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Abstract
The focus is on 3 different combinatorial pursuit-evasion games. For the famous Cops
& Robber game, two variants are examined. That is, the cases of fractional cops or/and
fast robber. For the recently introduced Surveillance game modeling Web prefetch-
ing, a hardness result for bounded degree graphs is provided. Moreover, a generalized
Benefit-Deficit approach is cited as an alternative field of study. Finally, Eternal Dom-
ination is studied. Combinatorial and complexity issues are taken into consideration.
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Chapter 1

Introduction

Historically, games have always appeared in human societies and in many different
forms. In recent years, mathematical studying of games has received great interest by
researchers in many fields in an attempt to formalize them. Game Theory, in general,
is a broad notion that encompasses a variety of situations; applications come along
in Computer Science, Economics, Business, Biology and other areas. We concentrate
on a particular subset of Game Theory, namely Combinatorial Game Theory, which
includes games with specific characteristics. The interest is about games where two
players play alternately and both enjoy perfect information over the game. That is, at
each turn, each player is familiar with the current and all previous game configurations
and picks an action out of a set of publicly known predefined actions. Moreover, the
games are deterministic in the sense that no action performed is dependent on any
source of randomness. By the end of the game, one player wins and the other loses;
there may be no tie. However, notice that definitions are subject to discrepancy due to
the vast amount of literature present. For a survey on Combinatorial Game Theory, see
[2]. A large bibliography on the area can be found in [17].

In this report, we focus on 3 specific combinatorial games played on graphs. Con-
sequently, we identify a strong interaction with Graph Theory for these games. In other
words, the features of the graphs, on which the games are described and played, have a
major impact on the dynamics emerging between the 2 players. The games under con-
sideration in this report are the Cops & Robber game, the Surveillance game and the
Eternal Domination game. In Cops & Robber, one player handles a set of cops and the
other a single robber in the sense of tokens lying on certain vertices of the graph. The
players alternately move their tokens (in a way to be specified) and they seek victory:
the robber hopes to always escape, while the cops strive for a way to capture her. In
Surveillance, one player handles a token, namely the surfer, while the other deposits
marks on the vertices of the graph. The surfer’s objective is to reach an unmarked node,
while the marker wishes to mark all graph vertices before the surfer accomplishes that.
Finally, in Eternal Domination, a set of tokens, namely the guards, lie on the graph
and are controlled by one player, while the other (say the rioter) attacks at each turn
a specific vertex. Guards win if at least one of them can always immediately move
to a just-attacked vertex. If they fail to do so, then the rioter wins. More information
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on the definition and bibliography for these games is given at the beginning of each
corresponding chapter.

This introduction reaches its end after a short section with preliminary notions and
notation to be used later on in the report. Specialized notation is introduced and used
when needed inside the specific chapter. Chapter 2 deals with some results on Cops &
Robber where some variations, in the way that the cops or the robber can move, are
taken into consideration. In Chapter 3, we examine the newly-proposed Surveillance
Game: a result for an open question is given and a generalized extension is attempted.
In Chapter 4, the topic is Eternal Domination with a focus on computational complex-
ity. Finally, the report concludes with a summary of the work presented and some
directions for further study.

1.1 Preliminaries

1.1.1 Graph Theory
A graph G is defined as a pair of two sets: the set of vertices V (G) and the set of edges
E(G). A vertex is otherwise called a node, while an edge is an unordered pair of two
nodes. The set of edges is therefore a subset of the set of all possible unordered pairs
of vertices {{x,y} : x,y ∈V (G)} and we write e = {x,y} ∈ E(G) when edge e connects
nodes x and y of V (G). Furthermore, x and y are called the endnodes of e. For the sets’
cardinalities, we use n = |V (G)| and m = |E(G)|. Unless otherwise stated, all graphs
mentioned are simple graphs, i.e. they contain neither loops ({x,x} edges) nor parallel
edges (multiple edges between the same two nodes).

A directed graph G is similar to an (undirected) graph with the variation that the
edge set E(G) is now a subset out of the set of all possible ordered pairs of vertices
{(x,y) : x,y ∈ V (G)}. That is, an edge e = (x,y) is now an arc whose origin is x and
whose destination is y.

Two vertices connected by an edge are called adjacent or neighboring vertices
and they are incident to that edge. The (open) neighborhood of a node v ∈ V (G)
is defined as N(v) = {u ∈ V (G) : {v,u} ∈ E(G)}, while the closed neighborhood is
defined as N[v] = N(v)∪{v}. The degree of a node v ∈ V (G) is defined as d(v) =
|N(v)|. The mininum degree of G is denoted by δ (G), where δ (G) = minv∈V (G) d(v).
The maximum degree of G is denoted by ∆(G), where ∆(G)=maxv∈V (G) d(v). A graph
is called regular if all its nodes have equal degree. In this case, δ (G) = ∆(G) = k and
the graph is referred to as k-regular.

A path in G is a sequence of nodes v0,v1, . . . ,vk, where vi 6= v j for any 0≤ i, j ≤ k
and {vi,vi+1} ∈ E(G) for any 0 ≤ i ≤ k− 1. The case when v0 = vk is called a cycle.
The path (cycle) is then said to be of length k and is denoted as Pk (Ck). The definition
for a directed path (cycle) is similar; (vi,vi+1) needs to be an arc in E(G), where G is
a directed graph. A graph is connected if there is a path between any two nodes of it.

A graph that contains no cycles is called a tree. A tree can be considered rooted
under any of its nodes and drawn in a specific way on the plane. In this case, for any
node there is a father: the node above him to which it is connected. Nodes connected
and a level below of a certain node are called the children of that node. A leaf is a tree
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node of degree 1.
The cartesian product of two graphs G1 and G2 is defined as a new graph G3 =

G1×G2, where V (G3) =V (G1)×V (G2) and E(G3) = {{x,y} : x= {v1,v2} ∈V (G1)×
V (G2),y = {v3,v4} ∈ V (G1)×V (G2) and v1 = v3 or v2 = v4}. The cartesian product
of two paths is called a grid.

A graph is chordal if each of its cycles of four or more nodes has a chord, which is
an edge joining two nodes that are not adjacent in the cycle. An interval graph is the
intersection graph of a multiset of intervals on the real line.

The girth of a graph is the length of its shortest cycle. A graph is called planar if it
can be drawn on the plane without any intersecting edges.

A dominating set is a subset of vertices of G such that every vertex of V (G) is either
included in it or has at least one neighbor in it. The domination number of G, denoted
γ(G) is the cardinality of a minimum dominating set of G.

An independent set is a subset of vertices of G such that there is no edge between
any two of them. The indepence number of G, denoted α(G), is the cardinality of a
maximum independent set of G.

A subset of nodes of G such that each edge e ∈ E(G) has either one or both of
its endpoints in it, is called a vertex cover of G. τ(G) stands for the cardinality of a
minimum vertex cover of G, namely the vertex cover number of G.

A subset of nodes, for which all possible edges are present, is called a clique. A
partitioning of the vertex set into disjoint subsets, such that each subset forms a clique,
is called a clique cover of G. The corresponding size of a minimum such partitioning
of G is called the clique cover number of G and it is denoted by θ(G).

For any disambiguation or further information on basic graph-theoretic notions,
please refer to a graph theory textbook, e.g. [40, 8].

1.1.2 Complexity
For notions regarding the field of Computational Complexity, the reader is referred to
any standard textbook, e.g. [34].
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Chapter 2

Cops & Robber

2.1 The Game

2.1.1 Description
Cops & Robber is a pursuit-evasion combinatorial game played on a graph. From now
on, we will always assume that the graph is connected, simple and finite. There are two
players: one that controls the cop tokens and another who controls the robber token.
Let us call them player C and player R respectively. Initially, player C places his k
tokens on the vertices of the graph. Notice that more than one cop tokens may lie on
the same node. Then, player R chooses an initial placement for the robber. Round 0 is
over. From now on, every round consists of 2 turns (one for C and one for R), where
C may or may not move any of his cops to a vertex adjacent to the one he currently lies
on and R moves the robber to an adjacent vertex with respect to her current position or
does not move her at all. C wins the game if, after any player’s turn, the robber lies on
the same vertex with a cop. R wins if she can perpetually avoid the realization of the
aforementioned condition. Both players try to devise strategies in order that they win
against any possible strategy of their adversary. A strategy is a set of movement rules
for either the cops or the robber.

2.1.2 Background
From the optimization point of view, the important question in mind is what is the
minimum number of cops needed to capture the robber either on a specific graph or in
general. For this purpose, we define this number as the cop number of a graph.

Definition 1. The cop number of a graph G, denoted cn(G), is the minimum number
of cops needed to ensure that the robber is captured, regardless of her strategy.

Problems related to the cop number have been studied heavily over the last 30
years. Originally, Quillot [37] and Nowakowski and Winkler [33] characterized graphs
with cop number equal to 1. Since then, there has been a lot of literature in proving
different lower and upper bounds for the cop number of specific graph classes. For
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instance, Aigner and Fromme [1] proved that cn(G)≤ 3 for any planar graph G. Frankl
[18] proved a lower bound for graphs of large girth. Other work includes [4, 13, 31].
Moving onto general graphs, Meyniel conjectured that

√
n cops are always sufficient

to capture the robber. Chiniforooshan [10] proved an O(n/logn) upper bound, which
was improved by Scott and Sudakov [39] and Lu and Peng [29] to O(n2(1−o(1))

√
logn).

Thus, yet the conjecture remains open. On the contrary, the conjecture was recently
proved positive on random graphs [36]; previous work included [5, 7, 30]. For an
introduction to random graphs, see [25]. Finally, there exists a book capturing all the
activity on Cops & Robber until recently: see [6].

The computational complexity of the specific decision problem is also worth a note.
The question to be answered is: given a graph G and an integer k, does cn(G) ≤ k
hold?. Goldstein and Reingold [24] proved that the problem is EXPTIME-complete
given that the graph is directed or the initial positions are given. Recently, Mamino
[32] proved PSPACE-hardness again by using a restriction to enable the proof.

2.2 Fractional Cop Number
Relaxing the description is a general technique followed in order to augment the un-
derstanding on a hard combinatorial problem. Furthermore, the relaxed version could
provide an approximation for the original one. Thus, studying the integrality gap for
a (later modified or not) relaxed solution has become a significant field of research.
Authors of [21] study a natural relaxation for the cop number of a graph, namely the
fractional cop number of a graph. The fractional cop number (in short fcn) refers to
the original Cops & Robber game, but with the relaxation that the cops can now split
into infinitely small and infinitely many pieces and move such pieces along the edges
of the graph. The robber remains integral (i.e. she cannot split). Furthermore, in [21]
it is proved that splitting would not assist her towards escaping. The sum of all cop
pieces remains always equal to a constant k ∈ ℜ+. In order for the robber to be cap-
tured, a quantity of cops ≥ 1 needs to lie on the same vertex as her. We now review a
cop-strategy and then present some new remarks on it. This game relaxation is referred
to as Fractional Cops & Robber.

2.2.1 The Strategy
We discuss a variation of the strategy given in [21], which does not substantially differ
from the original one, but it helps us simplify the remarks that follow:

Initially, the k cops are placed uniformly on the graph, i.e. k/n cops are placed at
each node. Then, the robber places herself to a node υ . Now, it’s the cops’ turn. The
k/n cops that lie on the same vertex as the robber will (from now on) always follow
the robber. The rest k− k/n = k(n−1)/n cops are spread uniformly on the graph (we
later show that this can be done in exactly 1 cops’ step for any graph). That is, each
vertex is now guarded by k(n− 1)/n2 cops. We do not ever reconsider cop quantities
that are bound to always follow the robber. Now, it’s the robber’s turn. Whatever her
move, the cops will repeat the same strategy, i.e. the quantity that lies on the same
vertex will always follow her from now and the rest are re-spread uniformly over the
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graph. Inductively, at step t there will be xt = k( n−1
n )t cops left on the graph, which

are not bound to always follow the robber. The rest yt = k− k( n−1
n )t = k(1− ( n−1

n )t)
cops accumulate on the robber until this quantity eventually becomes ≥ 1 at a certain
round, hence cops win. From now on, we refer to this strategy as the spread and follow
strategy.

2.2.2 Background Results
It is proved [21] that the fractional cop number of any graph approaches 1 if we allow
a very large number of steps. One need only notice that limt→∞ xt = 0 and so for the
quantity that accumulates on the robber limt→∞ yt = k. After an infinite number of
steps, all k cops are eventually on the robber. That is, for any k ≥ 1 the above strategy
manages to accumulate all cops on the robber. Obviously, just 1 is enough to capture
her, leading us to the following result.

Let f cn∞(G) stand for the fractional cop number of graph G for a Fractional Cops
& Robber game of infinite duration.

Theorem 1. [21] ∀G : f cn∞(G) = 1.

Finally, they show that if we allow a finite number of steps, then still just a bit more
than 1 cop is needed.

Theorem 2. [21] ∀G ∀ε > 0 : f cn(G)≤ 1+ ε .

2.2.3 New Remarks
Bounded time

The aforementioned results suggest that the fractional cop number does not yield any
help towards the approximation of the integral cop number, since it is always (almost)
1. Cops indeed become very powerful if we allow them the capability of fractionalizing
themselves. A further suggestion to try to reduce the cops’ power, in order to possibly
narrow the gap between the fractional and the integral cop numbers, is to bound the
number of steps allowed to them (i.e. reduce the duration of the game). For example,
let us consider yn, i.e. the quantity that is accumulated on the robber after n = |V (G)|
rounds of the game.

yn = k(1− (
n−1

n
)n)

= k(1− elog( n−1
n )n

)

= k(1− en log(1−1/n))

∼ k(1− en(−1/n))

= k(1− e−1)

= k(e−1)/e
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What we wish for is yn ≥ 1, i.e. k(e−1)/e≥ 1 which leads to k≥ e/(e−1)≈ 1.58.
Therefore, we notice that even in a few (linear) number of steps, even less than 2 cops
suffice to capture the robber. To conclude, upper-bounding the number of steps allowed
in the game still does not help us in our objective to find a relation to the integral cop
number, since the bounded-time fractional cop number remains small enough. The
following table summarizes the lower bounds on cop quantity obtained in this scope.

Steps Allowed Cops Required
∞ 1
n 1.58√
n

√
n

logn O(n)

Table 2.1: Fractional cop numbers for bounded duration games

Notice that if we further restrict to
√

n or logn steps, the number of fractional
cops needed grows very big (≥

√
n) by using this specific strategy and so it gives no

information on the integral cop number. This happens due to the big gap observed
between the n steps and the

√
n steps case.

Spreading Uniformly in 1 Step

For the reasoning made to be completely accurate, we need to make sure that the cops’
strategy is feasible. In this paragraph, we prove that, at each step, the remaining cop
quantity (the ones who do not follow the robber) can move from its current state (n−1
vertices carry k(n− 1)t/nt+1 available cops each and 1 vertex -where the robber lies-
carries 0 available cops) to a new uniform state (each of the n nodes carries k(n−
1)t+1/nt+2 available cops) in just one cops’ step.

Lemma 1. The k cops have followed the ”spread and follow” strategy for t ≥ 1 rounds
of Fractional Cops & Robber on graph G. The robber moves to vertex υ during her
turn at round t. The total cop quantity lying on V (G)\{υ} can be moved such that it
lies uniformly on V (G) after cops’ turn at round t +1.

Proof. Pick any spanning tree T of G (this can be done in O(|E(G)|) time using a depth
first search approach) and consider it rooted under υ . Let the quantity k(n− 1)t/nt+2

be called a piece. The re-spreading algorithm consists of the following statement:
Each node v ∈V (T )\{υ} sends to its father the size of the subtree under it (including
itself) many pieces. We show by induction that each node in T carries k(n−1)t+1/nt+2

cops after such a procedure. Thus, a total quantity of k(n− 1)t+1/nt+1 cops is spread
uniformly on G.

Any leaf v sends to its father one piece, so the remaining quantity on v is now
k((n−1)t/nt+1−(n−1)t/nt+2) = k(n(n−1)t−(n−1)t)/nt+2 = k(n−1)t+1/nt+2 like
desired. Now, consider a non-leaf node i ∈V (T )\{υ} and assume that all the subtrees
hanging from its children are fixed. Let child(i) stand for the set of children of i and
T i for the subtree of T hanging under node i and including it. Any c ∈ child(i) sends
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|V (T c)|many pieces to i. Then, i receives ∑c∈child(i) |V (T c)| pieces and it needs to send
|V (T i)|= 1+∑c∈child(i) |V (T c)| many pieces. Therefore, the total quantity left on ver-
tex i is k((n−1)t/nt+1−(1+∑c∈child(i) |V (T c)|)(n−1)t/nt+2+∑c∈child(i) |V (T c)|(n−
1)t/nt+2 = k((n− 1)t/nt+1− (n− 1)t/nt+2) = k(n− 1)t+1/nt+2 which concludes the
induction. Finally, node υ will receive ∑c∈child(υ) |V (T c)| = n− 1 pieces, which will
increase its quantity from 0 to (n−1)k(n−1)t/nt+2 = k(n−1)t+1/nt+2.

Limited Fractionality

Another idea is to restrict the degree of liberty given to fractional cops in order to obtain
a measurement better than the fractional cop number examined heretofore. In this case,
better means that it could hopefully relate to the cop number and so present us with
more useful information. The restriction we follow is to put a limit on the cops’ ability
to divide themselves. That is, let the α-fractional cop number of a graph G (denoted
f cnα(G), where α can be either a constant or a function, but always greater than 0 and
no more than 1) stand for the minimum number of cops needed to win in G, when cops
are allowed to split but only in a way that, after every cops’ turn, the cop quantity lying
on any node of G is a multiple of α . In a sense, after the cops’ turn, there is k ·α cop
quantity on any node of G, where k ∈ N∗. Moreover, limα→0 f cnα(G) = f cn(G).

One can now observe that an α-fractional cop strategy can be transformed to an
integral cop strategy: replace any cop quantity α with cop quantity 1 and perform the
exact same strategy. Plainly, an upper bound for the cop number can be immediately
derived leading us to the following corollary.

Corollary 1. cn(G)≤ 1/α · f cna(G) for any graph G.

To continue, we derive an upper bound for f cnα(G) in terms of cn(G).

Lemma 2. f cnα(G)≤ 1+(cn(G)−1) ·α for any graph G.

Proof. Initially, pick cn(G) many cop quantities of size α . They follow the integral
strategy to catch the robber. Eventually, 1 piece lies on her. Should the robber decide
to move on any of these pieces, the strategy halts and the specific piece(s) just follow
the robber from now on. Besides, any cop quantity, on which the robber steps on,
follows her from now on. Whenever the strategy reaches its end or is halted, another
available cn(G) pieces are picked at random and repeat the integral strategy. At some
point, either 1/α pieces lie on the robber (thus cops win) or 1/α−1 pieces lie on her.
In the latter case, there exists a remainder of available cn(G) pieces, which follow the
integral strategy. Eventually, another piece gets on the robber which, together with the
pieces that already follow her, sums up to 1 and hence the game is over.

By combining these two facts, we reach the conclusion that f cnα(G) directly pro-
vides us with an approximation for cn(G) up to an additive factor of 1/α−1.

Corollary 2. f cnα(G)/α +1−1/α ≤ cn(G)≤ f cnα(G)/α for any graph G.

To conclude this part, we provide some lower bounds for f cnα by adopting results
in [1] and [18] regarding graphs with large girth.
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Lemma 3. For any graph G with girth greater than 4 it holds f cnα(G)≥ αδ (G).

Lemma 4. For any graph G with girth greater or equal to 8t−3 and δ (G)> d (where
t,d ∈ N) it holds f cnα(G)> αdt .

The reader is referred to the proofs in [1, 18] for the integral case, which these
ones directly follow. One need only replace each integral cop with α cop quantity and
apply the original reasoning. In this way, the evasion strategy proposed for the robber
guarantees that she remains at all times cop-free, i.e. no cop quantity ever lies on the
same node as she does.

2.3 Fast Robber
We now turn our attention to the Fractional Cops & Robber game variant where the
robber can move with speed 2, i.e. at each step she can move on a path of length at
most 2 from her current position. Several natural questions arise in this case about
the definition of the game e.g. Can the robber jump over some cop quantity? What
happens when a robber co-exists with some cop quantity on a vertex? We try to define
the game in a way that it handles such questions, nevertheless it remains as natural as
possible. Furthermore, we try to understand whether fractional cops can perform better
than integral ones in this context. We focus on square grid graphs and obtain some
bounds for the (fractional) cop number on small grids.

2.3.1 Game Definition
Initially, let us restate the assumption that the robber is not allowed to fractionalize
herself. Moreover, by following and extending the reasoning in [21] we understand that
she has not interest to split. While in the original version cops and robber would pick a
move out of a set ∆G of stochastic matrices, in this case the robber is differentiated in
that she picks a move out of another set, say ∆R ⊃ ∆G. Formally,

∆R =

 ai j ≥ 0
[ai j]1≤i, j≤n ∀ j : ∑i ai j = 1

∀i, j where d(vi,v j)> 2 : ai j = 0


, where d(vi,v j) stands for the shortest path distance between vi and v j on G and ai j
for the robber amount moving from node j to node i.

Let us now try to consider some possible answers to the questions posed about the
fast robber extension. We take into consideration the jumping ability of the robber. A
logical thought would be that the robber can jump over certain cop quantity , i.e. move
in a position of distance two neighboring to a position at distance one with a certain
cop amount. That is, the robber can jump over node i, if ci < α , where α ∈ [0,1]∩ℜ

and ci is the cop quantity on node i. Such an approach, models all kinds of different
situations, e.g. for α = 0, the robber cannot jump over any cop quantity (so cops shall
easily win) and for α = 1 the only restriction is that she may not jump over a whole
cop. This approach is quite general and it is the one adopted by the author (with focus
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on α = 1). Besides, another argument is that a robber quantity r could jump over node
i if r > ci, but since the robber remains integral, this case reduces to the aforementioned
α = 1 case. In turn, this indicates that the robber may move wherever she wishes in
distance at most 2. Of course, jumping over a whole cop would result in her capturing,
since her new position would be dominated. Notice that the same reasoning (ci < α)
can apply to the question whether the robber can co-exist with a certain cop quantity
on a vertex.

On the other hand, let us consider the capturing rules of the game. Suppose that
whenever some robber quantity r and some cop quantity c < r co-exist on a specific
graph vertex, then the c cop quantity captures exactly the same robber quantity. This
approach does indeed make cops really powerful, since given their ability to subdivide
themselves, they can always be present on any graph node and thus using a strategy like
spread and follow (recall the previous section) they could easily and rapidly capture the
whole robber (she will be diminishing on every single round until nothing is left). The
formulation we are going to follow is that a whole cop is needed to capture the robber.
So, the only way we could capture the unsplittable robber is that a cop quantity ≥ 1
lies on the same vertex as her. This approach seems more natural, as it reminds us of
the more or less standard way to catch the robber.

For the above discussion, the resulting definition generated sounds actually quite
simple and natural; only the robber’s speed is changed, while the rest can remain the
same.

Definition 2. Fractional Cops & Fast Robber is the same game as Fractional Cops
& Robber with the extension that the robber has speed 2, i.e. she can move from her
current position to any vertex at distance at most 2.

A special case of this game is not to allow cops to divide themselves. This is exactly
the integral game with a robber of speed 2.

2.3.2 N×N Grids
We focus our attention on square grid graphs and provide some useful intuition and
preliminary results on the fast robber case. Thence, let cn2(G) stand for the cop num-
ber of graph G for the Cops & Fast Robber game and f cn2(G) for the corresponding
fractional one. f dn(G) embodies the fractional domination number of G.

Background Results

One can check that for a normal-speed robber, 2 cops suffice to capture her on the
integral game [31]. For fractional cops, just 1 is necessary as pinpointed in the previous
section. As far as the fast robber case is concerned, there exists a O(

√
logn) lower

bound [16] and the best known upper bound does not escape from O(n) [11]. Notice
that n cops can capture a fast robber in a n×n grid; just put them on any horizontal or
vertical line and move towards her.
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Discussion

Let the k-neighborhood (k ≥ 0) of a node υ ∈ V (Pn×Pn) stand for the set of nodes at
distance exactly k from υ and denote it by Nk(υ). In addition, let N[k](υ)=

⋃
0≤i≤k Ni(υ).

Suppose that the robber has just moved and she lies on vertex υ . It comes to our under-
standing that if we manage to dominate all nodes in Nk(υ) in a way that the robber may
only move in nodes residing in N[k−1](υ) for the rest of the game, then cops will even-
tually win the game by progressively dominating Nk−1(υ),Nk−2(υ), . . . ,N0(υ) = {υ}.
The cops form a diamond-like shape around the robber and they steadily narrow the
diamond as they progress towards υ . Unfortunately, intuition suggests that in a big
grid, a big number of cops is needed as well to make use of this remark.

Some Bounds

On the next table, we present some values obtained for the fractional as well as the
integral cop number for small n× n grids (n ≤ 5). The fractional numbers proven
mostly derive from a domination analysis of N[2](υ) for any possible robber position
υ . Finally, our pursuit ends with a derived lower bound for the fractional cop number
of a big grid.

n f cn2(Pn×Pn) cn2(Pn×Pn)
1 1 1
2 4/3 2
3 2 2
4 2 2
5 ∈ [2,3] 3

Table 2.2: Small grids’ (fractional) cop numbers for a fast robber

Lemma 5. f cn2(P1×P1) = cn2(P1×P1) = 1.

Proof. Trivially place a cop on the single vertex available.

Lemma 6. f cn2(P2×P2) = f dn(P2×P2) = 4/3.

Proof. Suppose f cn2(P2×P2)< f dn(P2×P2). Then, there is at least one undominated
vertex where the robber can initially place herself. The cops move in any way they
desire. Due to the robber’s speed 2, she may move to any out of the 4 vertices. Since
less than f dn(P2×P2) cops exist, there will be at least one undominated vertex for
her to move. The robber repeats this strategy indefinitely and escapes capture. Hence,
f cn2(P2×P2)≥ f dn(P2×P2).

Given f dn(P2×P2) fractional cops, they can place themselves such that they domi-
nate all 4 vertices. No matter which vertex she picks for her initial move, her position is
dominated and thus she gets captured. Formally, f cn2(P2×P2)≤ f dn(P2×P2) which
concludes the proof. The value of 4/3 is easily obtained by solving the corresponding
linear program for the domination of P2×P2.
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Figure 2.1: The optimal solution for fractionally dominating P2×P2

Notice that the above lemma can be extended to any graph of diameter ≤ 2, since
at each step of the game the robber may move to any vertex of the graph. Thus, for her
to be captured, all the vertices need to be dominated at some step.

Corollary 3. For any graph G, where diameter(G)≤ 2: f cn2(G) = f dn(G).

Lemma 7. cn2(P2×P2) = 2.

Proof. Suppose cn2(P2 × P2) = 1. The cop places his token in any out of the four
vertices and thus dominates 3 out of 4 vertices of the graph (the one he lies and the
two neighboring ones). The robber places her token at the only undominated vertex.
The robber repeats the following strategy indefinitely: if the cop reaches a neighboring
vertex to her, then the robber picks the other neighboring vertex which is undominated
(there is such a vertex due to the graph’s topology); otherwise she stays put. Hence,
cn2(P2×P2)> 1.

Given 2 integral cops, they initially place themselves in any 2 nodes of the graph.
Observe that the whole graph is now dominated. The robber places her token in any
vertex and the cops win in at most 1 move.

Let us continue with the 3× 3 grid, where we note 3 different sets of positions.
Let us call these sets core3×3, side3×3 and corner3×3, whose names correspond to the
vertices they contain. Moreover, let us name the vertices horizontally and from left
to right, i.e. the first line of the grid being υ1,υ2,υ3, the second υ4,υ5,υ6 and the
third υ7,υ8,υ9. Then, core3×3 = {υ5}, side3×3 = {υ2,υ4,υ6,υ8} and corner3×3 =
{υ1,υ3,υ7,υ9}.

Lemma 8. cn2(P3×P3) = 2.

Proof. Since P2×P2 is an isometric subgraph of P3×P3, then it holds cn2(P3×P3)≥
cn2(P2×P2) = 2. We show a strategy for 2 integral cops to capture the robber: initially
put 1 cop at υ4 and 1 at υ6 (symmetrically, υ2 and υ8 would have worked the same;
we just need two opposite side nodes). The robber can now place her token either at
υ2 or at υ8, since all other vertices are dominated. Let us assume that she picks υ2 for
her initial placement (the other case works symmetrically). Now, the cops move such
that they inhabit υ5 and υ1 (or υ3; symmetric case). The robber has a sole option to
move to υ3. Then, cops move to υ2 and υ6. It is the robber’s turn, but we notice that
all vertices within distance 2 from her current position are dominated. Whatever the
robber’s move, in the next round the cops win.
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In the figure below (and the ones to follow), each subfigure represents the state of
the game after one round (cops and robber turn). The game proceeds from left to right.

Figure 2.2: A strategy for 2 cops to capture the robber in the 3×3 grid

We now introduce a new notion to assist us on the fractional analysis. Let f dnv,[s](G)
stand for the the fractional domination quantity needed to dominate all nodes at dis-
tance at most s from v in graph G, but with the extra restriction that the quantity on v
is strictly less than 1. From now on, f dnv,[s](G) will also be refered to as the (v, [s])-
fractional domination number of G. We make use of this quantity, since we wish to
consider the amount of cops needed to capture the robber after she places herself on
vertex v. The extra restriction is put, since there cannot be a ≥ 1 cop quantity on v,
otherwise the game would be immediately over. The linear program below computes
f dnv,[s](G) for any node v ∈ V (G). In the following figure, let ci stand for the cop
quantity at node i.

Minimize ∑i∈V (G) ci such that
∑ j∈N[i] c j ≥ 1 ∀ i ∈ N[s](v)
cv < 1

Figure 2.3: Linear program for the f dnv,[s](G) of any node v ∈V (G)

Notice that the final constraint can be otherwise stated as cv ≤ 1− ε for any ε > 0
in order to be made appropriate for a linear programming solver. Below, we focus on
the (v, [2]) case, since the robber is restricted to speed 2. Therefore, she can move to a
node within distance at most 2 and thus these nodes capture our interest.

Lemma 9. The (v, [2])-fractional domination numbers for any node v ∈ V (P3×P3)
are:

• if v ∈ core3×3, then f dnv,[2](P3×P3) = f dn(P3×P3) = 5/2,

• if v ∈ side3×3, then f dnv,[2](P3×P3) = 2+ ε for any ε > 0,

• if v ∈ corner3×3, then f dnv,[2](P3×P3) = 2.

Proof. By solving the corresponding linear programs for domination of the specific
nodes. See the figures below for an illustration.
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core side corner

Figure 2.4: Vertices to be dominated for robber positions on the 3×3 grid

Lemma 10. f cn2(P3×P3) = 2.

Proof. To start with, f cn2(P3 × P3) ≤ cn2(P3 × P3) = 2. We provide a strategy for
the robber to avoid 2− ε fractional cops for any ε > 0: Initially, there is at least 1
undominated vertex for the robber to place herself, since f dn(P3×P3) = 5/2 > 2− ε .
At any later round, the robber finds herself in a core, side or corner vertex. By the
previous lemma, no matter where she lies, ≥ 2 cops are needed to dominate all nodes
lying within distance at most 2. Since only 2−ε cops are available, there is at least one
available vertex v ∈ N[2](v). The robber moves to v and escapes capture for this round.
Repeat for any round and the robber can always escape.

Let us move on to the 4×4 grid. Again, we consider the vertices named left-to-right
and horizontally υ1, . . . ,υ16. We partition the vertices in 3 sets as follows: core4×4 =
{υ5,υ6,υ9,υ10}, side4×4 = {υ2,υ3,υ5,υ8,υ9,υ12,υ14,υ15} and finally corner4×4 =
{υ1,υ4,υ13,υ16}.

Lemma 11. cn2(P4×P4) = 2.

Proof. cn2(P4 × P4) ≥ cn2(P3 × P3) = 2, since P3 × P3 is an isometric subgraph of
P4×P4. Moreover, we demonstrate a stategy for 2 cops to win against any possible
robber strategy: Initially, one cop is placed on υ6 and the other on υ11. Then, the rob-
ber may pick an initial position out of υ1,υ3,υ4,υ8,υ9,υ13,υ14,υ16 as depicted in the
next figure. Notice that without loss of generality, we can safely bypass positions υ9
(symmetrical to υ8), υ13 (symmetrical to υ4), υ14 (symmetrical to υ3) and υ16 (sym-
metrical to υ1). Furthermore, υ8 is symmetrical to υ3 respecting cops position, thus
the strategy followed is symmetrical and we can ignore this case as well. That is, let us
focus our attention to the case where the robber initially places herself on any node out
of υ1,υ3,υ4.

• The robber initially places herself on node υ1. Cops move such that they now lie
on nodes υ5 and υ7. The robber has only one plausible escape, which is to move
to υ2; all other nodes in N[2](υ1) are dominated. Now, the 2 cops move to υ6
and υ3, respectively. Again, the robber is restrained to move to her sole option,
i.e. υ1, otherwise she loses. After that, the cops can and will move to υ5 and υ2.
Clearly, no escape exists for the robber anymore. The cops win after at most 1
step.
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• The robber initially places herself on node υ3. The 2 cops move upwards to υ2
and υ7. The robber moves to her only available option, υ4. The cops now move
to the right on nodes υ3 and υ8. The robber is trapped in the corner. Cops win in
at most 1 step.

• The robber initially places herself on node υ4. The cops move to the right on
nodes υ7 and υ12. The robber now picks her available move of speed 2 to node
υ2, otherwise if she stays put, then the cops will easily trap her in the corner. The
cops move such that they attain positions υ6 and υ8. The robber may now move
to either υ1 or υ3; all other potential moves would result in her being captured in
at most 2 cop steps. We consider both cases:

– Suppose the robber moves to υ1. Then, the cops move to the left on nodes
υ5 and υ7. The robber moves to the only undominated option υ2. Cops
move now onto υ6 and υ3. The robber again has only one available option,
which is υ1. But, the cops can now move to υ5 and υ2, trap her in the
corner and win.

– Suppose the robber moves to υ3. Then, the cops attain positions υ2 and υ7.
The robber picks her only option, which is moving to υ4. Now, the cops
need only move to the right on nodes υ3 and υ8. The robber is trapped in
the corner and soon the game is over.

Refer to the figures below for a visual interpretation of the previous proof.

Figure 2.5: Possible robber positions for cops’ initial placement at υ6 and υ11

Figure 2.6: Cops’ strategy for robber’s initial placement on υ1
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Figure 2.7: Cops’ strategy for robber’s initial placement on υ3

Figure 2.8: Early steps of cops’ strategy for robber’s initial placement on υ4

Figure 2.9: First subcase of cops’ strategy for robber’s initial placement on υ4

Figure 2.10: Second subcase of cops’ strategy for robber’s initial placement on υ4

Lemma 12. The (v, [2])-fractional domination numbers for any node v ∈ V (P4×P4)
are:
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• if v ∈ core4×4, then f dnv,[2](P4×P4) = 3,

• if v ∈ side4×4, then f dnv,[2](P4×P4) = 3,

• if v ∈ corner4×4, then f dnv,[2](P4×P4) = 2.

Proof. Again, by solving the corresponding linear programs for domination of the spe-
cific nodes, just like for the 3×3 case.

The following figure demonstrates the vertices that need to be dominated to even-
tually capture the robber given her current position. All other cases are symmetrical to
one on the figure.

core side corner

Figure 2.11: Vertices to be dominated for robber positions on the 4×4 grid

Lemma 13. f cn2(P4×P4) = 2.

Proof. Using the fact that P3 × P3 is an isometric subgraph of P4 × P4, we derive
2 = f cn2(P3×P3) ≤ f cn2(P4×P4) ≤ cn2(P4×P4) = 2. Alternatively, one can again
consider the domination number of the 2-neighborhood for any possible position of
the robber. Initially, the robber is placed at any undominated vertex. This is possible
since f dn(P4×P4) = 4. At each round of the game, the robber may lie on a core,
side or corner node. No matter where she lies, at least 2 cops are needed to dominate
her 2-neighbourhood. If strictly less than 2 cops were present, there would always be
an undominated position for the robber to move to. Consequently, f cn2(P4×P4) ≥ 2.
This fact, together with the integral strategy for 2 cops, produce the result.

We now turn our attention to the 5× 5 grid, where we partition the vertices of
P5×P5 as follows:

• corner5×5 = {υ1,υ5,υ21,υ25},

• next− to− corner5×5 = {υ2,υ4,υ6,υ10,υ16,υ20,υ22,υ24},

• side5×5 = {υ3,υ11,υ15,υ23},

• inner− corner5×5 = {υ7,υ9,υ17,υ19},

• inner− side5×5 = {υ8,υ12,υ14,υ18},
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• core5×5 = {υ13}

The following lemma demonstrates the number of cops needed to v-dominate the
2-neighborhood for any possible robber position v ∈V (P5×P5) out of the above 6 dis-
joint subsets of the vertex set. Let f dnv,s(G) stand for the (v,s)-fractional domination
number of G, i.e. the cop quantity needed to dominate all nodes at distance exactly
s from v. To compute this quantity, one needs to maintain only constraints regarding
Ns(v), rather than N[s](v) in the linear program formulation presented before.

Lemma 14. The (v, [2])-fractional and (v,2)-fractional domination numbers for any
node v ∈V (P5×P5) are:

• if v ∈ corner5×5, then f dnv,[2](P5×P5) = f dnv,2(P5×P5) = 2,

• if v ∈ next− to− corner5×5, then f dnv,[2](P5×P5) = 3 and f dnv,2(P5×P5) = 2,

• if v ∈ side5×5, then f dnv,[2](P5×P5) = f dnv,2(P5×P5) = 3 ,

• if v ∈ inner− corner5×5, then f dnv,[2](P5×P5) = f dnv,2(P5×P5) = 3,

• if v ∈ inner− side5×5, then f dnv,[2](P5×P5) = 4 and f dnv,2(P5×P5) = 3,

• if v ∈ core5×5, then f dnv,[2](P5×P5) = f dnv,2(P5×P5) = 4.

Proof. By solving the corresponding linear programs for domination of the specific
nodes; refer to the linear program earlier in the section.

corner next-to-corner side

inner-corner inner-side core

Figure 2.12: Vertices to be dominated for robber positions on the 5×5 grid
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Lemma 15. f cn2(P5×P5)≥ 2.

Proof. Trivially, 2 = f cn2((P4 × P4) ≤ f cn2(P5 × P5). Alternatively, suppose 2− ε

(where ε > 0) cops are present. Initially, there is an undominated vertex for the robber
to place herself, since 2− ε < f dn(P5×P5) = 7. Then, at each round there is at least
one undominated vertex for the robber to move, following the previous lemma. The
robber picks the available move and perpetually evades capture no matter how the cops
move.

Lemma 16. cn2(P5×P5)> 2.

Proof. We suggest an evasion strategy for the robber, against 2 integral cops. We will
make use of the partitioning of P5×P5 described earlier.

Initially, place the robber in a vertex υ /∈ corner5×5
⋃

next−to−corner5×5. Notice
that such an initial placement is possible since 2< f dn(V (P5×P5)\(corner5×5

⋃
next−

to− corner5×5)) = f dnυ13,[2](P5×P5) = 4. Now, we provide an evasion strategy for
the robber in the form of what move(s) she needs to do to escape capture, when lying
in any out of the 6 partition-sets of V (P5×P5) at any game round:

• Assume that the robber lies on a vertex υ ∈ side5×5
⋃

inner−corner5×5
⋃

inner−
side5×5

⋃
core5×5, just like at the first step. By making use of the 2-neighbourhood

domination lemma, there exists an available vertex at distance 2. The robber
moves there and escapes capture. Preferably, the robber chooses to move to a
vertex w /∈ corner5×5

⋃
next− to−corner5×5 (should such a vertex be available)

in order to repeat the same substrategy. If that’s not the case, then the robber
goes to a (next-to-)corner vertex.

• Suppose that the robber has reached a vertex in corner5×5 after making a 2-move
from a vertex in side5×5. This means, that the other 2-moves to a node in inner−
corner5×5

⋃
core5×5 are guarded and that the 2-move towards the opposite corner

may be guarded. We focus on the case the robber moves from υ3 to υ1, as all
other cases can be handled symmetrically.

– Suppose that all the other 2-moves for the robber are guarded, thus the rob-
ber moves to υ1. The best case for cops’ proximity towards the robber is
that they lie on υ4 and υ17. In this case, the robber’s 2-moves out of υ1 are
already guarded. Notice that any other positioning of the cops is not plau-
sible, since the robber would pick another 2-move out of υ3. Now, it’s the
cops’ turn. If they both stay put, then the robber stays put as well. If at least
one of them increases his distance from the robber, then a move of speed 2
becomes available for the robber in side or inner corner regions, which she
picks and escapes. Hence, the cops need to decrease their distance from the
robber. If they both move towards the robber (e.g. to υ3 and υ16 or υ3 and
υ12), then again a 2-move becomes available for the robber. So, we are left
with the case that one of them moves and the other stays put. Cops being
on υ3 and υ17 is the only possible option. In this case, there is a sequence
of moves to allow the robber to reach the nearest inner corner and from
there she’ll follow the inner-corner strategy. Let us refer to this sequence
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of moves as the escape-corner moves. In fact, the robber moves to υ6. The
cops must now place themselves on υ3 and υ16, otherwise 2-move oppor-
tunities open for the robber. The robber moves to υ7, an inner-corner node
and then she makes use of the strategy for such nodes.

– Suppose that there are two available 2-moves to a corner node for the rob-
ber. The robber may pick the one that lies farthest from the cops. In any
case, the best possible proximity for the cops is reaching after their step to
υ3 and υ17 (should the robber move to υ1), since for any other cop posi-
tioning, there exists a 2-move for the robber to escape the situation. Now,
the robber need only follow the same escape-corner sequence of moves.

• Suppose the robber reaches a corner node (say υ1), following a move of speed 2
from the corresponding inner-corner node. In this case, the cops’ need to be on
nodes υ8 and υ12, otherwise there would be an available robber move of speed 2
to a non-corner node. It’s the cops turn now. Witness, that if at least one of them
increases his distance from the robber, then a 2-move becomes available for her.
The same goes if they both choose to decrease their distance from the robber. In
case they stay put, then the robber stays put, too. In the pursuit of capturing the
robber their only option is that exactly one of them moves closer to the robber.
This means that the cops place themselves on either υ3 and υ17 or υ8 and υ16.
The two cases are symmetrical. The robber may now escape to the closest inner
corner node again by following the escape-corner strategy.

• Finally, let us assume that the robber reaches a next-to-corner node leaving from
an inner-side node. The best proximity case for the cops now is υ9 and υ13 or υ3
and υ13. They move to either υ3 and υ12 or υ8 and υ17. To evade, the robber need
only move to the corner and repeat the aforementioned escape-corner moves in
order to later reside on υ7, an inner-corner node.

Figure 2.13: The escape-corner strategy for the robber

Lemma 17. cn2(P5×P5)≤ 3.

Proof. We demonstrate a specific strategy for 3 cops to capture the robber whatever
her moves. Initially, the 3 cops are placed on υ7, υ13 and υ19. The robber may initially

25



place herself on any node out of υ1, υ3, υ4, υ5, υ9, υ10, υ11, υ15, υ16, υ17, υ21, υ22,
υ23 and υ25. Notice that, for symmetry reasons we can immediately discard υ11, υ16,
υ17, υ21, υ22, υ23 and υ25. Furthermore, a cop-strategy for the robber commencing on
υ10 would be symmetrical to a strategy for the robber commencing on υ4 and so υ10
can safely be ignored. In the same spirit, υ15 can be excluded from our analysis as well
due to it being symmetrical to υ3. That is, we shall now focus on the strategy that the 3
cops have to follow in case the robber starts her effort to escape from any node out of
υ1, υ3, υ4, υ5 or υ9.

• Assume that the robber initially places herself on υ1. In this case, the 2 cops
initially placed on υ7 and υ13 suffice to capture the robber. They move to υ6 and
υ8, respectively. At this point, there does exist only one undominated position
for the robber to move herself, that being υ2. The cops now move towards υ7
and υ3. Again, if the robber wishes to evade them, then she must move to her
sole option, which is υ1. Now, the cops only have to move leftwards (υ6 and υ2)
to accomplish trapping the robber in the corner. The robber can do nothing but
stay still. Then, at least 1 cop moves to υ1. The cops win.

• Assume that the robber initially places herself on υ3. The 3 cops now move
upwards to υ2, υ8 and υ14, respectively. The robber may now move either to υ4
or to υ5.

– Suppose she chooses a move to υ4. The cops move to the right on υ3, υ9
and υ15. Now, the only available option for the robber is to move on υ5. 2
out of the 3 cops move to υ4 and υ10 and trap the robber in the corner. The
cops win in at most 1 step.

– Suppose she chooses a move to υ5. The cops move to the right on υ3, υ9
and υ15. Unfortunately for the robber, her only available move reduces in
staying on υ5. The cops move such that they lie on υ4 and υ10. The robber
is trapped in the corner. The cops win in at most 1 step.

• The robber initially places herself on υ4. The cops move upwards to υ2, υ8 and
υ14. The robber may now move υ5 or υ10 or just stay on υ4. In any case, the cops
move to the right to υ3, υ9 and υ15. Eventually, the robber is forced to move to
υ5, then the cops trap her in the corner and they win in at most 1 more step.

• The robber initially places herself on υ5. The cops move rightwards to υ8, υ14
and υ20. The robber may now remain on υ5 or move towards υ4 or υ10. In any
case, the cops move upwards to υ3, υ9 and υ15. The robber is forced to move to
υ5. In the next step, the cops will trap her in the corner and finally win the game.

• Finally, suppose that the robber initially places herself on υ9. The cops repeat
the same strategy just like in the previous case. Their former step is to move
rightwards and the latter to move upwards. One can easily notice that the robber
has no evasion strategy against these cops’ moves. Eventually, she resorts to the
corner. Then, the cops capture her and win.

26



Figure 2.14: Cops’ strategy for robber’s initial placement on υ1

Figure 2.15: Early steps of cops’ strategy for robber’s initial placement on υ3

Figure 2.16: First subcase of cops’ strategy for robber’s initial placement on υ3

Figure 2.17: Second subcase of cops’ strategy for robber’s initial placement on υ3
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Figure 2.18: Cops’ strategy for robber’s initial placement on υ4

Figure 2.19: Cops’ strategy for robber’s initial placement on υ5

Figure 2.20: Cops’ strategy for robber’s initial placement on υ9

Theorem 3. cn2(P5×P5) = 3.

Proof. Directly follows from the two previous lemmata.

Notice that a similar partitioning of the vertices can be made for any n× n grid
where n≥ 5. The siden×n, inner−siden×n and coren×n sets are expanded to contain all
such (equivalent under positioning) nodes. Using this approach, we comprehend that
in a big grid, given strictly less than 4 cops, the robber can move from turn to turn in
such a way that she always remains on core nodes. The following corollary already
provides a small lower bound for the fractional cop number in case of speed 2.

Corollary 4. For n big enough: f cn2(Pn×Pn)≥ 4.
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2.4 Open Questions
Starting with the fractional case, we would like to know whether there exists a relaxed
variant of Cops & Robber that can provide an approximation for the cop number. For
example, is there a way to compute f cna? Moreover, what is the complexity for such a
computation? Does it stay within polynomial bounds?

Moving to the fast robber on the grid case, the basic question remains: what is the
number of cops needed to capture the fast robber on the n× n grid? Can we find an
escape strategy for the robber where she evades e.g.

√
n cops? In such case, one needs

to describe an ”always stay far enough” strategy for the robber. Maybe some intuition
from the robber strategies proposed in [18] or recently in [5] could arise.

Overall in this area, the big question that remains open is the Meyniel
√

n-conjecture.
Even an upper bound of n1−ε would be a significant result in this direction. Several
other questions arise in the area; one need only investigate the vast literature present
today.
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Chapter 3

Surfing & Marking

3.1 The Game

3.1.1 Description and Motivation
The Surveillance game is a combinatorial game played on a (directed) graph G. There
are two players: the marker (otherwise called observer) and the surfer (otherwise
called fugitive), who take turns alternately. In trivial round 0, the marker marks a pre-
defined vertex v0 and the surfer places herself on v0. Then, for all following rounds, the
marker marks a selection of at most k ∈ N unmarked nodes, while the surfer chooses
a neighboring node to move herself to. The marker wins if he manages to mark all
vertices of G before the surfer manages to reach an unmarked vertex, in which case she
wins. Both players try to develop optimal strategies to ensure victory. Notice that the
duration of the game is at most d(n− 1)/ke rounds, since the marker marks at most k
nodes per round.

3.1.2 Background
Correspondingly to the cop number, the quantity under consideration is the surveillance
number, defined likewise.

Definition 3. The surveillance number of a graph G, with respect to vertex v0 ∈V (G),
is the minimum number of marks needed such that the marker wins against any surfer
strategy for a Surveillance game starting at v0 and it is denoted sn(G,v0).

The game was introduced quite recently by Fomin et al. [15] as a modelization for
Web pages’ prefetching, where a browser may download potential web pages in ad-
vance in order to enhance the user’s surfing. They extensively study the computational
complexity of the problem of determining sn(G,v0): they prove PSPACE-completeness
and several NP-hardness results. Moreover, the demonstrate polynomial-time algo-
rithms in the case of interval graphs and trees. For trees, a combinatorial characteri-
zation is provided as well. Finally, the connected variant is considered as well, where
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there exists the restriction that, at any round, the subset of nodes marked must be con-
nected. The problem in question is to define the cost of connectivity: how many more
marks per round are needed to satisfy the connected variant’s restriction. Further at-
tempts on this issue appear on [20].

3.2 Bounded Degree Complexity
An open question in [15] suggested the study of the complexity of Surveillance, when
the game is played on graphs whose maximum degree is bounded. Notice that com-
puting sn(G,v0) is trivial for graphs of maximum degree 3 [15]. The result presented
in this section acts as initial step in estimating the surveillance number complexity for
graphs whose degree is bounded by a constant bigger than 3. The rest of the section is
dedicated to the proof of the following theorem.

Theorem 4. Deciding whether sn(G,v0)≤ 2, for a directed acyclic graph G of maxi-
mum degree 6 and a starting vertex v0 ∈V (G), is NP-hard.

Below, we may refer to the decision problem in question as the Surveillance Num-
ber problem. To prove NP-hardness, a reduction from a special case of the well-known
Vertex Cover problem is employed.

Definition 4. A graph is called cubic, if every node has degree exactly 3.

Definition 5. Vertex Cover for Cubic Graphs: Given a cubic graph G and a constant k,
decide whether there exists a set V ′(G)⊆V (G) such that for any e = {υi,υ j} ∈ E(G) :
υi ∈V ′(G)∨υ j ∈V ′(G) and |V ′(G)| ≤ k.

NP-hardness for the above problem is proved in [19]. From now on, we shall refer
to the problem shortly as VC-3.

The reduction

Given an instance (G,k) of VC-3, we transform it into an instance (G′,v0) of the
Surveillance Number problem as follows: Let n = |V (G)| and m = |E(G)|. For each
vertex of υi ∈ V (G), we put a corresponding node ui ∈ V (G′). That is, n new nodes
are added, namely u1,u2, . . . ,un. Then, for each edge ei ∈ E(G), we put a correspond-
ing node ci ∈ V (G′). That is, m new nodes are added, namely c1,c2, . . . ,cm. An-
other k +m− 1 nodes are added to V (G′), namely v0,v1, . . . ,vk+m−2. As far as the
edge set is concerned, v0,v1, . . . ,vk+m−2,c1,c2, . . . ,cm form a directed path in this or-
der in G′. Moreover, each vertex ci ∈ V (G′) is connected to u j,uk ∈ V (G′), where
ei = {υ j,υk} ∈ E(G), via a specific gadget. For each vertex ci, 3 more vertices are
added, namely cle f t

i ,cright
i ,cmid

i . Then, the following directed edges are added to the
edge set of G′: (ci,c

le f t
i ), (ci,c

right
i ), (cle f t

i ,cmid
i ), (cright

i ,cmid
i ), (cle f t

i ,u j), (c
le f t
i ,uk),

(cright
i ,u j) and (cright

i ,uk). Notice that since G is cubic, each node ui ∈ V (G′) re-
ceives 6 edges, 2 from each corresponding edge’s patch. The construction is complete.
Furthermore, it takes polynomial time, since |V (G′)| = |V (G)|+ 5|E(G)|+ k− 1 and
|E(G′)|= 10|E(G)|+ k−2.
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Figure 3.1: The graph G′ constructed for the reduction

Lemma 18. If G has a vertex cover of size at most k, then sn(G′,v0)≤ 2.

Proof. If there exists a vertex cover of size at most k for G, then we show how the
marker can win in G′ by using 2 marks per round. Initially, the marker trivially marks
v0. When the surfer moves to any node vi ∈ {v0,v1, . . . ,vk+m−2}, the marker’s strategy
is to mark vi+1 and an unmarked node in {ci : 0≤ i≤m}∪{ui : 0≤ i≤ n}. Finally, the
surfer arrives on vk+m−2 and the marker put his two marks on c1 and another unmarked
node in {ci : 0≤ i≤m}∪{ui : 0≤ i≤ n}. Notice that k+m nodes are marked out of this
union, since k+m−1 marks are used in total and the extra 1 comes from marking c1
as the next node of vk+m−2. The nodes that the marker chooses to mark until this stage
of the game are exactly all the ci nodes plus the k ui nodes that correspond to the vertex
cover solution. Now, the surfer moves onto c1. The marker’s strategy is to mark cle f t

1
and cright

i , thus covering the only unmarked neighbors. If the surfer decides to move
towards cm for some steps, then the strategy of the marker remains the same. That is,
after the surfer moves on ci, the marker marks cle f t

i and cright
i . It is clear that the surfer

will never reach a node ci, whose unmarked neighborhood is greater than 2. Hence,
at some point, the surfer will move to a node cle f t

j or cright
j for some j. Without loss

of generality, assume that she moves onto cle f t
j . Now, notice that, due to the existence

of the k-cover, at least one node out of u j,uk, where e j = {υk,υ j} ∈ E(G), is already
marked. Thus, there are at most 2 unmarked neighbors of cle f t

j , one of them being cmid
j .

The marker marks them and eventually wins the game, since there is no other escape
possibility for the surfer.

Lemma 19. If G has a vertex cover of size greater than k, then sn(G′,v0)> 2.

32



Proof. If the vertex cover of G is of size greater than k, we provide a winning strategy
for the surfer against a 2-marker in G′. The surfer follows the path from v0 to vk+m−2.
We assume that the marker has so forth protected the path, otherwise the surfer trivially
wins. After the surfer places herself on vk+m−2, the marker uses his 2 marks and at this
point he has marked in total k+m nodes in V (G′) \ {vi : 0 ≤ i ≤ k+m− 2}. Now, in
order to examine the worst possible case for the surfer, assume that there is a vertex
cover of size k + 1 for G. From now on, the surfer moves on c1 and then on the ci
path. The surfer trivially wins if at some early point the marker does not take care to
protect the surfer’s neighborhood. Otherwise, the surfer’s victory falls under one of the
following cases:

• At any point of her traversal, if the marker decides to mark strictly greater than
k nodes out of the cmid

i ,ui families, then the surfer just moves upwards onto the
ci path and will eventually arrive to an unmarked node: the marker has to mark
all the unmarked nodes out of ci,c

le f t
i ,cright

i (where i > 1) and cle f t
1 and cright

1 in
m rounds (round m+ k to round 2m+ k− 1). The number of unmarked nodes
is at least 3(m−1)+2− (m−2) = 2m+1, since more than k marks out of the
initial k+m−1 have been assigned elsewhere. The marker can only mark up to
2m of these nodes in m rounds and hence at some point (near the end of the ci
path if the marker produces a decent strategy) there will be an unmarked node
neighboring to the surfer’s position after the marker’s turn.

• On the contrary, suppose that the marker decides to assign at most k marks to
nodes in the cmid

i ,ui families. In this case, the counting argument made above
does not hold. Nonetheless, the surfer now attacks the cover to escape: for any
selection of k nodes ui, there is an uncovered node c j. The surfer now follows
the path and reaches c j. Without loss of generality, he then moves towards cle f t

j .

At this time, there are 3 uncovered neighbors of cle f t
j . The marker marks at

most 2 of them and the surfer wins. Notice that if the marker changes his mind
and protects the cover when the surfer reaches c j, then the surfer’s strategy and
winning reasoning reduces to the previous case. To conclude, it is crucial to
observe that in this setting, marking a node cmid

w for some index w is equivalent to
marking a node uk or u j, where ew = {υk,υ j} ∈ E(G). This happens because in
order for the surfer to win when she reaches either cle f t

w or cright
w , there must exist

3 unmarked neighbors after the marker’s turn. Thus, instead of marking cmid
w ,

one could mark either of u j,uk and the outcome would yet remain unchanged.

3.3 Onto the Benefit-Deficit Extension
In this section we consider an extension to the Surveillance Game originally proposed
in [35]. The purpose is to increase the understanding over Surveillance and try to
establish and correlate results in both contexts.
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3.3.1 Game Definition
Description & Intuition

We consider a marking game played on a connected graph. There are two players: the
marker and the surfer, who take turns alternately. Initially, the marker trivially marks
a pre-defined vertex and then the surfer commences her walk on the graph from there.
At each round of the game, the marker has the opportunity to put some marks on a
subset of the vertices of the graph and then the surfer chooses a neighboring vertex
to move from her current position. By the time the surfer moves to a certain node, a
node-specific quantity of marks (the benefit) becomes available for the marker to use
only at his turn in the same round for the marking of vertices. Furthermore, each node
is related to a node-specific limit of marks (the deficit) that it needs to maintain, before
the surfer arrives to it. The winning condition for the surfer is to manage to arrive at a
node, where this limit is not yet covered by the marker. On the other hand, the marker
wins if he makes sure that at each round, the surfer can only move to vertices whose
deficit is already covered. Notice that the surfer needs to move at every round, in order
for the game to progress. We assume that if the surfer does not move for a certain
amount of rounds, then the marker wins. We also assume that the marker does not put
more marks to a vertex than the vertex’s deficit number and that the surfer does not
revisit any node, since that would only provide additional benefit for the marker. The
formal definition of the game is given in the following subsection.

Formal Definition

Let G be a connected graph and u0 ∈ V (G). Let b : V (G)→ N∗ be a function that
assigns at each node υ ∈ V (G) a benefit b(υ) ≥ 0. Let d : V (G)→ N∗ be a func-
tion that assigns at each node υ ∈ V (G) a deficit d(υ) ≥ 0. Furthermore, we set
d(υ0) = 0. Let m(υ) stand for the amount of marks currently on node υ ∈ V (G).
That is, 0≤ m(υ)≤ d(υ), ∀υ ∈V (G) and it is updated dynamically during the game.
Let mi(υ) stand for the amount of marks vertex υ receives at round i ≥ 0. Obviously,
m(υ) = ∑i mi(υ). Let C stand for the set of nodes υ ∈ V (G) for which m(υ) < d(υ).
Initially, let C =V (G), since m(υ) = 0 ∀υ ∈V (G). Then, C is updated dynamically at
each round. Let S stand for the set of the vertices visited by the surfer; initially S = /0
and then it is dynamically updated at every round. Finally, let S =V (G)\S.

The Benefit & Deficit game proceeds as follows:

1. The marker trivially marks υ0.

2. The surfer moves to υ0.

3. Let S = S
⋃
{υ0}.

4. The marker puts at most b(υ0) = ∑υ∈C m0(υ) marks on the vertices of C.
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5. For each υ ∈C:
Let m(υ) = m(υ)+m0(υ).
If m(υ) = d(υ), then let C =C \{υ}.

6. Let c = υ0 and i = 1.

7. Repeat:
The surfer moves to v ∈ N(c)

⋂
S.

Let S = S∪{v}.
If m(v)< d(v), then THE SURFER WINS.
The marker puts at most b(v) = ∑υ∈C mi(υ) marks on the vertices of C.
For each υ ∈C:

Let m(υ) = m(υ)+mi(υ).
If m(υ) = d(υ), then let C =C \{υ}.

Let i = i+1.
Let c = v.

Until C = /0.

8. THE MARKER WINS.

Notice that the game trivially ends if b(υ0)< ∑υ∈N(υ0) d(υ). In contrast, an upper

bound on the number of rounds of the game is given by
⌈

∑υ∈V (G) d(υ)
minυ∈V (G) b(υ)

⌉
.

It comes to our attention that the special case of the Benefit & Deficit game where
b(υ) = k ∈ N and d(υ) = 1 ∀υ ∈V (G) is exactly the Surveillance Game [15].

Variants

One may consider several possible extensions for this game. In an attempt to reinforce
the marker, we may consider that he is allowed to use extra marks out of a pool of
M ∈ N initial marks in any possible way during the game. Otherwise, we could assign
such M additional marks at each round, but this case trivially reduces to the transforma-
tion b(υ) = b(υ)+M, ∀υ ∈ V (G). Moreover, another variant could be the switching
between the laying of the marks and the robber’s winning condition checking. That is,
when the robber arrives at a node υ ∈ V (G), the marker deposits his available marks
before the surfer questions whether m(υ) < d(υ). Moving on, a rule restricting the
power of the marker would be that, at each round and after the robber’s arrival on υ ,
the marker must mark exactly b(υ) nodes, i.e. one node can only receive at most 1
mark at each round. Finally, one may examine the case when

⋃
υ∈V (G):m(υ)>0 υ is re-

quired to be connected throughout the whole duration of the game. Such a restriction
implies the definition of the connected variant of the game.

3.3.2 Some Contributions
We provide a combinatorial characterization for the case of trees with respect to the
notions of benefit and deficit. In the result below, let b(S) = ∑s∈S b(s) (respectively
for d(S)) for any set S and N[S] represent the closed neighborhood of S. Furthermore,
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let T υ stand for the subtree of T hanging under and including node υ . Let l(S) =
d(S)−m(S)≥ 0 denote the number of marks still uncovered on nodes of S.

Theorem 5. For any tree T and υ0 ∈ V (T ): The marker wins if and only if b(S) ≥
d(N[S]) ∀ S⊆V (T ), where S is an induced subtree of T containing υ0.

Proof. For the if direction, we give a winning strategy for the marker. Notice that
in her quest to escape, the surfer shall follow an induced path υ0,υ1, . . . ,υ f inal on T .
This remark is a direct consequence of the assumption that the surfer may not visit any
node twice. Notice that even the non-existence of this assumption would not harm the
reasoning to follow. Let Si = {υ j : 0 ≤ j ≤ i} be the set of vertices that the surfer has
so far followed in the first i rounds. Initially, b(S0) = b(υ0) ≥ d(N[υ0]) = d(N[S0])
and so the marker cannot lose in this round. Were b(υ0)> d(υ0), we would assign the
extra b(υ0)−d(υ0) marks to nodes in

⋃
vi∈N(υ0)

V (T vi) in such a way that b(υi)≥ l(υi)
when the surfer arrives at any node υi. Respectively, we do so for any step of the surfer.
Notice that there must exist such a marking strategy otherwise the fact that b(S) ≥
d(N[S]) ∀ S⊆V (T ) induced subtree containing υ0 holds is contradicted: Suppose that
the surfer lies on υi and after the marker’s turn, there is a node v ∈ N(υi) such that
l(v) > 0. Indeed, this would mean that b({υ0,υ1, . . . ,υi}) < d(N[{υ0,υ1, . . . ,υi}]),
otherwise the marker could have covered all the deficit. The marker makes use of such
a strategy at any round. Hence, no matter which course the surfer may follow, the
strategy of the marker ensures the early marking of all the necessary nodes.

For the only if direction, we demonstrate the contrapositive. Suppose that ∃S′ :
b(S′) < d(N[S′]). We propose an escape strategy for the surfer where she starts from
S′ and then moves in always smaller and smaller sets that maintain the same prop-
erty. Initially, the surfer is placed on υ0. Let S′i = V (T υi)

⋂
S′ ∀ υi ∈ N(υ0). That is,⋃

i S′i
⋃
{υ0}= S′. Suppose b(υ0)≥ d(N[υ0]) = l(N[υ0]), otherwise the surfer trivially

escapes. We notice that b(S′) = ∑i b(S′i) + b(υ0). Moreover, l(N[S′]) = ∑i l(N[S′i] \
{υi})+ l(N[υ0]), since l(υ0) = 0. It follows ∑i b(S′i)+ b(υ0) < ∑i l(N[S′i] \ {υi})+
l(N[υ0]). Then, ∑i b(S′i) < ∑i l(N[S′i] \ {υi})− (b(υ0)− l(N[υ0])). Now, the marker
places his marks on some nodes covering at least the uncovered marks in N[υ0]. Let l1
(l2) stand for the uncovered mark quantity before (after) the marker’s turn. The quan-
tities l(·) are now updated and notice that ∑i l1(N[S′i] \ {υi})− (b(υ0)− l1(N[υ0])) ≤
∑i l2(N[S′i] \ {υi}) = ∑i l2(N[S′i]), since l2(υi) = 0 ∀υi ∈ N[υ0] and at most b(υ0)−
l1(N[υ0]) marks can be used on nodes of

⋃
i(N[S′i] \ {υi}). Since now ∑i b(S′i) <

∑i l(N[S′i]), then ∃S′j : b(S′j)< l(N[S′j]). Furthermore, notice that |S′j|< |S′|. The surfer
moves to υ j, for which S′j = V (T υ j)

⋂
S′. Inductively, suppose that after k steps, the

surfer now lies on υk and for the set Sk =V (T υk
)
⋂

S it holds b(Sk)< l(N[Sk]). Let Sk
i =

T υk
i
⋂

Sk ∀ υk
i ∈ N(υk)

⋂
V (T υk

). Assume b(υk)≥ l(N[υk]), otherwise the surfer triv-
ially wins. We notice that b(Sk) = ∑i b(Sk

i )+b(υk). Moreover, l(N[Sk]) = ∑i l(N[Sk
i ]\

{υk
i })+ l(N[υk]), since l(υk) = 0. It follows ∑i b(Sk

i )+b(υk) < ∑i l(N[Sk
i ]\{υk

i })+
l(N[υk]). Then, ∑i b(Sk

i )< ∑i l(N[Sk
i ]\{υk

i })− (b(υk)− l(N[υk])). Again, the marker
places his marks on some nodes covering at least the uncovered marks in N[υk]. The
quantities l(·) are updated and ∑i l1(N[Sk

i ]\{υk
i })−(b(υk)− l1(N[υk]))≤∑i l2(N[Sk

i ]\
{υk

i }) = ∑i l2(N[Sk
i ]), since l2(υk

i ) = 0 ∀ υk
i ∈ N[υk] and at most b(υk)− l1(N[υk])

marks can be used on nodes of
⋃

i(N[Sk
i ] \ {υk

i }). That is, ∃Sk
j : b(Sk

j) < l(N[Sk
j]) and
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|Sk
j| < |Sk|. The surfer now moves to υk

j for which Sk
j = V (T υk

j )
⋂

Sk. Eventually,
the surfer will reach a set S f inal , where b(S f inal) < l(N[S f inal ]) and |S f inal | = 1. The
benefit does not suffice for the marker to cover all l(N[S f inal ]) unmarked parts. The
marker places his last marks. The surfer now moves to a neighboring vertex υ where
m(υ)< d(υ) and wins.

3.4 Open Questions
For the Surveillance game, one could examine what happens when the degree is even
smaller than 6. For instance, when ∆ = 4 or ∆ = 5. The cost of connectivity remains
open, while the best lower and upper bound can be found in [20]. From the complexity
point of view, it would be interesting to search for an approximation or an inapprox-
imability result about sn(G,v0). Perhaps a relation to Set Cover could be established,
but this insight needs to be investigated more thoroughly.

Regarding the Benefit-Deficit extension, one could try to test similar questions as
this context could provide assistance in answering questions on Surveillance. The fol-
lowing is a possible definition for the optimization problem.

Definition 6. Given a graph G, a starting vertex v0, two vectors~b and ~d of size |V (G)|
that maintain the benefit and deficit quantities for each node, respectively, and an inte-
ger k, decide whether the marker wins in a (G,v0,k~b, ~d)-Benefit-Deficit game.
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Chapter 4

Eternal Security

4.1 The Game

4.1.1 Description
Eternal Domination can be regarded as a combinatorial graph game. There exist two
players: one of them controls the guards, while the other one controls the rioter. Ini-
tially, the guard tokens are placed such that they are a dominating set on G. Then, the
rioter attacks a token without any guard on it. A guard, that dominates the attacked
vertex, must now move on it to counter the attack ensuring that the modified guard po-
sitioning remains dominating. The game proceeds in similar fashion in any subsequent
rounds. The guards win this game if they can counter any attack of the rioter and per-
petually maintain a dominating set. The rioter wins if she manages to force the guards
to reach a positioning that is no longer dominating. Finally, notice that more than one
guards may lie on the same node.

4.1.2 Background
The idea about infiinite order domination was originally considered in [9], as an exten-
sion to other domination variants. Later, Goddard et al. [23] focused on the formalisms,
which we too follow. More specifically, they consider two variants of the game. In the
former, only one guard is allowed to move in each guards’ turn, while, in the latter,
at most m guards can move in each guards’ turn, where m ∈ {2,3, . . . ,n}. Below, we
define the two corresponding optimization parameters.

Definition 7. The minimum number of guards, needed to perpetually ensure domina-
tion in a graph G against any rioter strategy, is called:

• the eternal 1-domination number of G and is denoted by σ1(G), if only one guard
is allowed to move at each round

• the eternal m-domination number of G and is denoted by σm(G), if at most m
guards are allowed to move at each round
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Several bounds are obtained in [23], e.g. γ(G)≤ σn(G)≤ α(G)≤ σ1(G)≤ θ(G).
Many other papers have been published under this setting; see [3, 22, 26, 27]. Fi-
nally, there exists a corresponding Eternal Vertex Cover game, where the interest is in
protecting edges and perpetually maintaining a vertex cover; [28, 14].

4.2 Complexity Issues
We consider the computational complexity of the following decision problem: Given
a graph G and a positive integer k as input, decide whether σ1(m)(G)≤ k. As in many
combinatorial games, the complexity remains unclarified. The minimal complexity
class known to include the problem is EXPTIME. Below, we try to investigate com-
plexity issues of Eternal Domination.

4.2.1 σm Hardness & Approximation
To prove NP-hardness for computing σm(G), we provide a reduction from the NP-hard
MINIMUM DOMINATING SET problem: Given a general graph G and a positive
integer k, decide whether there exists a dominating set of size at most k in G.

The reduction

Given a graph G, we construct a new graph G′ as follows: for any vertex v ∈ V (G), v
remains in V (G′) and a true twin v′ is added as well. Then another vertex, namely u,
is added and all edges {u,v′} are added. That concludes the construction. Notice that
|V (G′)|= 2|V (G)|+1 = O(|V (G)|) and |E(G′)|= 2|E(G)|+2|V (G)|= O(|V (G)|2).

Lemma 20. If G has a dominating set of size at most k, then σ4(G′) is at most k+2.

Proof. Given a solution for dominating G with ρ ≤ k nodes, we assign ρ guards on
the same nodes of G′ and another 2 guards on u. Notice that this initial positioning is a
dominating set for G′. Now, we show a strategy for these ρ +2 guards to win against
any possible rioter attack:

• Suppose an attack happens on a node v′ (respectively v) and there exists a guard
on v (respectively v′). Then the guard simply follows the transition v′ → v (re-
spectively v→ v′) and protects the node together with retaining domination.

• Suppose an attack happens to an original node v and no guards lie on v′. Since
there is domination, there exists a guard on a node g ∈ N(v)\{v′,u} that domi-
nates v. Then, we have the following guard transitions: g→ v and u→ g′. In this
way, the attack on v is countered and domination is retained.

– Now suppose an attack happens on another node, say v1 ∈ N(g) \ {g′}.
Then, the guards move g′→ v1 and v→ g′ and counter it.

– If there is an attack on g, then the guards simply move v→ g and g′→ u.
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– Finally, if there is an attack on another node far away, say v2 guarded by g1
(otherwise if guarded by v′2 follow the case before and thus restore initial
placement). Then, the guard strategy is to move v→ g, g′ → u, g1 → v2
and u→ g′1.

And this strategy is repeated perpetually against any possible series of attacks.

Lemma 21. The domination number of G is at most the domination number of G′.

Proof. Given a guard placement that dominates G′, we transform it in a way that it
dominates G using the same amount of guards: For any guard lying on a vertex v
or v′, where v,v′ ∈V (G′)\{u}, we put a guard on the corresponding vertex v ∈V (G).
Now notice that a guard in either v or v′ dominates both original and twin nodes lying in
N[v] and the union of all these neighborhoods is exactly V (G′). Equivalently, guards on
the corresponding vertices v ∈V (G) dominate the corresponding set of neighborhoods
{N[v]}, whose union is exactly V (G).

Theorem 6. Given a general graph G and an integer k (as part of the input), deciding
whether σ4(G)≤ k is NP-hard.

Proof. By the previous two lemmata, γ(G) ≤ γ(G′) ≤ σ4(G′) ≤ γ(G)+ 2. Given the
well known O(logn)-inapproximability result for computing γ(G) [38], NP-hardness
follows.

Definition 8. Set Cover: Given a universe U and a collection C of subsets of the
universe, decide whether there exists a cover, i.e. a subcollection C′ ⊆ C such that⋃

c∈C′ c = U .

Theorem 7. There exists a polynomial-time 2lnn-approximation for σ2(G).

Proof. We create an instance of Set Cover, where U = V (G) is the universe and
C = {N[v] : v ∈ V (G)} is the collection of subsets. Notice that a solution to this
instance is exactly a solution to the dominating set problem. We produce an lnn-
approximation for this instance by using the greedy algorithm for set cover [12]. Then,
for any subset {N[v]} in the output solution, put 2 guards on v. Now, if an attack
happens on a vertex, at least a pair of guards dominate it. One of them moves to
counter the attack and the other stands still such that domination is retained. If an
attack happens on the same neighborhood, then the guard that moved before returns
back and the other one moves to the attacked node; and so on for any number of
attacks in the same neighborhood. If an attack happens in another neighborhood,
then the guard who countered the last attack returns to his initial placement and the
2 guards that dominate the other neighborhood follow the same strategy to counter any
series of attacks. Let apx stand for the cost of the approximate solution. To conclude,
apx/σ2(G)≤ 2lnn ·γ(G)/σ2(G)≤ 2lnn ·γ(G)/γ(G)≤ 2lnn, since γ(G)≤ σ2(G).
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4.3 Open Questions
The complexity of the problem remains open. One could look towards PSPACE-
hardness as well as PSPACE-completeness. Answering such questions would provide
significant contribution that could extend to other combinatorial games. Moreover, the
parameterized complexity of the problem could be studied. Finally, (in)approximability
conditions may be worth a try.

++ more on combinatorics
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Chapter 5

Conclusions

Curse Nico Games
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[35] S. Pérennes, Surfer, Manuscript, 2012.

[36] P. Pralat and N. Wormald, Meyniel’s conjecture holds for random graphs, Random
Structures and Algorithms, 2013.

[37] A. Quillot, Some results about pursuit games on metric spaces obtained through
graph theory techniques, European Journal of Combinatorics, vol. 7, pp. 55-66,
1986.

[38] R. Raz and S. Safra, A sub-constant error-probability low-degree test and a sub-
constant error-probability PCP characterization of NP, Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing (STOC ’97), pp. 475-484,
1997.

[39] A. Scott and B. Sudakov, A bound for the Cops and Robbers problem, SIAM
Journal on Discrete Mathematics, vol. 25, pp. 1438-1442, 2011.

[40] D.B. West, Introduction to Graph Theory, Pearson, 2000.

45


