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Abstract

The treelength of a graph is the largest distance between two ver-
tices of a bag of a tree-decomposition, over all tree-decompositions of
the graph. Thanks to a tree-decomposition with small length, we can
resolve some problem as the Traveling Salesman Problem in polyno-
mial time, or approximate the treewidth of a graph. However, decid-
ing whether a graph has a treelength at most 2 is NP-hard. In planar
graph, the complexity of computing the treelength is an open prob-
lem. For some sub-classes of planar graphs, the treelength is already
known as for Outerplanar graph and trees. The next sub-class of pla-
nar graphs to be studied is naturally the one of series-parallel (SP)
graphs. Our main results are an 3

2 -approximation algorithm, and the
characterization of SP graphs with treelength at most 2 in terms of
forbidden isometric subgraphs. To conclude, we also present some pre-
liminary results for the characterization of SP graphs with treelength
at most 3.

1 Introduction

Tree-decomposition of graphs are a powerful tool to decrease the necessary
complexity of several problem as the Independent Set problem or the Gate
Matrix Layout Problem...[1]

Roughly a tree-decomposition of a graph G is a representation of this
graph into small pieces, called bags, which form together a tree with some
properties. To a tree-decomposition, a measure is associated like the width
which is the maximum number of vertices minus one in the bags and repre-
sents the idea “how far is this decomposition from a tree”. The treewidth of
a graph G, tw(G), is the minimum width over all the tree-decomposition of
G.

Examples. The treewidth of a tree (or path) is equal to 1 by definition,
the treewidth of a cycle is equal to 2 [8], the treewidth of a series-parallel
graph, a graph with two distinguished vertices called terminals, which is
formed recursively by two simple composition operations, a parallel and a
series composition, is also equal to 2. More precisely, a graph has treewidth
1 if and only if it is a tree, and has treewidth at most 2 if and only if it is a
series-parallel graph.

Given a smallest tree-decomposition of a graph according to the width,
we can resolve many problems much faster using dynamic programming.
Courcelle’s theorem [7] show that every graph property definable in the
monadic second-order logic of graphs can be decided in linear time on graphs
of bounded treewidth. In fact, a lot of graph property can be written in the
monadic second-order logic as clique, colorabilty or independent vertex set.
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Complexity. However, finding a tree-decomposition of a graph with mini-
mum width is NP-hard, even NP-complete for bipartite graph. Given a fixed
parameter k, there exists an algorithm which recognizes if we can construct
a tree-decomposition of width k in time O(nk+2) [2]. There exists also, for a
fixed parameter k, a linear time algorithm which finds a tree-decomposition
of a graph with width at most k, if it exists, in time O(n · kk3) (exponentiel
in k) [4]. The best known approximation algorithm to find the treewidth of
general graphs is a O(

√
log(tw(G)))-approximation algorithm [10]. A lot of

work has been done on the computation of the treewidth of different classes
as outer planar [8] (a graph with a planar drawing for which all vertices
belong to the outer face of the drawing) and series-parallel graphs which
have a linear time algorithm to compute a tree-decomposition of minimal
width. It is proved for others classes that the complexity is polynomial as
for chordal graphs, graphs in which all cycles of four or more vertices have an
edge that is not part of the cycle but connects two vertices of the cycle...[3]
For the particular case of planar graphs, the complexity is still open.

Treelength. The width is not the only measure related to a tree-decomposition.
There is also the length representing the diameter of the bags or the breadth
which correspond to the radius of the bags. The treelength, the minimum
length over all the tree-decomposition of G, has also been study but a lot
of work can still be done. The treelength of a tree (or path) is equal to 1,
the treelength of a cycle of size k is equal to dk3e. A subgraph H of G is
isometric if, for every pair of vertices of H, the shortest distance between
them in H or in G are equal. One interesting fact is that the presence of an
isometric cycle of size k gives us a lower bound on the treelength of a graph
G (tl(G) ≥ dk3e) [8]. It was shown that recognizing graphs with a treelength
bounded by a fixed constant k ≥ 2 is NP-complete [11] which is more diffi-
cult than recognizing graphs with a treewidth bounded by a fixed constant
k ≥ 2 since there exists an algorithm that do it in time 0(n · 223) [4]. Also,
there exists a 3-approximation algorithm to compute a tree-decomposition of
minimum length for general graph [8] which is a much better approximation
than those for the treewidth.

Moreover, there is a relation between the treelength and the treewidth,
the treelength tl(G) of any graph G is at most b is(G)

2 c times its treewidth
where is(G) is the length of a longest isometric cycle in G and for any
planar graph P , tw(P ) = O(tl(P )) [6][8]. Then it is interesting to focus
on the treelength that will probably helps us on the computation (exact or
approximation) of the treewidth on certain classes of graphs.

These facts motivate us to study the treelength of planar graphs. Of
course it is easier to begin by smaller classes of graphs. It is easy to construct
a tree-decomposition of length 1 for a tree. For outerplanar graphs, the
treelength has already been studied:
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Theorem 1 [8] Every outerplanar graph has treelength dk3e, where k is the
length of a maximum isometric cycle of the graph.

Series-parallel graph. The next sub-classes of planar graphs is the sub-
class of series-parallel graphs. For instance, this sub-class can be used as a
representation of electronic or electric circuit. As we described before, they
are graphs that can be constructed recursively by two simple composition
operations, a parallel and a series composition. Some particular graphs of
series-parallel graphs have already been studied. Precisely, melon graphs
are a parallel composition of several paths (P1, · · · , Pp) sorted such that Pp

is a shortest path and P1 is a longest path (see in Figure 1). Note that
a shortest path Pp form with any other path, an isometric cycle and the
union of a shortest and a longest path give us a maximum isometric cycle
which gives a lower bound of the treelength of a graph. Finally, the union of
two paths that are not a shortest path, is a cycle not isometric since there
exists a shortest path between two vertices. If the difference of size between
a longest and a shortest path is ”big” then it is easy to construct a valid
tree-decomposition of length d is(G)

3 e but when the difference is ”small”, the
treelength increases to the length of a shortest path or even to da1+a2

3 e where
a1 and a2 is the size of the two longest paths. More precisely, Ducoffe, Nisse
and Nivelle have proved:

Figure 1: melon graphs

Theorem 2 Let G = (P1, · · · , Pp) be a melon graph with |Pi| ≥ |Pj |, for all
1 ≤ i ≤ j ≤ p.

• t`(G) = d |P1|+|Pp|
3 e if |Pp| ≤ d |P1|+|Pp|

3 e;

• t`(G) = |Pp| if d |P1|+|Pp|
3 e ≤ |Pp| ≤ d |P1|+|P2|

3 e, and

• t`(G) = d |P1|+|P2|
3 e otherwise.

3



Clearly, the work that has been done on melon graphs shows us that it
seems hard to compute an optimal tree-decomposition for any series-parallel
graph.

Our contributions. This paper presents the work we have done on series-
parallel graph. We will begin by the definition of a tree-decomposition, a
series-parallel graph, an ear decomposition and the treelength and recall
some interesting properties in section 2. Then, in section 3, we present
minimal forbidden isometric subgraphs (MFIS) for series-parallel graphs of
treelength 2 and we proved that if a series-parallel graph G does not contain
any of them, then we can construct a tree-decomposition of G of length
2 using nested ear decomposition which is a representation of series-parallel
graphs into small parts such that every small parts are represented by an ear
(i.e. a path) [9]. Finally, in Section 4, we will present an 3

2 -approximation
algorithm using nested ear decomposition for computed the treelength of a
series-parallel graph.

2 Definition and notation

We are going to search some properties about the tree-decomposition of min-
imal length of series-parallel graphs. To do that, we need some definitions:

A graph is an abstract model composed by vertices and edges between
them, edges can be directed or undirected. A path is a finite sequence of
distinct vertices where two consecutive vertices are adjacent. A cycle is a
path where the first and the last vertex are the same. A tree is a connected
acyclic undirected graph where a connected graph is a graph in which there
is a path between every two vertices.

Definition 1 [8] A tree-decomposition of a graph G is a tree (T,X = {Xt|
t ∈ V (T )}) whose nodes, called bags, are subsets of V (G) such that:

•
⋃

t∈V (T )Xt = V (G);

• ∀{u, v} ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Xt;

• ∀t, y, z ∈ V (T ), if Xy is on the path from Xt to Xz in T then Xt∩Xz ⊆
Xy.

A subset S is a separator of a graph G if G\S is not a connected graph.
Moreover, if the tree-decomposition is reduced, which means that their isn’t
a bag contained in another one, the third condition implies that for any two
adjacent bags X and Y of T , X ∩ Y is a separator of G.

Let us define some notations that will be used later. For a graph G =
(V,E) and x, y ∈ V , let PG(x, y) (or P (x, y) if G is obvious) denote a shortest
path from x to y in G. Let distG(x, y) or dG(x, y) be the number of edges
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of PG(x, y). Let diamG(X) be the maximum distance between two vertices
of X in G (i.e. diamG(X) = maxv1,v2∈XdistG(v1, v2)). Let the length of a
tree-decomposition T of a graph G be defined such that:
length(T ) = maxX∈V (T )diamG(X). The treelength of a graph G equals the
minimum length over all tree-decompositions that G admits.

Figure 2: Example of (T,X ) (right), a tree-decomposition of minimum
length for the graph G (left) with each bag’s diameters (integer outside
the bags)

For example, let us consider the bag X composed of the vertices 2, 3, 4
and 5 in Figure 2. PG(2, 4) is {2, 3, 4} or {2, 5, 4}, so the minimum distance
between 2 and 4 is 2. It is the same for any pair of vertices not adjacent of
X, which means that the diameter of X is 2. The maximum length of a bag
in (T,X is 2, so the length of (T,X is equal to 2.

Lemma 1 [8] The treelength of any cycle Ck (of length k) is dk3e .

Figure 3: Example of (T,X ) (right), a tree-decomposition of minimum
length dk3e for the graph Ck (left) with x, y and z which are pairwise at

distance at most dk3e.
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Let G = (V,E) be a graph and let H be a subgraph of G. The subgraph
H is isometric in G if, for every a, b ∈ V (H), distG(a, b) = distH(a, b). Note
that isometric cycles are a good lower bound for the treelength thanks to
the previous and the following lemmas.

Lemma 2 [8] For every graph G and every isometric subgraph H of G, we
have t`(G) ≥ t`(H).

Thanks to these lemmas, we can show that the treelength of G (in Figure
2) equals 2 because {2, 3, 4, 5} is an isometric cycle C of G and that by
Lemma 1, it’s treelength is 2 and by Lemma 2, that tl(G) ≥ tl(C).

Let is(G) be the size of a largest isometric cycle in G. From the previous
lemmas, the following theorem can be proved.

Theorem 3 [8] For every graph G, we have t`(G) ≥ d is(G)
3 e.

Now, let us define formally what is a Series-parallel graph.

Figure 4: Series and parallel composition for two series-parallel graph

Definition 2 [9] An undirected graph (G, s, t) is two-terminal series-parallel,
with terminals s and t, if it can be recursively produced by a sequence of the
following operations (see Figure 4):

• Create a new graph, consisting of a single edge with s and t as end-
points (K2).

• Parallel composition: Given two two-terminal series-parallel graph (X, sX , tX)
and (Y, sY , tY ), form a new graph G = P (X,Y ) which is the union of
X and Y such that s = sX = sY and t = tX = tY .
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• Series composition: Given two two-terminal series-parallel graph (X, sX , tX)
and (Y, sY , tY ) form a new graph G = S(X,Y ) which is the union of
X and Y such that s = sX , tX = sY and t = tY .

An undirected graph G is series-parallel, if there exists two vertices s and
t such that (G, s, t) is two-terminal series-parallel.

In a tree T rooted to r, let a child of v be a vertex u such that d(r, u) =
d(r, v) + 1 and (u, v) ∈ E(T ). Note that every series-parallel can be rep-
resented by a tree T (see Figure 5) where the root is the last composition
used to formed G, the leafs (node with no child) are edges and each node,
that is not a leaf, is the parallel or the series composition of its 2 children .
Moreover, T can be computed in linear time [12].

Figure 5: T (right) of an SP graph (left)

Claim 1 Let G be a graph with parallel edges and loops and G′ be obtained
from G by removing all loops and the parallel edges (keeping one edge for
each set of parallel edges). Then t`(G) = t`(G′).

Proof. Let (T ′,X ′) be any tree-decomposition of G′. Let see that (T ′,X ′)
is also a tree-decomposition of G because every edge e in G\G′ has either an
edge e′ in G′ that have the same endpoints (i.e. e and e′ are parallel edges),
and since the endpoints of e′ are in a bag of (T ′,X ′), the endpoints of e are
in a bag too, or the endpoints of e are the same (i.e. e is a loop) and then
are contained in a bag of (T ′,X ′). Let (T,X ) be any tree-decomposition
of G. Let see that (T,X ) is also a tree-decomposition of G′ since G′ is an
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isometric subgraph of G such that V (G) = V (G′). We can conclude that
tl(G) = tl(G′). �

By previous Claim, in what follows, we only consider simple graphs
(without loops not parallel edges). A subset S is a clique-separator of a
graph G if S is a separator and a clique (i.e. for every vertices x and y in
S, d(x, y) = 1).

Theorem 4 [8] Let G be any graph and S be a clique-separator. Let C be
the set of the connected components of G \S. Then, t`(G) = max

C∈C
t`(C ∪S).

From previous theorem, we will focus on series-parallel graphs without
clique-separators. Let a biconnected graph be a graph that has no separator
of length 1. In what follows, the SP graphs are biconnected and have no
edge separators.

Since isometric subgraphs and more precisely, isometric cycles are related
to the treelength of a graph (see theorem 3) we will use the ear decompo-
sitions of a series-parallel graph to decompose wisely the graph into small
parts and use it to construct a tree-decomposition by induction on the parts
of the ear decomposition.

Figure 6: Example of an ear decomposition

Definition 3 [5] An ear decomposition of an undirected graph G is defined
to be a partition of the edges of G into a sequence of ears E0, E1, · · · , Ep

such that E0 is a cycle, and each Ei with 1 ≤ i ≤ p is a path in the graph
such that V (Ei)∩ V (Gi−1) = {ai, bi} where Gi−1 is the subgraph induced by
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⋃
j≤i−1 V (Ej) and ai and bi are the attachment vertices (i.e. endpoints) of

Ei.

Theorem 5 [5] Every biconnected graph has an ear decomposition.

Definition 4 An ear decomposition is nested (see Figure 7):

• if the attachment vertices of Ei with i ≥ 1, ai and bi, appear in a
previous ear Ej, with j < i (i.e. ∃j < i such that ai, bi ∈ V (Ej)). Let
say that Ei is attached to Eji where ji is the smallest index such that
the endpoints of Ei appear in Eji.

• If two ears Ei and E′i are both attached to some ear Ej, then either
Pi = PEji

(ai, bi) contains P ′i = PEj′
i
(a′i, b

′
i), or vice versa, or Pi and

P ′i are disjoint.

Figure 7: Example of nested and not nested ears

Theorem 6 [9] Every biconnected series-parallel graph has a nested ear
decomposition.

Note that, if we have a maximal isometric cycle C, then we can com-
pute a nested ear decomposition of a biconnected series-parallel graph G in
polynomial time. Let NG(v) be the neighbors of v in G (i.e NG(v) = {w ∈
V (G)|(v, w) ∈ E(G)}) and let NG(S) be the set of vertices in G adjacent to
a vertex in S (i.e NG(S) =

⋃
v∈S NG(v)\S).

• Step E0: G0 = G[V (C)]

• Step Ei with 1 ≤ i ≤ p: Let C1, · · ·Ck be the k connected component
of G\Gi−1. Let C∗ be any component Cj for any 1 ≤ j ≤ k union
V (NGi−1∪Cj (Cj)). Note that V (NGi−1∪Cj (Cj)) = {ai, bi}. Let P and
P ′ be respectively a shortest path between ai and v, and bi and v
for any v ∈ Cj such that P ∩ P ′ = {v}. Let Ei = P ∪ P ′. Finally,
Gi = G[V (Gi−1) ∪ V (Ei)].
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However, computing a maximum isometric cycle in a biconnected series-
parallel graph can be done in polynomial time.

Lemma 3 For any series-parallel graph G, a maximal isometric cycle of G
and its length can be computed in polynomial time.

Proof. For any series-parallel graph G, we can compute in linear time its
tree T [12]. Let us note that the leafs of E , are edges. For each leaf (L, s, t),
d(s, t) = 1 and is(L) = ∞. Then, compute d(s, t) and is(N) recursively
for each node (N, s, t) of T , where (N, s, t) is formed by the parallel or the
series composition of 2 two-terminals series-parallel graphs, (SP1, s1, t1) and
(SP2, s2, t2):

• if N = P (SP1, SP2), let see that d(s, t) = max(d(s1, t1), d(s2, t2)) and
that a maximal isometric cycle is either contained in SP1, in SP2 or
in the both. If it is contained in the both, then its length is equal to
d(s1, t1) + d(s2, t2) otherwise, there would be a shortest path between
two vertices of the cycle. Therefore, is(N) = max(is(SP1), is(SP2),
d(s1, t1) + d(s2, t2)).

• if N = S(SP1, SP2), then d(s, t) = d(s1, t1) + d(s2, t2) and is(N) =
max(is(SP1), is(SP2)).

�

To decompose wisely the series-parallel graphs, we want an additional
constraint on the ear decompositions. Let di be the distance between the at-
tachment vertices of Ei in Gi−1 for every 1 ≤ i ≤ p (i.e. di = distGi−1(ai, bi)).
Let us denote the length of an ear Ei by `i for every 0 ≤ i ≤ p. We want an
increasing nested ear decomposition, that is, di ≤ `i for every 1 ≤ i ≤ p.

Lemma 4 For any biconnected series-parallel graph G, there is an increas-
ing nested ear decomposition starting from a maximum isometric cycle.

Proof. By Theorem 6, there exists a nested ear decomposition E =⋃
0≤i≤p{Ei} starting with any cycle E0. Then we can choose to begin with

a maximal isometric cycle (i.e. `0 = is(G)). Note that E1 is an ear linked
to E0. Since E0 is a maximum isometric cycle, we have that the shortest
path between two vertices in E0 is in E0. So distE0(a1, b1) ≤ `1. It’s true
for all the ear attached to E0.
The goal is to modify a nested ear decomposition to an increasing nested
ear decomposition. If distGi−1(ai, bi) ≤ `i, then the desired property is re-
spected. Suppose that distGi−1(ai, bi) > `i and let 1 < ji < i such that Eji

is the ear containing the endpoints of Ei. Let E′ji = (Eji \ PEji
(ai, bi)) ∪Ei

and E′i = PEji
(ai, bi). Then distGi−1(a′i, b

′
i) ≤ `′i. If there were some ear
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contained in Ei, they are now contained in E′ji and if there were some ear
contained in PEji

(ai, bi), they are now contained in E′i. �

Let see that, given a nested ear decomposition and by Lemma 4, we
can find in polynomial time an increasing nested ear decomposition. If we
have a maximal isometric cycle, we can also construct directly an increasing
nested ear decomposition in polynomial time, the construction is the same
as for a nested ear decomposition unless for the iteration where Ei is formed
by a shortest path in C∗ (any connected component Cj of G\Gi−1 union
V (NGi−1∪Cj (Cj))) between ai and bi.

3 Forbidden isometric subgraph for series-parallel
graph of treelength 2

Given a graph G and a tree-decomposition (T,X ) of G. Let S be any subtree
of T . Let GS denote the subgraph of G induced by {v ∈ Xt | t ∈ S}.

Lemma 5 Let G be any graph and C be any isometric cycle of length `. In
any tree-decomposition (T,X ) of G with length at most d `3e, there exists a bag

X ∈ X containing three vertices a, b, c ∈ V (C) such that d `3e = dist(a, b) ≥
dist(a, c) ≥ b `3c and dist(a, c) ≥ dist(c, b) ≥ b `3c − 1.

Proof. Let (T,X ) be any tree-decomposition of G of length at most
d `3e. Note that, by Theorem 3, (T,X ) has length exactly d `3e. Since ev-
ery edge must appear in some bag, there must be bags containing at least
two vertices of C. For every X ∈ X with |X ∩ V (C)| ≥ 2, let d(X) =

max
u,v∈X∩V (C)

dist(u, v). Let X be a bag maximizing d(X) and a, b ∈ X∩V (C)

with dist(a, b) = d(X). Since d(X) ≤ length(X), then dist(a, b) ≤ d `3e.
Let P be the path of C between a and b of length ` − dist(a, b), and
let c ∈ V (P ) such that 0 ≤ dist(a, c) − dist(b, c) ≤ 1. By definition,
dist(a, c), dist(b, c) ≥ b `3c. If c ∈ X, then a, b, c and X satisfy the state-

ment with d `3e = dist(a, b) ≥ dist(a, c) ≥ dist(b, c) = b `3c.
For purpose of contradiction, let us assume that no bag contains a, b

and c. Let Y be a bag containing c (exists by the properties of a tree-
decomposition) that is closest to X in T and let X ′ be a bag containing a
and b that is closest to Y . Let Z /∈ {X ′, Y } be any bag on the path between
X ′ and Y in T (or Z = X ′ ∩ Y if X ′Y ∈ E(T )). Note that c /∈ Z. Note
also that at least one of a and b is not in Z (otherwise, it would contradict
either the fact that X ′ is closest to Y or that no bag contains all a, b, c).
Without lost of generality, let us assume that a /∈ Z. By the properties of
tree-decomposition, Z must separates a and c. Hence, there is a vertex u
between a and c in P that belongs to Z. If u ∈ X ′, then a, b and u are
the required vertices. Indeed, by the maximality of dis(a, b), dist(a, b) ≥

11



dist(u, b) and so the shortest path between u and b in C goes through c.
Hence dist(u, b) > dist(b, c) ≥ b `3c and so dist(u, b) = dist(a, b) = d `3e and

dist(u, a) = b `3c − 1.
Let us now assume that u /∈ X ′. Let e be the edge incident to X ′

in the path between X ′ and Y in T . Let T1 be the component of T \ e
containing X ′, and let T2 be the other component (containing Y ). Let
P ′ = (a = u0, · · · , uk = c) be the subpath from a to c in P (note that
u ∈ P ′). Let 0 ≤ i ≤ k be the smallest integer such that ui ∈ GT1 \ GT2

and ui+1 ∈ GT2 \ GT1 . Such an integer exists since a ∈ GT1 \ GT2 and
u ∈ GT2 \GT1 . This implies that the edge uiui+1 cannot appear in any bag,
a contradiction. �

Recall that a series-parallel graph SP of treelength 2 does not contain
an isometric cycle of length at least 7 (i.e. is(G) ≤ 6) because if it contains
a such cycle, SP has treelength more than 2 by lemma 3. Therefore, we
want to characterize every isometric subgraph that can’t be contain in SP .

Definition 5 A Dumbo graph is any graph built as follows. Start with a
cycle C0 = (v0, · · · , v5) of length 6, and add a path R of length (i.e number
of edges) at least 3 between v0 and v2 and a path L of length at least three
between v3 and v5. Such a graph is depicted in Figure 8.

Figure 8: a Dumbo Graph of length 2

Note that a Dumbo graph D is a series-parallel graph since it can be
construct by parallel and series composition with s = v0 and t = v3 (see
Figure 9).

Lemma 6 Let G be any series-parallel graph. If G contains a Dumbo graph
as isometric subgraph, then t`(G) > 2.
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Figure 9: T (representation of its construction as a SP graph) of a Dumbo
graph

Proof. Let G = (V,E) be any series-parallel graph containing a Dumbo
graph D = (C0, R, L) as isometric subgraph. For purpose of contradiction,
let us assume that G admits a tree-decomposition (T,X ) of length at most
2. By Lemma 5, there must be a bag X ∈ X containing {v0, v2, v4} or
{v1, v3, v5}. By symmetry, let us assume that {v0, v2, v4} ⊆ X. Let z be
a vertex of L \ {v5, v3} such that |dist(z, v5) − dist(z, v3)| ≤ 1. Note that
dist(z, v5), dist(z, v3) ≥ 1 and max{dist(z, v5), dist(z, v3)} ≥ 2. Moreover,
because G is series-parallel, every path from z to v0, v2 or v4 goes through
v3 or v5 (otherwise, there would be a K4 minor). Note also that no bag
contains {v0, v2, v4, z} since z is at distance at least 3 from some of v0, v2, v4.

Let Y be a bag containing z that is closest to X, and let X ′ be the bag
containing v0, v2, v4 that is closest to Y . Let Z ′ /∈ {X ′, Y } be the neighbor of
X ′ on the path between X ′ and Y in T and let Z = X ′∩Z ′ (or Z = X ′∩Y if
X ′Y ∈ E(T )). Note that z /∈ Z. Note also that at least one of v0, v2 and v4
is not in Z (otherwise, it would contradict either the fact that X ′ is closest
to Y or that no bag contains all v0, v2, v4 and z). Let W = {v0, v2, v4} \ Z.
By the properties of tree-decomposition, Z must separates every w ∈ W
from z. There are several cases to be considered depending on which vertex
of v0, v2 and v4 are not in Z:

• If at least v2 belongs to Z, then W ⊆ {v0, v4}. Hence, there must be u
in the z-v5 subpath of L that is in Z if v0 or v4 are in W (i.e in every
case) and there must be v in the z-v3 subpath of L that is in Z if v4
is in W . Since z /∈ Z, u 6= z and d(u, v3) ≥ 2 and then d(u, v2) ≥ 3.
Therefore, there is no tree-decomposition of length 2 with at least v2
in Z.

• If at least v0 belongs to Z, then W ⊆ {v2, v4}. Hence, there must be v
in the z-v3 subpath of L that is in Z if v2 or v4 are in W (i.e in every
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case) and there must be u in the z-v5 subpath of L that is in Z if v4
is in W . Since z /∈ Z, v 6= z and d(v, v5) ≥ 2 and then d(v, v0) ≥ 3.
Therefore, there is no tree-decomposition of length 2 with at least v0
in Z.

• Finally, if at least v4 belongs to Z, then W ⊆ {v0, v2}. Hence, there
must be u in the z-v5 subpath of L that is in Z if v0 is in W and there
must be v in the z-v3 subpath of L that is in Z if v2 is in W . Since
z /∈ Z, v 6= z, u 6= z, d(u, v3) ≥ 2 and d(v, v5) ≥ 2 and then d(v, v0) ≥ 3
and d(u, v2) ≥ 3. Therefore, there is no tree-decomposition of length
2 with at least v4 in Z.

�

The following lemma will be used in the next one to deal with the case
of ears of length 2.

Lemma 7 Let G be any 2-connected series-parallel graph without clique-
separator, with an increasing nested ear decomposition E =

⋃
0≤i≤p{Ei}.

Let (T ′,X ′) be a tree-decomposition, with length at least 2, of a subgraph
G′ of G induced by E0, . . . , Ej and let Ei such that 1 ≤ ji ≤ j < i ≤ p
and `i = 2. Then, there exists a tree-decomposition (T,X ) of G′ ∪ Ei with
same length and such that, for every B′ ∈ X ′, there exists B ∈ X such that
B′ ⊆ B.

Proof. Note that by hypothesis, both endpoints of Ei belong to G′ since
they belong to Eji . Let us first suppose that the endpoints of Ei are in a
same bag B of (T ′,X ′). Then, the tree-decomposition obtained from (T ′,X ′)
by adding a a bag V (Ei) adjacent to B satisfies the statement of the Lemma.

Let us now consider the case where no bag of (T ′,X ′) contains the end-
points ai and bi of Ei. Let X ∈ X ′ and Y ∈ X ′ be such that ai ∈ X, bi ∈ Y
and the distance in T between two such bags is minimum.

Note that, because G has no edge-separator and because the ears are
added in increasing order (i.e. 2 ≤ di ≤ `i = 2), ai and bi must have common
neighbors in G′. Note also that, because G is series-parallel (in particular,
the ears are nested) without clique separator, then every common neighbor
w of ai and bi satisfies N(w) = {ai, bi}.

By the tree-decomposition properties, every bag W on the X-Y path in
T ′ must separate X \ Y from Y \X. In particular, NG′(ai) ∩NG′(bi) ⊆W .
Similarly, NG′(ai) ∩NG′(bi) ⊆ X and NG′(ai) ∩NG′(bi) ⊆ Y . Let v be the
common neighbor of ai and bi in Ei. Then, adding v to every bag W on
the X-Y path in T ′ (including X and Y ) gives the desired decomposition.
In particular, for every v′ ∈ W , distG(v′, w) = distG(v′, v) where w is any
vertex in NG′(ai)∩NG′(bi), and so the obtained tree-decomposition has same
length as (T ′,X ′). �
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Figure 10: Lemma 7

Some notation will be used in the following proof, let H be a subgraph of
G, a series-parallel graph with a nested ear decomposition E =

⋃
0≤i≤p{Ei},

such that H = E ′ =
⋃

i′≤j≤i{Ej} (i.e. H is a finite number of ear), let
Att(H) ⊆ V (H) be the set of vertices of H that are the attachment vertices
of some ear Ek with k > i.

Lemma 8 Let G be any (simple) series-parallel graph without clique-separator
and with is(G) ≤ 6. If G does not contain a Dumbo graph as isometric sub-
graph, then t`(G) ≤ 2.

Proof. Let us assume that G is not a chordal graph in which case the
result is trivial. Hence, we may assume that t`(G) ≥ 2.

Let G be any series-parallel graph without clique-separator, with is(G) ≤
6, and with no Dumbo graph as isometric subgraph. Let E = {E0} ∪ {Ei |
0 < i ≤ p} be an increasing nested ear-decomposition of G with E0 being a
largest isometric cycle, i.e., |V (E0)| = is(G) and di ≤ `i for every 1 ≤ i ≤ p.
For every 0 < i ≤ p, let ai and bi be the endpoints of Ei. Moreover, E
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contains no ear of length one since G is simple, series-parallel and without
clique separator.

We will build a sequence E1 ⊂ E2 ⊂ . . . ⊂ Ep′ = E such that E0 ∈ E1 and
for every 1 ≤ i ≤ p′,

1. Gi = G[
⋃

E∈Ei V (E)] is an isometric series-parallel subgraph of G with
Ei as ear-decomposition;

2. No ear of length two is attached to Gi, i.e., every ear not yet in Gi

with both endpoints in Gi has length at least 3;

3. Gi admits a tree-decomposition (T i,X i) of length 2, and

4. For every ear Ej ∈ E \ Ei attached to Gi, there exists t ∈ V (T i)
such that {aj , bj} ⊆ Xi

t ∈ X i, i.e., every ear not yet in Gi with both
endpoints in Gi (so with length at least 3) has both its endpoints in
some bag of (T i,X i).

The proof is by induction on 1 ≤ i ≤ p′. Let us first build E1. There are
several cases depending of the size of E0.

• If E0 = (a, b, c, d) has length 4 (it cannot have length 3 since G is not
chordal), recall that since G is series-parallel, the ears are nested, there
cannot be an ear attached to a and c and an ear attached to b and
d. Indeed, since G has no clique separator, no ear can be attached to
two adjacent vertices and every ear attached to E0 has a length 2 (else
is(G) > 4). Then, up to symmetries, Att(E0) = {a, c} (if Att(E0) = ∅,
then G = E0 and the result is trivial) (see Figure 11).

Figure 11: case where E0 has length 4
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Let E1 consist of E0 and the set of all ears of length two attached to a
and c. Then, (T 1,X 1) is the tree-decomposition with one ”central” bag
{a, b, c, d} with one neighbouring bag Ej for every ear Ej ∈ E1 \ {E0}
(see Figure 12). (T 1,X 1) is clearly a tree-decomposition of G1 with
length 2. Finally, because the ears are nested and there are no clique
separators, every ear in E\E1 with attachment vertices in G1 must have
a and c as attachment vertices. If such an ear in E\E1 exists, it must
have length at least 3 which would contradict the fact that E0 is a
largest isometric cycle. Hence, no such ear exists and G1 = G.

Figure 12: Tree-decomposition of G when E0 has length 4

• If E0 = (a, b, c, d, e) has length 5 then, up to symmetries, Att(E0) ⊆
{a, c, d} (if Att(E0) = ∅, then G = E0 and the result is trivial). More
precisely, ears can be attached to a and c or to a and d. Indeed, since
G has no clique separator, no ear can be attached to two adjacent
vertices (see Figure 13). Let E1 consist of E0 and the set of all ears of

Figure 13: case where E0 has length 5 (Ej and E′′j are contained in a bag
since they have length 2. E′j and E′′′j are not contained in a bag since they
have length 3)

length two attached to E0. Then, (T 1,X 1) is the tree-decomposition
with one ”central” bag {a, b, c, d, e} with one neighbouring bag Ej for
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every ear Ej ∈ E1 \ {E0} (see Figure 14). (T 1,X 1) is clearly a tree-
decomposition of G1 with length 2. Finally, every ear in E\E1 attached
to G1 has its attachment vertices in E0 because G is series-parallel and
so, the ears are nested. More precisely, otherwise, since an ear cannot
have adjacent attachment vertices (no clique separator), there would
be an ear Ej ∈ E \ E1 and one ear Ek ∈ E1 \ {E0} (w.l.o.g., say with
attachment vertices a and c) with aj ∈ Ek \ {a, c} and bj /∈ {a, c}.
This would imply that G contains a K4 as minor, a contradiction.

Figure 14: Tree-decomposition of E1 when E0 has length 5 (Ej and E′′j are
contained in a bag since they have length 2. E′j and E′′′j are not contained
in a bag since they have length 3)

• Then, let us consider the case when E0 = (a, b, c, d, e, f) has length
6. If there is an ear attached to two vertices at distance 3, note that
every such ear has length exactly 3 since E0 is a largest isometric cycle.
Moreover, all such ears have the same attachment vertices since the
ears are nested (otherwise, there would be a K4 minor). W.l.o.g., let

Figure 15: case where E0 has length 6

a and d be the attachment vertices of all (if any) ears attached to
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vertices at distance 3 in E0. Let E ′1 consists of E0 and all ears Ej =
(aj = a, xj , yj , bj = d) attached to a and d. Since G has no Dumbo
graph as isometric subgraph, there are no two ears X,Y ∈ E \ E ′1 of
length at least three such that X is attached to a and c (resp., e) or
to a and yj for some ear Ej ∈ E ′1 and Y is attached to d and f (resp.
b) or to d and xk for some ear Ek ∈ E ′1. Therefore, w.l.o.g., all ears of
length at least 3 that are attached to G′ = G[

⋃
E∈E ′1

V (E)] have a and

some vertex in B = {c, e} ∪
⋃

Ej∈E′′1
{yj} as attachment vertices (see

Figure 15). Let (T ′,X ′) be the tree-decomposition with one “central”
bag C = B ∪ {a} with one neighbouring bag {a, xj , yj} for every ear
Ej ∈ E ′1 \ {E0}, one neighbouring bag {a, b, c}, one neighbouring bag
{a, f, e}, and one neighbouring bag {d} ∪ B. Then, (T ′,X ′) is clearly
a tree-decomposition of G′ of length 2 such that all ears of length at
least 3 attached to G′ have their attachment vertices in C. Finally, let
F be the set of all ears of length 2 attached to G′. Let E1 = E ′1∪F . By
Lemma 7, from (T ′,X ′), we can obtain a tree-decomposition (T 1,X 1)
of G1 of length 2 such that every bag in X ′ is contained in some bag
of X 1 (see Figure 16).

Figure 16: Tree-decomposition of E1 when E0 has length 6

Finally, since G has no clique separator and is series-parallel (in partic-
ular the ears are nested), every ear attached to G1 must have both its
attachment vertices in a same bag of (T 1,X 1), and must have length
at least 3 (since otherwise it would have been included in E1).

Now, let’s prove by induction on 1 ≤ i < p′ that we can build an ear
decomposition Ei+1 from Ei with all the desired properties. Let Ej be any
shortest ear not in Ei with attachment vertices {aj , bj} ∈ V (Gi). Because
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G has no clique separator and, by the induction hypothesis, Gi has a tree-
decomposition (T i,X i) of length 2 with a bag containing aj and bj , note
that dj = distG(aj , bj) = distGi(aj , bj) = 2. Moreover, because is(G) = 6
and that there is no ear of length two attached to Gi, the length `j of Ej is
such that 3 ≤ `j ≤ 4. There are two cases depending of the length of Ej .

• If Ej = (aj , x, y, bj) has length 3, then up to symmetries Att(Gi ∪
Ej) ∩ V (Ej) ⊆ {aj , y, bj}. Indeed, since G has no clique separator, no
ear can be attached to two adjacent vertices and since all ears of E are
nested, there isn’t an ear attached to aj and y and another one to x and
bj , or an ear attached to a vertex of V (Ej)\{aj , bj} and to a vertex of
V (Gi)\{aj , bj} (see Figure 17). Let E ′i+1 consist of Ei and Ej . Let G′ =
G[

⋃
E∈E ′i+1

V (E)] and (T ′,X ′) be the tree-decomposition build from

(T i,X i) with a bag B = {aj , x, y, bj} connected to a bag of (T i,X i)
containing aj and bj . Then, (T ′,X ′) is clearly a tree-decomposition of
G′ of length 2. Finally, let F be the set of all ears of length 2 attached
to G′ (note that, because of the induction hypothesis and the fact that
the initial ear decomposition is increasing, all such ears are attached
to aj and y). Let Ei+1 = E ′i+1 ∪ F . By Lemma 7, from (T ′,X ′), we
can obtain a tree-decomposition (T i+1,X i+1) of Gi+1 of length 2 such
that every bag of X ′ is contained in some bag of X i+1 (see Figure 17).
Clearly if there is an ear attached to the only middle vertex of an ear
Ef of F then by definition of a nested ear decomposition, it’s second
endpoint is a vertex in Ef which contradicts the fact that G has no
clique-separator. We can deduce that for every Em attached to Gi+1

there exists t ∈ V (T i+1) such that {am, bm} ⊆ Xi+1
t .

Figure 17: case where Ej has length 3

• Now, let us assume that Ej = (aj , x, y, z, bj) has length 4. There are
several cases depending of the vertices of Ej that are attachment ver-
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tices for other ears El in E\(Ei ∪{Ej}) attached to Ej . Because G has
no clique separator and E is an increasing nested ear decomposition,
we have these following possibilities up to symmetries.

– If Att(Ej) ⊆ {aj , y, bj} (see Figure 18), then let E ′i+1 consist
of Ei and Ej . Let (T ′,X ′) be the tree-decomposition of G′ =
G[

⋃
E∈E ′i+1

V (E)] built from (T i,X i) as follows. Let B be any

bag of (T i,X i) containing both aj and bj (exists by the induc-
tion hypothesis). Let us add the bag {aj , y, bj} adjacent to B
and to the bags {aj , x, y} and {y, z, bj}. Since (T i,X i) is a tree-
decomposition of Gi of length 2, then (T ′,X ′) is also a tree-
decomposition of G′ of length 2. Let F be the set of ears of length
2 attached to Ej and let Ei+1 consist of E ′i+1 and F . By lemma 7,
we can obtain from (T ′,X ′) a tree-decomposition (T i+1,X i+1)
of length 2 of Gi+1. Finally, (T i+1,X i+1) satisfies the desired
properties (in particular because G has no edge separator, ev-
ery ear attached to Gi+1 has its attachment vertices in a bag of
(T i+1,X i+1)).

Figure 18: case where Ej has length 4 and Att(Ej) ⊆ {aj , y, bj}

– Now, let us assume, up to symmetry, that there exists an ear E′

attached to aj and z. Note that such an ear has length exactly 3
since E is an increasing nested ear decomposition and no isometric
cycle has length more than 6. Let E ′ be the set of all ears Ej′ =
(aj = aj′ , xj′ , yj′ , bj′ = z) /∈ Ei of length 3 attached to aj and z (in
particular, E′ is such an ear), and let E ′i+1 consist of Ei ∪Ej ∪ E ′
(see Figure 19).

Let us first show that no ear Eq ∈ E \ E ′i+1 of length at least 3
is attached to xj′ and bj′ for some j′ such that Ej′ ∈ E ′ (resp.
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to x and z). For purpose of contradiction, let us assume that
such an ear Eq exists. Recall that, by the induction hypothesis,
aj and bj must belong to a same bag of (T i,X i) of length 2 and
that, because there is no clique separator, aj , bj /∈ E(G). Hence,
distG(aj , bj) = distGi(aj , bj) = 2. Let E` be the first (i.e., with
minimum `) ear of Gi containing both aj and bj (such an ear
must exist since Ej can only be attached to the vertices of some
previous ear).

∗ If E` = E0, then, the subgraph induced by V (E0)∪V (Ej′)∪
V (Eq) (resp. V (E0)∪V (Ej)∪V (Eq)) is an isometric Dumbo
graph, a contradiction.

∗ Otherwise (if ` 6= 0), let a` and b` be the end points of E`,
and let G∗ be the subgraph induced by the vertices of the
ears in {Em ∈ E i | m < `}. Note that G∗ is an isometric
subgraph of Gi. W.l.o.g., a` /∈ {aj , bj} (otherwise this would
contradict that E` is the first ear in which both aj and bj
appear). Let P be any shortest a`-b` path in G∗. Since a`
and b` are not adjacent (otherwise there would be an edge
separator in G), P has length at least 2. Then, the subgraph
induced by V (P ) ∪ V (E`) ∪ V (Ej′) ∪ V (Eq) (resp. V (P ) ∪
V (E`) ∪ V (Ej) ∪ V (Eq)) is an isometric Dumbo graph, a
contradiction.

Figure 19: case where Ej has length 4 and there is at least one ear attached
to aj and z

Let B be any bag of (T i,X i) containing both aj and bj (exists
by the induction hypothesis). Let B′ = {aj , bj , y}

⋃
j′,Ej′∈E ′

{yj′},
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let Bj′ = {aj , xj′ , yj′} for all j′ such that Ej′ ∈ E ′, let B′′ =
{bj , z, y}

⋃
j′,Ej′∈E ′

{yj′}, and let Bj = {aj , x, y}.
Let (T ′,X ′) be the tree-decomposition of G′ = G[

⋃
E∈E ′i+1

V (E)]

built from (T i,X i) by adding the bag B′ adjacent to B, to B′′,
to Bj and to Bj′ for all j′ such that Ej′ ∈ E ′. It can be shown
that (T ′,X ′) is a tree-decomposition of G′, with length 2 and
such that every ear of length at least 3 attached to G′ has both
its attachment vertices in some bag of (T ′,X ′). Let F be the set
of ears of length 2 attached to some ear in E ′ ∪ Ej and let Ei+1

consist of E ′i+1 union F . By lemma 7, we can obtain from (T ′,X ′)
a tree-decomposition (T i+1,X i+1) of length 2 of Gi+1.

Finally, (T i+1,X i+1) satisfies the desired properties (in particular
because G has no edge separator, every ear attached to Gi+1 has
its attachment vertices in a bag of (T i+1,X i+1)).

�

Above Lemmas lead to the following main result.

Theorem 7 For any series-parallel graph G, t`(G) ≤ 2 if and only if
is(G) ≤ 6 and G does not contain a Dumbo graph as isometric subgraph.

Moreover, there is a polynomial algorithm that either computes a tree-
decomposition of length at most 2 of G or exhibits a certificate that t`(G) > 2
(a large isometric cycle or an isometric Dumbo subgraph).

Proof. By Claim 1 and by theorem 4, we can consider only simple bicon-
nected series-parallel graphs G′ without edge separators. Then by Lemma
3 and Lemma 4, we can compute in polynomial time an increasing nested
ear decomposition for G′. Finally by Lemma 8, we can compute in polyno-
mial time a tree-decomposition of length at most 2 of G′ or exhibits a large
isometric cycle or an isometric Dumbo subgraph of G′. �

4 Approximation algorithm

Theorem 8 For any series-parallel graph G, we can compute in polynomial
time a tree-decomposition (T,X ) of G such that length(T ) ≤ 3

2 · tl(G)

Proof. Let G be a series-parallel graph with largest isometric cycle of size
is(G). It follow from lemma 3 that tl(G) ≥ d is(G)

3 e. Let us see how to

compute a tree-decomposition of length d is(G)
2 e. Indeed, intuitively, every

isometric cycle can be contained in a bag (i.e. d(x, y) ≤ b is(G)
2 c for every x

and y in an isometric cycle C in G). Let us consider an increasing nested ear
decomposition E starting with a maximal isometric cycle E0 for G. Let us
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build the decomposition as follows. Start with a bag containing E0. Then,
for every Ei with 1 ≤ i ≤ p connect a bag consisting of Ei to the bag
containing Eji where 0 ≤ ji ≤ i ≤ p and ji is the minimum index such that
Eji contains ai and bi. Since E is a increasing nested ear decomposition,
`i ≥ di for every 1 ≤ i ≤ p and then Ei ∪ PGi−1(ai, bi) is an isometric cycle

(i.e. l(Ei) ≤ b is(G)
2 c). Therefore l(T ) = b is(G)

2 c ≤ bd
is(G)
3 e ·

3
2c ≤ tl(G) · 32 .

Since E and is(G) can be computed in polynomial time (see Lemma 3),
there is an 3

2 -Approximation algorithm for computing the treelength of a
series-parallel graph. �

5 Conclusion

In this paper, we show how to compute a tree-decomposition of length
k = 2 for a SP graph in polynomial time if it exists. We also show an
3
2 -approximation algorithm for computing the treelength of a series-parallel
graph.

It would be interesting to generalize our characterization for any k. First,
I am trying to generalize these results for k = 3. The first consequence of
increasing k to 3 is to have more minimal forbidden isometric subgraphs.
For example, let us see that there is some melon graphs that are forbidden
as isometric subgraph. Precisely, melon graphs with only paths of length at
least 4 with at least 2 paths of length 5 or at least 1 path of length 6 has a
treelength at least 4. Another consequence arises when we are considering
an ear Ej of length 4 in the induction. Indeed, if we construct (T i,X i) by
adding a bag containing Ej adjacent to the bag containing aj and bj , there is
not necessarily a tree-decomposition (T,X ) of length 3 that contains (T i,X i)
as a sub-tree, even if the graph has treelength 3. Intuitively, the decision
problem tl(SP ) ≤ 3 seems to be polynomial, but is really more difficult
than tl(SP ) ≤ 2. Since the characterisation of minimal forbidden isometric
subgraphs (MFIS) for SP graphs of length 3 become difficult (actually, I
already identified more than 12 MFIS), we can try to define for each cycle
C ∈ G, which vertex can be part of the tuple of 3 vertices that separate the
cycle into pieces of length at most k. In fact, the goal is to characterise all
the differents MFIS by some commons properties.

Our next goals are to study the computational complexity of comput-
ing the treelength in the class of series-parallel graphs. We hope that this
complexity is polynomial, which will lead us to study the computational
complexity of treelength in the class of planar graphs. Moreover, study-
ing the class of planar graphs will allow us to use the relation between the
treewidth and the treelength to approximate or compute one of the two
measures.
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