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1 Introduction
A tree-decomposition of a graph G [19] is a way to represent G by a family of subsets of its vertex-set organized in
a tree-like manner and satisfying some connectivity property. The treewidth of G measures the proximity of G to a
tree. More formally, a tree decomposition of G = (V,E) is a pair (T,X ) where X = {Xt|t ∈ V (T )} is a family of
subsets, called bags, of V , and T is a tree, such that:

•
⋃
t∈V (T )Xt = V ;

• for any edge uv ∈ E, there is a bag Xt (for some node t ∈ V (T )) containing both u and v;

• for any vertex v ∈ V , the set {t ∈ V (T )|v ∈ Xt} induces a subtree of T .

The width of a tree-decomposition (T,X ) is maxt∈V (T )|Xt| − 1 and its size is order |V (T )| of T . The treewidth of
G, denoted by tw(G), is the minimum width over all possible tree-decompositions of G.

If T is constrained to be a path, (T,X ) is called a path-decomposition of G. The pathwidth of G, denoted by
pw(G), is the minimum width over all possible path-decompositions of G.

Tree/path-decompositions are a fundamental algorithmic tool used by many dynamic programming algorithms on
graphs (See [6]). It has been shown that difficult problems, such as some NP-complete ones, can be solved efficiently
over classes of graphs of bounded treewidth (See [11, 4, 2] among others).

Assuming P 6= NP , many natural problems require superpolynomial running time when complexity is measured
in terms of the input size, but can be computable in a time that is polynomial in the input size and exponential or
worse in a parameter k. A parameterized problem is called fixed parameter tractable if it admits a solving algorithm
whose running time on input instance (I, k) is f(k)× |I|α, where f is an arbitrary function depending only on k [11].
This way of measuring the complexity becomes an important tool to consideraly improve the complexity bound of
problems that are traditionally considered intractable, thus transforming them into tractable ones. For instance, the
dominating set problem of a graph G can be solved with running time O(4kn), where n is the number of nodes of a
tree decomposition of G and k is the treewidth. [1].

Though both the problem of calculating the treewidth and the pathwidth are fixed parameter tractable in the general
case [5], their complexities have such a bad bound that it rapidly becomes impractical (or even impossible) to calculate
the exact tree/pathwidth. For some classes of graphs, polynomial algorithms can be found for each of the problems
[7, 14], while for other classes good approximation algorithms have been developed [9]. Knowing that there are good
results on determined classes is a good motivation to look forward and try to get new approximation algorithms on
other families of graphs.

A chordal graph is a finite undirected graph in which any induced cycle has three nodes.
The pathwidth problem for chordal graphs is NP-hard [14], but tree decompositions are obtained polynomially on

them. Gustedt also shows that the pathwidth of a k−starlike1 graph can be calculated in O(|V (G)|2k+1) time and
space [14].

1k−starlike graphs are starlike graphs where the size of each clique minus the central clique is bounded by a constant k.
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This impulsed us to try to obtain good path decompositions in the general case of chordal graphs by creating an
approximation algorithm.

In this work, we propose an heuristic to obtain the pathwidth of chordal graphs and show the problems we encoun-
tered at the moment of bounding the approximation factor of the algorithm.

Related works
There are some techniques that help us solve the pathwidth problem, with a certain degree of certainty. For example,
some classes of graph searchings can return us an approximation of twice the pathwidth. But which classes? And
moreover, what are graph searchings?

In node graph searching, some searchers try to capture an invisible fugitive in a connected graph G [16]. The
searchers and the fugitive occupy the vertices in G. The fugitive is arbitrarily fast and can go through the paths of G
as long as it does not meet a searcher. He is captured at vertex v if at least one searcher occupies v at the same time
with him and he cannot escape, i.e., all neighbours of v are also occupied by some searchers. Searchers can be placed
at or removed from the vertices of G. A strategy for the searchers is a sequence of steps (placement or removal) that
results in capturing the fugitive whatever he does.

The number of searchers used by a strategy is the maximum number of searchers simultaneously occupying ver-
tices of the graph. It is interesting to find a strategy with the minimum number of searchers to capture a fugitive in
a given graph. For any graph, there is a monotone strategy, i.e. each vertex is occupied at most once by a searcher,
capturing the fugitive using minimum number of searchers [3, 17, 20]. This shows that the problems of computing the
number of searchers are in NP .

It is shown that vertex separation is identical to pathwidth [15]. While vertex separation is equal to node search
number of the graph minus one [16]. The edge search number is between the vertex separation and vertex separation
plus 2 [12].

A search strategy S is connected if, at any time of S, the vertices into which the fugitive cannot be form a connected
component in the graph.

It is proven that search number equals the monotone search number for any graph G in [3, 17, 20]. Yang et al.
constructed a graph G such that the connected search uses less searchers than the monotone connected search in [21].
It is still unknown whether the problem of computing the connected search number is in NP . However, it is proven
in [10] that the monotone connected search number is bounded by twice the search number plus one; which is equal
to twice the pathwidth plus three.

This means that if we manage to find the monotone connected search number, we almost have a 2−approximation
of the pathwidth.

The pathwidth problem is NP−hard for weighted trees [18]. For a weighted tree, Dereniowski gives a generic
algorithm for finding an optimal connected search strategy and a polynomial time 3−approximation algorithm [9].

In the next pages we will show our attempts to construct an approximation algorithm to get the pathwidth of a
chordal graph by modifying Dereniowski’s algorithm. We will also show which were the problems we faced, how we
solved some of them and our intuition on how to solve the ones that are left.

2 Applying Dereniowski’s Algorithm to a Chordal Graph

In this section we will firstly explain the basics of Dereniowski’s algorithm (as seen in [9]).
Afterwards, we will give the pseudocode to our modification of Dereniowski’s algorithm with some notes on how

it works.
Since the algorithm works with weigthed trees, we need to get one weighted tree out of a chordal graph. We

show an heuristic to get weighted tree decompositions from chordal graphs followed by the problems that arise in the
approximation factor.

Lastly, we explain the computational complexity of all the process.
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2.1 Notation and definitions
Given a graph G = (V,E), a (node) search strategy S for G is a sequence S1, . . . ,Sl of sets of nodes of V (G). S is a
k-search strategy for G for a given integer k if S is a search strategy for G and uses at most k searchers; i.e., none of
the sets of S has more than k elements.

Let |S| be the number of moves (sets) in S. For each set St, t ∈ 1 . . . |S|, each node v ∈ St represents that there
is a searcher in v at step t. Denote by s(St), t ∈ {1, . . . , |S|}, the number of searchers used in step St. Denote s(S)
the maximum number of searchers used by a step of strategy S.

A vertex v ∈ V is cleared by a strategy S if the fugitive cannot go to v at the end of S; an edge uv is cleared if
both u and v are cleared. A vertex v ∈ V is guarded at St if v ∈ St.

A search strategy S is partial if a subset of the vertices is cleared at the end of S. We say that S clears a subgraph G′

of G if all vertices in G′ are cleared at the end of S. Let ({Xi|i ∈ I}, T = (I, F )) be the tree decomposition of G.
For brevity we say that S clears a node i ∈ I if all vertices in the bag Xi are cleared at the end of S.

Given a rooted tree T and a node x ∈ V (T ); let Tx be the subtree of T rooted at x. Respectively, Vx is the set of
vertices that are direct descendents of x and Ex is the set of edges that connect x with Vx.

Let CV (S) (resp. CI(S)) be the set of vertices (resp. nodes) cleared by S in G (resp. T ). Define S�t, t ∈
{1, . . . , |S|}, to be the partial search strategy obtained by performing the first t moves of S.

Let δV (S) (resp. δI(S)) be the set of vertices (resp. nodes) guarded at the end of S . If S clears G, then obviously
δV (S) = δI(S) = ∅.

A partial search strategy S can be k-extended to a partial strategy S ′ for G if |S ′| ≥ |S|, St = S ′t for each
t = 1, . . . , |S| and s(S ′) ≤ k. In such case, we also say that S ′ is a k-extension, or an extension for short of S.

2.2 Dereniowski’s Original Algorithm
Dereniowski’s algorithm is based in the idea that there are some searches that can be considered greedy.

We are going to consider greedy searches as described by Dereniowski [9]. A partial search S of T is greedy if:

1. S places some searchers on the root of the tree and clears at least one edge.

2. w(u) ≥ w(δ(S)
⋂
V (Tu)) for each u ∈ CV (S).

3. Eu
⋂
CE(S) = ∅ or Eu ⊆ CE(S) for each u ∈ CV (S).

The algorithm is divided into two procedures.
The main procedure, called GWTAS (Generic Weighted Tree Approximate Searching), finds a connected search

strategy for a given tree T and each possible root. The input also includes a function Γ that assigns a set of permutations
to each Vv , v ∈ V (T ). Once the root is decided, the process acts in a bottom up way. For each Tv , such that v ∈ V and
Ev 6= ∅ the algorithm gets a partial search strategy S(Tv) by invoking the second subroutine GSS (Generic Subtree
Searching). S(Tv) is greedy and such that there is not another k-greedy search for k < s(S(Tv)). Once S(Tv) is
performed for each v ∈ V (T ), the algorithm finds a connected search strategy S for T (based on T ’s root) iteratively
doing performing this step:

If S is the current partial search strategy, then a vertex v of δ(S) and the next iteration is S ⊕ S(Tv). The new
strategy is still connected and based in T ’s root and Ev is cleared according to Γ whenever Vv 6= ∅.

GSS receives as input a tree T rooted at a vertex v, a permutation π of Vv and a set A that contanis a partial search
strategy S(Tu) for each u ∈ V (Tv)\({v}∪Lt), where LT are the leaves of T . GSS returns a partial search strategy Sπ
for T starting from v that clears Ev according to π. Moreover, each subtree Tu, u ∈ Vv , is cleared by a concatenation
of strategies from A.

In each iteration of the main loop GSS tries to compute a partial search strategy Sπ for Tv . kπ is the number of
searchers available for Sπ . All kπ searchers are placed at v and the computation starts.

There is an inner loop which is the one responsible for computing Sπ . If it is possible, in the i−th iteration, w(πi)
searchers go from v to πi. If there are not enough searchers, kπ increases accordingly and a new iteration of the main
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loop begins. If we were able to put searchers in πi, the algorithm will check if there is a vertex u in δ(Sπ) such that
Sπ ⊕ S(Tu). If we find such u, we add S(Tu) to Sπ .

Then, the algorithm checks if w(δ(Sπ)) ≤ w(v) and if we cleared all the edges in Ev . In the affirmative case, the
computation stops. Elsewise, kπ increases and the computation of a new search strategy Sπ begins.

It is proven that this algorithm always returns a greedy partial search strategy [9].

GWTAS is much simpler, but needs a new definition.
We say that Γ is an ordering of T if, for the set X of neighbours of every vertex that is not a leaf, it assigns a non

empty set Γ(X) of permutations of X .
Then, GWTAS receives as input an unrooted tree T , and an ordering Γ of T . It proceeds to consider every possible

root r of T , and then, generates a post-ordering of the nodes of T (i.e. each node precedes its parent). Then, for each
node of the order, it calculates every possible search strategy using GSS and the ordering π ∈ Γ(Vvi , i ∈ 1 . . . |V (T )|.
Afterwards, it stores the best S(Tvi) in a set, and uses this information to create the best greedy search strategy Sr that
starts from r and clears the entire tree. In the end, it chooses the root that produced the better search (i.e. the one that
used less searchers).

2.3 Dereniowski’s algorithm modification
Now we will focus on the modification of Dereniowski’s algorithm. Having explained it before, we will mostly focus
on the details that were changed for it to work with these new data structures.

The original algorithm uses the weighted tree and considers that once all the children of a node are cleared,
its weight becomes 0 and stops being taken into account when adding up the number of searchers used. In our
modification, nodes will represent maximal cliques, which may have had vertices in common in the original graph.
This has to be taken into account. When calculating the number of searches used by a step of the search, we need not
only to calculate the weight of those nodes of T that are part of the frontier but also not to count twice the vertices of
G that are part of many bags of T that are part of the frontier. That’s why one of the slightest changes that we produce
in the algorithm is the way the weight of the frontier is calculated. We use a list of pairs of integers in which position i
represents the number ni of maximal cliques in G to which i belongs, and the maximal clique ci topologically closest
to the root in T to which i belongs. i.e. Given different tree decompositions, ni will never vary, but ci will do.

In the following, we consider that G = (V,E) is a chordal graph and ({Xi|i ∈ I}, T = (I, F )) is a tree
decomposition of G, but to simplify the notation, we will refer to the tree decomposition as T . We use the same
notation (and simplification) for any graph decomposition ({Xi|i ∈ I}, H = (I, F )) of G. Unless specifically stated,
we are going to work with weighted labelled maximal cliques tree decompositions; which are tree decompositions in
which each node corresponds to a maximal clique of G, has a distinctive name and there is a function w, such that
w(i), i ∈ I(T ) returns |Xi|.

Given a chordal graph G, its weighted edges maximal cliques graph decomposition H is the graph constructed
by creating a node for each maximal clique and creating edges between the nodes corresponding to cliques that have
vertices in common. The weight w(e) of any edge e is the number of vertices shared by the cliques corresponding to
the endpoints of e in G. Unless specifically stated, weighted edges maximal cliques graph decompositions are going
to be named graph decompositions for short.

Let us define a clique-by-clique search. Given a graphG and a search S, S is a clique-by-clique search (shortened cbc)
if it alternates between clearing one maximal clique of G and, if unguarding every possible vertex without allowing
recontamination.

Formally, a cbc search S is a sequence of vertex sets such that:

• S0 = ∅.

• For all set S2×k+1, k = 0 . . . |S|2 , the vertices of one uncleared maximal clique are added to S2×k.

• For all set S2×k, k = 1 . . . |S|2 , all the vertices that can be removed from set S2×k−1 without allowing recon-
tamination, are removed.
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To simplify, we call clearing steps of S the odd steps, since we use them to clear a new clique; and bordering steps
of S the even steps, since we take the border of what we have already cleaned.

Given a chordal graph G and its tree ({Xi|i ∈ I}, T = (I, F )) and T rooted at r ∈ I , let π be a permutation of the d
children of node i in T . We say that a search strategy S clears the d children of i according to π if the π(q)-th child is
cleared prior to the π(q + 1)-th child by S for each q = 1, . . . , d− 1.

Given a graph G, a tree decomposition T and a subtree Ti of T ; we consider G[Ti] to be the subgraph of G that Ti
has as one of its tree decompositions.

The algorithm is divided in three to facilitate its comprehension by the reader.
We first describe an algorithm GSS (Generic Subtree Searching) finding a greedy strategy for G[Ti] with the

minimum number of searchers which clears the all the children of i in T according to a given order. Then we generate
another subroutine GTDS (Generic Tree Decomposition Searching) that given a tree decomposition of a chordal graph,
uses GSS to get the optimal search starting on each possible root of that tree decomposition. Then we use GTDS as a
subroutine to design a generic algorithm find the optimal cbc monotone connected search strategy forGwith minimum
number of searchers clearing the nodes of T according to some given order.

Algorithm 1: Find a greedy strategy for G[Ti] with the minimum number of searchers which clears the all the
children of r in T according to a given order.

Input: the subgraph G[Tr] and Tr rooted at node r and a set A containing S(G[Tj ]) for each
j ∈ V (Tr) \ ({r} ∪ LT ), an order π of the children of r in Tr, an ordered list L stating, for every vertex
of G[Tr], the node in T where it first appears and the number of cliques that contain it.

Output: a partial search strategy for G[Tr]
kπ ← w(r);1

Set d← the number of children of i;2

repeat3

Set sq ← +∞ for each q = 1, . . . , d;4

Sπ ← 〈r〉 (i.e. put all kπ searchers at node r);5

for q ← 1 to d do6

if s(Sπ ⊕ π(q)) > kπ then7

sq ← s(Sπ ⊕ π(q))8

xq ← r9

go to line 18;10

Sπ ← Sπ ⊕ π(q)11

while ∃j ∈ δ(Sπ) \ {r} such that s(S(G[Tj ])) ≤ kπ − |δV (Sπ) \Xj | do12

Sπ ← Sπ ⊕ S(G[Tj ])13

if δ(Sπ) \ {r} 6= ∅ then14

find j ∈ δ(Sπ) \ {r} with the minimum k′ = |δV (Sπ) \Xj |+ s(S(G[Tj ]))15

set sq ← k′, xq ← j;16

if δ(Sπ) 6= ∅ then17

find p ∈ {1, . . . , d} such that xp ∈ δI(Sπ) sp ≤ sq for each q = 1, . . . , d such that xq ∈ δI(Sπ), and set18

kπ ← sp

until w(δ(sπ)) ≤ w(r) and all the children of r are cleared ;19

return Sπ .20

To calculate the number of searchers that are left after one step, s(Sπ⊕π(q)) has to take into account all those vertices
that were already covered by an ascendant, and also all those vertices that will not form part of the frontier anymore.
That is where the list of pairs L is used. When analising the complexity of the algorithm we will explain how this
calculations are processed.
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Note that for each r ∈ I , let NT (r) be the set of neighbours of r in T . Define an ordering Γ for T as follows: for each
node r ∈ T , for each set D ∈ ζi ≡ {D : D = NT (r) \ {j} 6= ∅ for j ∈ NT (r) or D = NT (r)}, Γ assigns a non
empty set Γ(D) of permutations of D.

Let us now analise the second pseudocode.
Given a chordal graph G, max cliques(G) is the set of all maximal cliques that can be found in G.

Algorithm 2: Find a monotone connected search strategy for a chordal graph with minimum number of searchers
clearing the nodes in T .

Input: a chordal graph G, a rooted tree decomposition (X,T ) of G, an ordered list L stating, for every vertex
of G[T ], the node in T where it first appears and the number of cliques that contain it.

Output: a cbc monotone connected search strategy for G.
Ξ′ ← ∅;1

for each r ∈ I(T ) do2

Let (i1, . . . , i|I|) be any post-ordering (each child precedes its parent) of vertices of T ;3

A ← ∅;4

for t← 1 to |I| do5

if it has children then6

Ξ← ∅;7

for each order π in Γ for the children of it do8

Add to Ξ the search strategy returned by Algorithm 1 for Tit , G[Tii ], π,A, L[Tit ];9

S(G[Tit ])← S, where S ∈ Ξ and s(S) = min{s(S ′) : S ′ ∈ Ξ};10

A ← A∪ {S(G[Tit ])};11

Let Sr ← S(G[Tr]);12

while CI(Sr) 6= I do13

Find i ∈ δI(Sr) with the minimum |δV (Sr) \Xi|+ s(S(G[Ti]));14

Sr ← Sr ∪ S(G[Ti]);15

Ξ′ ← Ξ′ ∪ {Sr};16

return S such that S ∈ Ξ′ and s(S) = min{s(S ′) : S ′ ∈ Ξ′}.17

The last piece of pseudo code is really simple, and shows how we apply the different subroutines given a chordal graph
G.

Algorithm 3: Find a cbc monotone connected search strategy for a chordal graph with minimum number of
searchers.

Input: a chordal graph G, a rooted tree decomposition (X,T ) of G, an ordered list L stating, for every vertex
of G[T ], the node in T where it first appears and the number of cliques that contain it.

Output: an optimal cbc monotone connected search strategy for G.
T ← a list of pairs with every weighted tree decomposition (X,T ) of G and an ordered list L stating, for every1

vertex of G[T ], the node in T where it first appears and the number of cliques that contain it.
S ← Algorithm 2 for T [1]2

for every t ∈ T do3

if s(Algorithm 2 for t) < s(S) then4

S ← Algorithm 2 for t5

return S.6

For now, we do not care about how we get every tree decomposition, this will be explained later, once we take a
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look into the problems that arise from bounding the complexity of the algorithm and the approximation factor of an
heuristic.

First, let us see that the algorithm returns what we expect.

Claim 0.1. Given a chordal graph G and T its maximal clique tree decomposition. Applying the modification of
Dereniowski’s algorithm on T returns an optimal cbc monotone connected search S of G.

Proof. Let us first prove, that the result is a cbc monotone connected search. It is clique by clique because every
vertex in T represents a maximal clique of G, so whenever we are clearing one vertex, we are actually representing
the clearing of a maximal clique. Since the original algorithm generated a monotone connected search on T , and we
are not changing the way this search is performed, our modification returns a monotone connected search. Therefore,
the result is a cbc monotone connected search.

Since the algorithm exhaustively generates all possible weighted tree decompositions of G, roots each of them
in every possible node, and then tries each possible monotone connected search; all the clique connected monotone
connected searchs are tried, in particular, any optimal monotone connected search will be given as the output of the
algorithm.

2.4 Problems when bounding the complexity
We know the algorithm returns an optimal clique connected monotone connected search for a given chordal graph G,
but if we analise the complexity, we realise that it is not polynomial.

First of all, Dereniowski in his paper [9] generates a 3-approximability heuristic because the algorithm is not
polynomial. But even if we use this heuristic, the algorithm is not polynomial. This is because we have an exponential
number of tree decompositions for any given tree (See Claim 0.2). Let us now introduce a simple heuristic to generate
tree decompositions of chordal graphs.

2.5 Heuristic for Transforming a Chordal Graph into a weighted tree
The first part of the algorithm consists in creating a graph decomposition H in which each maximal clique of G
becomes a node, and is connected to another node in H whenever the maximal cliques to which they are associated
have vertices in common. The number of vertices shared is going to be weight of the edge.

The second part, a little bit more confusing, consists in generating a weighted tree decomposition T of this graph
decomposition H , in which the tree generated is a maximum spanning tree of the graph from H [13]. We also create
a second structure which will be used by the modification of Dereniowski’s algorithm. This is a list of all the vertices
of G, with information of on how many maximal cliques they appear and which one in the first in topological order,
once we decide a root for the tree.

The pseudocodes for these two algorithms follow:

3 Problems when bounding the Approximability Factor
So far we have showed that if we try to reach the solution by exhaustive search, we will not have a polynomial
algorithm. Also, we know that the generic algorithm we provide will generate a path decomposition with a certain
number of searchers. But we still have not talked about how good this solution is.

3.1 Clique connected searchs problem

The first problem we encounter is that, since we are using an algorithm that works in a connected way on trees, and we
are associating each maximal clique of G with a node on a tree, when we talk about cleaning one node, it’s impossible
for us to clear the nodes of G without using a clique connected search.

As we can see in Figure 1, there are graphs for which clique connected searchs are not the optimal searchs. So we
need to bound the way this affects the behaviour of our algorithm.
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Figure 1: (a) Original graph G. (b) Nodes of each maximal clique of G. (c) Maximal Cliques Graph Decomposition
H of G. 1 . . . 6 Steps of an Optimal Monotone Connected Search of G, and the correspondent clearing in H .Red:
Uncleared. Blue: Guarded. Green: Guarded Frontier. Gray: Cleared.
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Algorithm 4: Obtain a weighted-edges maximal cliques graph decomposition H from a chordal graph G
Input: A chordal grap G
Output: A weighted-edges graph decomposition H = (I, F, w) and a set of sets X
X ← ∅1

I(H)← ∅2

F (H)← ∅3

for each maximal clique Ci of G do4

Xi ← V (Ci)5

I(H)← I(H) ∪ {i}6

for every set Xj ∈ X do7

if Xj ∩Xi 6= ∅ then8

F (H)← F (H) ∪ {ij}9

w(H, i, j)← |Xj ∩Xi|10

X ← X ∪ {Xi}11

return H and X .12

Algorithm 5: Obtain a modified rooted weighted tree T from a weighted-edges graph H
Input: A weighted-edges graph H , a set of sets X , and a node ρ of I(H)
Output: A weighted rooted tree T = (I, F, w) with an array L of pairs of integers
I(T )← I(H)1

for each i ∈ I(T ) do2

w(i)← |Xi|3

for each maximal clique Ci of H do4

if (∀e, e′ ∈ E(Ci))w(e) = w(e′)) then5

r ← closest node to ρ E(T )← E(T ) ∪ {ir|i ∈ V (Ci), i 6= e}6

else7

T ′ ← a maximum spanning tree of Ci E(T )← E(T ) ∪ E(T ′)8

O ← list with ρ9

while |O| 6= |I(T )| do10

for every i ∈ O do11

if ij ∈ F (T ) ∧ j /∈ O then12

O.push back(j)13

L← array of |V (G)| times < 0, 0 >14

for i = 1 . . . |O| do15

for every j ∈ XOi
do16

if Lj0 = 0 then17

Lj ←< i, Lj1 + 1 >18

else19

Lj ←< Lj0 , Lj1 + 1 >20

3.2 Tree Decomposition problem
Given a chordal graph G and H its weighted edges maximal cliques graph decomposition, any clique tree decompos-
tion T of G is a maximum spanning tree of H . (As seen in [13].)
We know graphs have many tree decompositions. If we analize Figure 2, we can see that the monotone connected
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Figure 2: (a) Original graph G. (b) Nodes of each maximal clique of G. (c) Weighted-Edges Maximal Cliques Graph
Decomposition H of G. (d) T Maximum spanning tree of H . (e) T ′ Maximum spanning tree of H .

search number for T is greater than the one for T ′ (2 and 3 respectively). This means that we have added one
new difficulty to our algorithm. We want to have the best tree decomposition, but we also want the algorithm to be
polynomial. Therefore, we have two options, either construct a good tree decomposition, or bound the maximum error
we can produce in the result when producing a bad tree decomposition.

Our first approach was to isolate the different problems that came from different tree decompositions to solve them.
So we focused on the structures of the original graph that gave possibility to different tree decompositions.

Given a chordal graph G, its weighted edges maximal cliques graph decomposition H , and a path p in H; the weight
of p, w(p) , min{w(e)|e ∈ E(p)}.

Given a chordal graphGwith nmaximal cliques, thenG has a weak structure if and only if its graph decomposition
H , is a clique in which all the edges have the same weight.

Given a chordal graph G and, G has a strong structure if and only if there is only one labelled clique tree decom-
position of G.

Given a chordal graph G and G′ induced subgraph of G, we say G′ is a strong component of G2, if for every tree
decomposition T of G, there exists a tree decomposition T ′ of G′ such that T ′ is a subtree of T .

A shared set of vertices between two cliques C1 and C2, is the maximal set of vertices V = v1 . . . vn such that
(∀vi ∈ V )vi ∈ V (C1) ∩ V (C2).

Claim 0.2. Given a chordal graph G, the following statements are equivalent:

1. G has a weak structure.

2. All the maximal cliques in G share the exact same set of k vertices (k ∈ N).

3. G has nn−1 different labelled rooted maximal clique tree decompositions.

Proof. 2 ⇒ 1) If all the maximal cliques in G share the same set of vertices V , such that |V | = k. For every pair
of cliques Ci, Cj ; we have, in H , a pair of nodes ni, nj , such that they are connected by the edge ninj and the edge
weighs k. Therefore, H is a clique with all its edges of weight k, and G has a weak structure.

3 ⇒ 2) By absurd, let’s assume G has nn−1 tree decompositions, but not all maximal cliques share only a set V of
vertices, such that |V | = k.Therefore, there are two possibilities.

2Equivalently, G′ is stronger than G, or has a stronger structure.
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1. The intersections between different cliques have different cardinalities. But this means there are less possibilities
when creating the maximum spanning tree because some edges weight more than others and have to be put
always. If all the edges had the same weight, we could use Cayley’s Formula [8], which states that there are
nn−2 different trees, but we know we have k < nn−2. Rooting each tree decomposition, we end up having
k × n rooted maximal cliques tree decompositions; which is strictly less than nn−1.

2. The intersections between different cliques have all the same cardinality k, but are not the same set V of vertices.
Then, we have at least three cliques C1, C2, C3 such that they all share k vertices, but they don’t share the
same k vertices. Therefore, there have to be three sets S1 = V (C1) ∩ V (C2), S2 = V (C1) ∩ V (C3), S3 =
V (C2)∩V (C3) and 6 S1 = S2 = S3. We don’t want all the sets to be the same, because if not, this set would be
V .

But then, each set has at least one element that distinguish it from the rest of the intersections. Properly,
(∃v1 ∈ S1)v1 /∈ (S2 ∪ S3). But S1 is the intersection between C1 and C2, while S2 = V (C1) ∪ V (C3) and
S3 = V (C2) ∪ V (C3), which means that v1 is connected to every vertex of S2 through C1, and to every vertex
of S3 through C2. Let’s call S′ the subgraph induced by the vertices in {v} ∪ V (S1) ∪ V (S2). From what we
said, it follows that S′ is a clique, and therefor V (S′) ∩ V (C1) is S1 ∪ {v1}; but |S1 ∪ {v1}| > |S1| = k,
when one of the assumptions was that every intersection between maximal cliques had k elements. S′ may not
be maximal, but it is a subclique of a maximal clique that shares at least k vertices with C1, contradiction that
comes from assuming the set V shared is not the same between all cliques.

1 ⇒ 3) Since G has a weak structure, the maximal clique graph decomposition H of G is a clique of n nodes, being
n the number of maximal cliques of G. Knowing the tree decompositions are maximum spanning trees ( [13]), and
knowing that Cayley’s formula [8] also counts the number of spanning trees of a clique of size n, we get that the
clique H has nn−2 different spanning trees. These trees are maximum, because by definition, every edge of H has the
same weigth. To each different spanning tree we can assign n possible different roots, so the total number of labelled
maximal cliques rooted tree decompositions is nn−1.

Given a graph G, we call spanning star S of G, to a spanning tree of G such that (∃v ∈ V (S))(∀v′ ∈ V (S) \
{v})degree(v′) = 1. We call centre(S) such vertex.

Given a weighted-edges graph G, we say G is uniform if every edge weighs the same.

Claim 0.3. Given a chordal graph G, its graph decomposition H , and a rooted tree decomposition T of G:
If every maximal clique Ci in H is uniform and T has a spanning star Si on Ci in which centre(Si) is the node

topologically closest (in H) to the root r of T ; our modification to Dereniowski’s algorithm returns an optimal clique
ordered monotone connected search rooted at r.

Proof. Let us assume there is a clique ordered monotone connected search S that cannot be obtained by applying the
algorithm. S clears every node in T starting from r. For every star Si in T , let us say V (Si) = {Si1 . . . Si|Si|

}, such
that Si1 = centre(Si), and (∀j, k ∈ {1 . . . |Si|})j < k ⇒ Sij is cleared before Sik by S.

Then, since centre(Si) is the node topologically closest to r, it is going to be cleared before any other node in
S. If s′ ∈ Si, s′ 6= centre(Si) is cleared before, it means that there is a path from r to s′ that does not go through
centre(Si), but that would mean T is not a tree, which is absurd.

But once we have cleared centre(Si), since Si is a star, the algorithm can clear whichever other node it needs. For
example, given an order Si2 . . . Si|V (Si)|

, this can be followed; thus allowing us to return any clique ordered monotone
connected search rooted at r. In particular, S.

Corollary 1. Given a chordal graph G, its associated graph decomposition H such that every maximal clique Ci in
H is uniform, and a node r ∈ I(H); if we can make a tree decomposition T such that T has a spanning star Si on Ci
in which centre(Si) is the node topologically closest to r; then our modification of Dereniowski’s algorithm returns
an opimal clique connected monotone connected search.

Claim 1.1. GivenG chordal graph andC1, C2, andC3 maximal cliques inG, such that they are pairwise intersecting.
If there is a labelled clique tree decomposition (Xi|i ∈ I, T (I, F )) ofG in which c2c3 ∈ F (T ) then V (C1)∩V (C2) ⊆
V (C3) ∨ V (C1) ∩ V )C3) ⊆ V (C3).
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Proof. Let’s assume the premise is true. Since we are in a tree, we have two possibilities:

1. To go from c1 to c2 the path goes through c3: Since we have that V (C1) ∩ V (C2) 6= ∅ ∧ V (C1) ∩ V (C3) 6=
∅ ∧ V (C2) ∩ V (C3) 6= ∅; in the maximal clique graph decomposition H of G, c1, c2, c3 form a clique, from
which we chose the edge c2c3 to be in F . From the tree decomposition property of the induced subtrees, the
path between c1 and c3 has to contain V (C1)∩ V (C3) in every node. In particular, the bag associate to node c2
has them. Therefore, V (C1) ∩ V (C3) ⊆ V (C2).

2. To go from c1 to c3 the path goes through c2: The same as above but changing the subindices.

Given a rooted tree T , and a node ρ ∈ V (T ) we call Tρ the subtree of T rooted at ρ composed by all its descendents.

Claim 1.2. Given a graph G and a tree decomposition (X = {Xi|i ∈ I}, T = (I, F )). For every pair of nodes
v1, v2 ∈ I , every node v12i in the path between them in T has a corresponding bag X12i ∈ X such that Xv1 ∩Xv2 ⊆
X12i .

Proof. By contradiction, let’s suppose there is a node v in I , such that v is in the path between v1 and v2 in T , but
Xv1 ∩ Xv2 * Xv . Then, (∃x ∈ Xv1 ∩ Xv2)x /∈ Xv . But this means that x does not induce a subtree in T , which
means T is not a tree decomposition. This contradiction comes from assuming Xv1 ∩Xv2 ⊆ Xv .

Claim 1.3. Given a chordal graph G, a tree decomposition T of G and ρ, α, β, γ, maximal cliques of G such that
{αρ, βρ, αγ} ⊆ V (Tρ). Then,

there exists a tree decomposition T ′ of G such that {αρ, βρ, βγ} ⊆ V (Tρ) if and only if α ∩ γ ⊆ α ∩ β.

Proof. ⇒) By absurd. Let’s suppose α∩ γ * α∩ β; therefore, exists x ∈ V (α∩ γ) such that x /∈ V (β). This implies
that if we take the subgraph induced by x in T ′, it’s not a tree, and then T ′ is not a tree decomposition of G. We reach
this contradiction by assuming α ∩ γ * α ∩ β.
⇐) Since every vertex in γ ∩ α is contained in α ∩ β, γ ∩ β = γ ∩ α = γ ∩ ρ. If not, since γ ∈ V (Tα), if there

exists v ∈ V (γ ∩ β) and v /∈ V (ρ), the subgraph induced by v in T is not a tree, which is absurd because T is a tree
decomposition. This makes γ ∩ β ⊆ γ ∩ ρ.

Through claim 1.2, {γα, ρα} ⊆ V (Tρ)⇒ ρ ∩ γ ⊆ α ∩ γ.
Again through claim 1.2, whe have that β ∩ γ ⊆ ρ ∩ γ ⊆ α ∩ γ. We know by the premise that α ∩ γ * α ∩ β,

which means α ∩ γ ⊆ β ∩ γ. Therefore, α ∩ γ = β ∩ γ.
We have that, ρ∩γ ⊆ α∩γ, β∩γ ⊆ ρ∩γ, and α∩γ = β∩γ. Which proves what we wanted, γ∩β = γ∩α = γ∩ρ.
Therefore, if we disconnect γ from α and reconnect it in β we have a candidate tree decomposition T ′ that fulfils

{αρ, βρ, βγ} ⊆ V (Tρ). Let us see it is a tree decomposition:

• Since all the vertices of G were contained in bags of T and we have not changed them, all the vertices are
contained in bags of T ′.

• Since all the edges of G were contained in bags of T and we have not changed them, all the edges are contained
in bags of T ′.

• For every vertex in V (G)\V (β∩γ), the subtrees induced in T ′ are the same that in T . For the ones in V (β∩γ),
we take the induced subtree in T , add an edge βγ and erase αγ. When we add βγ we create a cycle, which is
broken deleting αγ. Therefore, every vertex of G induces a subtree in T ′.

Then, T ′ is a tree decomposition of G.

Given a search strategy S; CV (S) and CE(S) are the set of vertices and edges (respectively) cleared at the end of S.
Given a tree T and a node u ∈ V (T ). Eu is the set of edges that are incident to u except for the one that connects

u with its parent, ie the ones that connect u with its children (if any). Vu is the set of children of u.
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Claim 1.4. Given a chordal graph G and a cbc monotone connected search S.
s[Si−1] < s[Si+1] ≤ s[Si] ⇒ Si clears a maximal clique c in G such that fr(c) * δ(Si−1), where fr(c) is the

set of vertices of c that are contained by cliques not cleared in Si.

Proof. By absurd. Let’s suppose fr(c) ⊆ δ(Si−1). Since s[Si−1] < s[Si] and S is cbc, in Si we are clearing a new
maximal clique. Therefore, in Si+1, we need to maintain only the frontier of Si. δ(Si+1) ⊆ δ(Si−1)

⋃
fr(c); but

since fr(c) ⊆ δ(Si−1), then δ(Si+1) ⊆ δ(Si−1) (because we may not need some vertices from δ(Si−1) anymore).
Recalling that S is a cbc and that we are clearing a clique in Si, every node guarded by searchers in Si−1 and in Si+1

are part of their respective frontiers. Therefore, s[Si+1] = |δ(Si+1)| ≤ |δ(Si−1)| = s[Si−1]. But s[Si−1] < s[Si+1].
Contradiction reached by assuming fr(c) ⊆ δ(Si−1).

Claim 1.5. Given a chordal graph G, H its graph decomposition, and T a tree decomposition of G; the nodes of
every maximal clique in H induce a subtree in T .

Proof. Let’s suppose they don’t necessarily induce a subtree. Let’s take a maximal clique C ofH such that V (C) does
not induce a subtree in T . Then, there is a vertex v /∈ V (C) such that (∃u ∈ Vv)(∃w,w′ ∈ V (C))w ∈ V (Tu) ∨ w′ /∈
V (Tu). Plainly, it means that there is at least one vertex that’s not part of C but is in the middle of the path between
two vertices of C.

But then, given u ∈ Vv such that (∃w ∈ V (C))w ∈ V (Tu); (∀ci ∈ V (C))ci ∈ V (Tu) and (∀cj ∈ V (C))cj /∈
V (Tu), we have that for every path Pij = {ci . . . cj}, v ∈ Pij . This means that v has at least one vertex in common
with every ci, cj ∈ V (C), because if not, those vertices wouldn’t induce a connected subtree in T , and we know that
they all share vertices because they are part of a clique in H . But if v has one vertex in common with every vertex of
C, this means that v is connected to every vertex of C in H , and the clique C is not maximal. This is a contradiction
that comes from supposing that there is a maximal clique C of H such that V (C) does not induce a subtree in T .

Corollary 2. Given G chordal and H its weighted egdes maximal clique graph decomposition, G has more than one
labelled clique tree decomposition if and only if there exist u, v ∈ V (H), such that there are two paths p1, p2 between
them with w(p1) = w(p2) = w and every other path between u and v weights at most w.
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