python urged us to think of finding various approaches to increase its 
speed. 
 
Next task is to apply the modifications to the hub-labeling algorithm, which were 
mentioned in the last chapter. This will allow us to deal with more advanced case of real-
world (considering the directions of the roads). 
 
Having done this, we need to proceed with extensive testing using already merged map of 
Nice and Cagnes-sur-Mer with VeloBleu bicycle stations. This will give the better view of 
the approach performance and show its practical appliance. 
 
Finally yet importantly, one of the main points we wanted to implement, however, had no 
time, is introduction of new metrics into the system. We have been thinking about the 
possible metrics, such as “Safety of the road”, which means that the route has the least 
number of road crossings on the path from source to destination; or “Lightness of the 
route” that implies the itinerary with the least inclines.  
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Appendix 
 

A.1 Three zone partitions  
 
The first figure shows the 1 km cell side sized partitioning grid with map of Nice and 
Cagnes-sur-Mer.  

 
Figure 1. Each cell has a size of 1 km 
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The figures 2 and 3 depict 5 and 7 km zones respectively. 
 

 
Figure 2. Each cell has a size of 5 km 

 
Figure 3. Each cell has a size of 7 km 
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A.2 Partition examples 
 
After creating regions based on the 5 km cell sizes we obtain 35 zones. On the figures (fig. 
4 and fig. 5) below, we provide two examples of formed regions. 
 

 
Figure 4. Region formed with 5 km sized partition. 

 
Figure 5. Region neighboring the one on the fig. 4 
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A.3 Closer look at the data  
 
From the distance it may look that the plot is a solid region, however, the actual form of 
the plot is a graph. If we zoom the picture, we will obtain the real view. As the example we 
take the fig. 4. 
 

 
Figure 6. Zoomed fig.4  

 
Figure 7. The real view of the graph. 
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A.4 Sophisticated partition  
 
Results of our partition method applied to the map of Nice and Cagnes-sur-Mer are 
depicted on figure 8. 

 
Figure 9. Results of sophisticated f partition 
 
Closer look at the partition is shown on the figure 10. 

 
Figure 10. Zoomed results of partition. 


