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COPS AND ROBBER GAMES IN RADIUS CAPTURE AND

FASTER ROBBER VARIANTS

DINH-KHANH DANG

ABSTRACT

In the classical cop and robber game, two players, the cop C and the robber R,
move alternatively along edges of a finite graph G = (V,E). The cop captures
the robber if both players are on the same vertex at the same instance. A graph
G is called cop win if the cop always captures the robber after a finite number of
steps. Nowakowski, Winkler(1983) and Quilliot (1983) characterized the cop-win
graphs as graphs admitting a dismantling scheme. Chalopin et al. characterized
the cop-win graphs in the game in which the cop and the robber move at different
speeds s′ and s, s′ < s. Chalopin et al. also charaterized the bipartite graphs in
the radius caputre variant in which the cop can capture the robber if their distance
is not greater than one. Inheritting from the previous works, we investigate further
two variants of cops and robber game, the faster robber and radius capture variants
in some particular graphs such as square grid, k-chordal, planar, etc.
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1. Introduction

1.1. Motivation.
“Game of cops and robber” is the discrete version of “pursuit-evation games” which
have vast applications in practice and importances in theory. There are several
problems such as “search and rescue”, “missile intercept”, search for piece of infor-
mation storing somewhere in network can be modelled by “pursuit-evation games”.
Applications of “Game of cops and robber” also can be found in research of Arti-
ficial Intelligence or Game Development. For instance, “ScotlandYard” based on
“Games of cops and robber” is voted as Game of Year in 1983 [11].
In graph theory, research on “Game of cops and robber” helps us to find new
properties of graphs, for instance, dismantlable, and also brings new points of view
to some classical problems in graph theory such as separator, treewidth, chordal,
etc. In scope of the internship, we perform research on different variants of “Game of
cops and robber” that will help us understand more profoundly the classical version
and give us more evidences and techniques to prove the Meyniel’s conjecture[8].

1.2. Rules of Cops and Robber game and variants.
Cops and Robber is a pursuit-evation game with two players: C (Cops) and R
(Robber) which play alternatively on a finite, connected, undirected graph G =
(V,E). Player C has a team of cops (at least 1 cop) who attempt to capture the
robber. At the beginning of the game, C select some vertices and puts cops on
these vertices. Then R puts the robber on a vertex. The cops and robber move
along the edge paths of G. The players take turns starting with C. There are some
variants of Cops and Robber game depending on the number of cops, how C and
R can move the cops and robber at their turn and how a cop can “capture” the
robber.

1.2.1. Classical Cops and Robber game. Winkler and Nowakowski [2] and Quilliot
[3] defined the classical game which the number of cop is 1, and the cop C can
“capture” the robber R if C can put himself on the vertex occupied by R. In active
version, R must move whenever it is his turn. Differently, in passive version, R can
remain stay at the vertex which he is occupying. Within scope of this report, we
consider only the passive version for all variants of cops and robber game. The
graph G is cop win if from any starting position of C and R, C can capture R after
finite steps; otherwise, it is a not cop win graph. Now we consider the following
examples for cop win and not cop win graphs.

Example 1. A tree (Definition 7) T is a cop win graph.

In tree, every vertex is a cut vertex. Hence, the vertex occupied by C partitions T
in some connected components and one of those includes R. Suppose that X is the
connected component including R. If C remains at his position, R is restricted in
X . If R moves to vertex u along the unique path toward R, then R is restricted in
the area X ′ = X \ {u}. So , after finite steps, C can capture the R.

Example 2. A cycle (Definition 5) with length 4 is a not cop win graph.

Suppose that the cycle G = (V,E) has 4 vertices v1, v2, v3, v4 and (v1, v2), (v2, v3),
(v3, v4), (v4, v1) ∈ V (G). We remark that dist(v1, v3) = dist(v2, v4) = 2. Without
loss of generality, suppose that C chooses v1 to stay. Correspondingly, R will choose
v3 to stay. If C remains at his position, R also remains at his position. If C moves
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to v2 or v4, R moves to v4 or v2 correspondingly. So R can maintain infinitively
the distance ≥ 1 from C at any steps. Then C cannot capture R.
The set of cop win graphs in the classical game is denoted by CW .
Aigner and Fromme generalized [1] the game by putting a team of cops in the graph
G. We denote by cn(G) the minimum number of cops sufficient for C to win on
the graph G.
The classical game are studied intensively through 30 years. Winkler and Nowakowski
[2] and Quilliot [3] characterized CW as set of dismantlable graphs (Definition 25).
Aigner and Fromme [1] proved that for any planar graph G, cn(G) ≤ 3. It is well-
known that ∀n, ∃ a n-vertex graph G such that cn(G) = Ω(sqrt(n)) [6].
However, in the classical version, there exists a conjecture during more than 30
years.

Conjecture 1 (Meyniel). [8] For any n-vertex graph G, cn(G) = O(
√
n).

1.2.2. Radius Capture variant.
The radius capture variant is introduced by Botano et al.[7] where a cop can capture
the robber if distance between the cop and robber (radius of capture) is no greater
than k (k ≥ 1, k ∈ N). And if the number cop is 1, the set of cop win graph in
radius capture variant is denoted by CWRC(k). We consider 2 following examples
to illustrate the definition.

Example 3. The cycle G (definition 5) with length 5 belongs to CWRC(1).
Suppose that C puts himself on vertex u, R puts himself on vertex v. By definition,
we have dist(u, v) ≤ 2. Because C can move first, C moves to adjacent vertex w of
u on the shortest path from u to v. Because dist(w, v) ≤ 1, C capture R after one
move.

Example 4. The cycle G (Definition 5) with length 6 does not belong to CWRC(1).

Suppose that the cycle G = (V,E) has 6 vertices v1, v2, v3, v4, v5, v6 and (v1, v2),
(v2, v3), (v3, v4), (v4, v5),(v5, v6),(v6, v1) ∈ V (G). We remark that dist(v1, v4) =
dist(v2, v5) = dist(v3, v6) = 3. Without loss of generality, suppose that C chooses
v1 to stay. Correspondingly, R will choose v4 to stay. If C remains at his position,
R also remains at his position. If C moves to v2 or v6, R moves to v5 or v3
correspondingly. So R can maintain infinitively the distance ≥ 2 from C at any
steps. Then C cannot capture R.
Chalopin et al. [5] charaterized the bipartite graphs in CWRC(1).

1.2.3. Faster Robber variant.
Let define the speed of the robber as s if at his turn, R can move to some vertex
at most distance s from the vertex which it is occupying. By analog way, we define
the speed of the cop as s′. If s′ > s, in any graph G, C always can capture R by
following the shortest path from the vertex occupied by C to the one occupied by
R. We only consider the game if s′ ≤ s. This game is called the Faster Robber
variant. The set of cop win graphs in this variant is denoted by CWRC(s, s′). By
convention, CWFR(s) ≡ CWFR(s, 1).
Recently, Chalopin et al. [5] characterized the graphs in CWFR(s, s′) and . Fomin
et al. [9] also proved an interesting result for the n × n square grid G, cn(G) =

Ω(
√
log(n)). Alon et al. [6] proved that ∀n, ∃ a connected n-vertex graph G with
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cn(G) = Ω(ns/s+1). They also generalized the Meyniel conjecture for any n-vertex
graph G, cn(G) = O(ns/s+1) [6].
In the report, we present our novel results in two variants described above. The
report is structured as follows: Section 2 presents the notations and theorems used
in the next sections. Section 3 and 4 are dedicated to the radius capture and
faster robber variants respectively. Section 5 summarizes the results we gained and
presents the future work.
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2. Background on Graph Theory

In this section we review the basic definitions concerning graphs and some graph
theorems used for proofs in this report.

2.1. Definitions.

Definition 1. A graph G is a pair (V,E) of sets satisfying E ⊆ V 2, where V 2

denotes the set of all 2-element subsets of V . We also assume tacitly that V ∩E = ∅.
The elements of V are the vertices of the graph G and the elements of E are its
edges.
A vertex v is incident with an edge e if v ∈ e. The two vertices incident with an
edge are its endvertices.

Definition 2. The degree of a vertex v, denoted by d(v), is the number of edges
incident to the vertex.

Definition 3. A walk in G=(V,E) is a finite (non-empty) sequenceW = v0e1v1e2v2...ekvk
alternating vertices and edges such that, ∀0 ≤ i ≤ k, vi ∈ V , ∀1 ≤ i ≤ k, ei ∈ E,
∀1 ≤ i ≤ k, vi−1 and vi are the endvertices of ei.
We denote W by (v0, vk)− walk..

Definition 4. A path is a walk such that all vertices are distinct.
A path connecting 2 vertices u, v in the graph G is denoted by (u, v)− path.

Definition 5. A cycle is a walk such that all vertices are distinct except the start
and terminus.

Definition 6. A graph G is connected if for any two vertices u, v, there exists a
(u, v)-path in G.

Definition 7. A tree is a connected graph without any cycle.

Definition 8. The distance between two vertices u and v in graph G, denoted by
dist(u,v), is the number of edges in a shortest path connecting them.

Definition 9. A subgraph H of a graph G is said to be induced if, for any pair of
vertices x and y of H, (x,y) is an edge of H if and only if (x,y) is an edge of G. In
other words, H is an induced subgraph of G if it has exactly the edges that appear
in G over the same vertex set. If the vertex set of H is the subset S of V(G), then
H can be written as G[S] and is said to be induced by S.

Definition 10. A graph is a bipartite graph if it consists of 2 sets of vertices
with edges only joining vertices between sets and not within a set.

Definition 11. A graph is a k-chordal graph if every cycle of length greater than
k has a chord.
A chord is an edge joining two nonconsecutive vertices of a cycle. Equivalent to
Definition 11, a k-chordal graph does not contain an induced cycle of length greater
than k.

Definition 12. A graph is a planar graph if it can be drawn in a plane without
any edges crossing.

Definition 13. Let G be a planar graph and E be an planar embedding of G. An
internal face of G and E is a subgraph {v1, .., vk} induce a cycle C in G such that
no edges nor vertices are in the finite part of the plane defined by C.
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By Jordan Curve Theorem [10], a plane is divided into 2 parts by the cycle C. One
part is finite and the other is infinite.

Definition 14. Let G be a planar graph and E be an planar embedding of G. An
unbounded face F of a G and E be the infinite connected component of R2 \ E.
Definition 15. A graph G is an outerplanar graph if all vertices of G belong to
the unbounded face.

Definition 16. A graph G is k-outerplanar if for k = 1, G is outerplanar and
for k > 1, G has a planar embedding such that if all vertices on the exterior face
are deleted, the connected components of the remaining graph are all (k− 1) outer-
planar.
By definition, a graph is an outerplanar graph if it can be embedded in a cycle such
that all its vertices are in the cycle and its all edges are inside the area bounded by
the cycle.

Definition 17. A graph is a triangulated graph if it is planar and the length of
all internal faces is 3

Definition 18. A vertex v of a graph G is a cut vertex if G if G \ v is not
connected.

Definition 19. In the graph G = (V,E), a vertex subset S ⊂ V is a vertex
separator for non adjacent vertices u and v if the removal the set S of V from G
separates u and v into distinct connected components.

Definition 20. Two paths are independent if their internal vertices are distinct.
In particular, two (s,t)-paths are independent if their common vertices are only s
and t.

Definition 21. A graph is 2-connected if it is connected and has no cut vertex.

Definition 22. Let u be a vertex in a graph G = (V,E), k-vertex neighborhood
of v, denoted by Nk[u], is the set of vertices v ∈ V such that dist(u, v) ≤ k. And
Nk(u) = Nk[u] \ u.
By convention, N1[u] = N [u] and N1(u) = N(u).

Definition 23. Let u be a vertex in a graph G = (V,E), Lk(u), is the set of vertices
v ∈ V such that dist(u, v) = k.
By convention, L1(u) = L(u).

Definition 24. Let G=(V,E) be an outerplanar graph embedded in a circle and u,v

be 2 distinct vertices in V.
−−−→
(u, v) is denoted by the set of intermediate vertices in

the arc (u,v) such that the direction from u to v is clockwise.
−−→
[u, v] =

−−−→
(u, v)∪{u, v};−−−→

[u, v) =
−−−→
(u, v) ∪ {u}; −−−→(u, v] =

−−−→
(u, v) ∪ {v}.

Definition 25. A graph is dismantlable [2] [3] if its vertices can be ordered
(v1, v2, ..., vn) such that, ∀i < n, ∃j > i with N [vi] ∩ Xi ⊆ N [vj ], where Xi =
{vi, ..., vn}.
Definition 26. A graph G = (V,E) is (s,s’)-dismantlable [5] if V = (v1, v2, ..., vn)
such that ∀i < n, ∃j > i with Ns(vi, G\{vj})∩Xi ⊆ Ns′(vj), where Xi = {vi, ..., vn}.
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Definition 27. A bipartite graph G is called dismantlable [5] if its vertices can
be ordered (v1, v2, ..., vn) so that (vn−1, vn is an edge of G and for each vi, i <
n− 1, ∃vj , j > i such that N(vi) ∩Xi ⊆ N(vj), where Xi = {vi, ..., vn}.
Definition 28. A configuration of the cops and robber game represents the state
of game at some step, for instance, the positions of the cops and the robber at this
step of game. A strategy defines which moves must be done by the cops, resp., the
robber, given the current configuration and all proceeding moves.

Definition 29. A sequence of valid move or a trajectory for a cop (resp., the
robber) is a potentially infinite sequence of vertices (v1, v2, ..., vp, ...) ∈ V such that
for any i ≥ 1, dist(vi, vi+1) ≤ sC(resp., dist(vi, vi+1) ≤ sR) where sC , sR are the
speed of the cop and the robber respectively.

2.2. Characterization of Cop Win graphs.

Theorem 1. [2] [3] A graph G ∈ CW iff G is dismantlable.

Theorem 2. [5] A graph G ∈ CWFR(s, s′) iff G is (s,s’)-dismantlable.

Theorem 3. [5] A bipartite graph G ∈ CWRC(1) iff G is dismantlable.

Theorem 4 (Menger). Let G be a connected graph and u, v are two non-adjacent
vertices. So the number of independent paths from u to v equals to the number of
vertices in mimimum (u,v)-separator.

Proposition 1. [Folklore] Let G be a 1-connected graph, ∃ a tree T such that one-
to-one mapping σ from V(T) to the set of blocks which are 2 connected components
of G such that (u, v) ∈ E(T ) iff |σ(u) ∩ σ(v)| = 1.
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3. Cop-win graphs in radius capture

In the radius capture variant, a cop can capture the robber in distance k, (k ≥ 1, k ∈
N) and the speed of the cop and the robber is 1. In this section, we present the
novel results with square-grid, k-chordal and k-outerplanar graphs for the radius
capture variant.

3.1. Square-grid.

Theorem 5. [Folklore]Let G be a finite square-grid, then G ∈ CWRC(1) .

Proof. Let d > 1 be the distance of the cop and the robber. We prove that C has
a strategy to keep distance d decrease after the finite steps. Hence, d decreases to
1 and R is captured. Without loss of generality, suppose that at the initial con-
figuration, C is in some vertex I and R is in the region bounded by East axis and
South axis with origin from I as illustrated in Figure 1:

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
N

W
S

E

I

R

Figure 1. Initial Configuration

If we put the coordinates as illustrated in Figure 1, we denote abs(C,R) = |abs(C)−
abs(R)| and ord(C,R) = |ord(C)− ord(R)|. Initially, d = abs(C,R) + ord(C,R) =
abs(I, R) + ord(I, R).
Now we consider R’s turn when C is on I.

(1) If R moves towards East or South, C will move correspondingly towards
East or South. Then d remains unchanged but R goes closer to the border
of the grid.

(2) IfR remains at his position and abs(I, R) ≥ 1, C moves towards East;otherwise,
C moves towards South. Then d decreases by 1 after C’s move.

(3) If R moves towards West, the stategy of C is based on abs(I, R).
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(a) If abs(I, R) ≥ 2, C moves to East then abs(C,R) decreases by 2 and
ord(C,R) remains unchanged. Then d decreases by 2.

(b) If abs(I, R) = 1, C moves towards South, then abs(C,R) decreases by
1 and ord(C,R) decreases by 1 also. Then d decrease by 2.

(c) If abs(I, R) = 0, then ord(C,R) must be greater than 1, otherwise,
R is captured. C will move towards South, then abs(C,R) = 1 and
ord(C,R) decreases by 1. Then d remain unchanged but C gets closer
to the South border. Hence, such a move cannot be done infinitively.
After the cop’s move, R is currently in the region bounded by the West
and South axes. By symmetry, we apply the analog strategy for C this
case.

Also due to symmetry, we can define the analog strategy for C if R moves towards
South.
Because G is finite, the moves of (1) and (3a) cannot be done infinitively. Hence,
d decreases after a finite steps. Hence, d decreases such that d = 1 at some time,
and the robber is captured at that time.

�

Remark 1. There is the different view for the problem. Because G is a square-grid,
so G is a bipartite graph. We will apply Theorem 3 to prove G ∈ CWRC(1). Let
G be m×n square grid. Let mark the name for the vertices of G by order form left
to right, from top to bottom, we have
V (G) = {{v1, v2, ..., vn}}, {vn+1, vn+2, ..., v2n}, ..., {v(m−1)n+1, vmn}.
By definition, we see that (vmn, vmn−1) ∈ E(G) and for (m − 1)n + 1 ≤ i < mn,
we have N(vi, Gi) ⊆ N(vi+1, Gi). For vin ,where 0 ≤ i ≤ m − 1, N(vin, Gin) ⊆
N(v(i+1)n, Gin).For vin+k, where 0 ≤ i ≤ m − 2 and k ≤ i ≤ n − 1, we have
N(vin+k, Gin+k) ⊆ N(v(i+1)n+k+1, Gin+k). Hence, by Theorem 3, G ∈ CWRC(1).

3.2. k-chordal Graph.

Theorem 6. If G is k-chordal( k ≥ 5), then G ∈ CWRC(k − 4) .

Proof. The Figure 2 illustrates for the proof of Theorem 6.

Suppose that C and R on the vertices v and u respectively. Because the cop’s turn is
first, if u ∈ Nk−3(v), the cop will capture the robber after one move. If u /∈ Nk−3(v),
let X be the connected component including u in G\Nk−3(v). Let S ⊆ Nk−3(v) be
the set of vertices adjacent at least one vertex in X . By definition, S ⊆ Lk−3(v),
otherwise, if there exists some vertex w ∈ S such that dist(v, w) < k − 3, then for
all vertex x ∈ N(w), dist(v, x) ≤ k − 3 (contradictory to w ∈ S). Let z ∈ N(v)
satisfying for all vertex y ∈ N(v), |Nk−4(z) ∩ S| ≥ |Nk−4(y) ∩ S|. We will prove
that S ⊆ Nk−3(z). So, C can move from v to z and avoid R move out of X .
If S \ Nk−3(z) = ∅, S ⊆ Nk−3(z) by definition; otherwise, consider some vertex
t ∈ S \Nk−3(z), there must exist a vertex y ∈ N(v), y �= z such that t ∈ Nk−4(y).
Because |Nk−4(y)∩S| ≤ |Nk−4(z)∩S| and t ∈ Nk−4(y)\Nk−3(z), there must exist
a vertex s ∈ Nk−4(z) \ Nk−4(y). Let P0 be the shortest path from t to s in X ,
P1 be the shortest path from z to s, P2 be the shortest path from y to t. Because
t /∈ Nk−3(z), then V (P1) ∩ V (P2) = ∅.
Consider the cycle cyc = {v, z, P1, s, P0, t, P2, y, v}, we see that its length ≥ 1 +
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u

v

z y

s t

0P

1P 2P
1v 2v

S

X

Figure 2. Illustration of Theorem’s Proof in Radius Capture k

(k − 4) + 1 + (k − 4) + 1 = 2k − 5 ≥ k. Because P0, P1, P2 are the shortest paths,
they are 1-connected. By definition, there is no edge connecting some vertex in P0
and some vertex in P1 ∪ P2. If there exists an edge between some vertex v1 in
P1 ∪ {z, s} and some vertex v2 in P2 ∪ {y, t}, suppose v1 ∈ Ll(v) and v2 ∈ Lm(v)
where 1 ≤ l,m ≤ k − 3.
If l ≥ k, then d(z, t) ≤ d(z, v1)+ d(v1, v2)+ d(v2, t) = l− 1+1+ k− 3−m ≤ k− 3.
Hence t ∈ Nk−3(z) (contradiction).
If l < k, ∀k, x ∈ (Nk−4(z) ∩ S, d(y, x) ≤ d(y, v2) + d(v2, v1) + d(v1, x) = m − 1 +
1 + k − 3 − l ≤ k − 4, then x ∈ Nk−4(y). Because t ∈ Nk−4(y) \ Nk−3(z), then
(Nk−4(z) ∩ S) ⊂ (Nk−4(y) ∩ S). So |Nk−4(z) ∩ S| < |Nk−4(y) ∩ S| (contradiction).
So length of cyc ≥ k but it does not have any egde connecting 2 non-consecutive
vertices of cyc (contradictory to k-chordal hypothesis).
Therefore, we have S ⊆ Nk−3(z).
LetX ′ be the connected component including R in G\Nk−4(z). Obviously,X ′ ⊆ X .
Take a vertex w ∈ Nk−4(z) ∩ S, there must exist a vertex x ∈ X adjacent to w.
Hence, x ∈ N1(w) ∩ X ; hence, x ∈ Nk−3(z); hence, x /∈ X ′; hence, X ′ ⊂ X .
Because size of X is reduced after each move of the cop, then after finite steps, the
robber is captured. �

Theorem 7. If G is k-chordal (k ≥ 5) and a cop can capture the robber with radius
capture 1, then cn(G) ≤ k − 4.

Proof. Let v ∈ V be any vertex and place all cops at v. Then, the robber chooses a
vertex. Now, at some step, assume that the cops are occupying {v1, ..., vn} which in-
duce a chordless path, n ≤ k−4, and it is the turn of the cops. LetN =

⋃
i≤n N2[vi],

if the robber occupies a vertex in N, he is captured during the next move. Oth-
erwise, let X �= ∅ be the connected component of G \ N occupied by the robber.
Let S ⊆ N be the set of vertices adjacent to some vertex in X. By definition,
S ⊆ ⋃

i≤n L2(vi). Now there are 3 cases to be considered:

(i) If S ⊆ ⋃n
i=2 N2(vi) or S ⊆ ⋃n−1

i=1 N2(vi) , we can “remove” a cop from v1 or vk−4

and the cops occupy a shorter chordless path while the robber is restricted to X.
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(ii) If n < k − 4 and S �⊆ ⋃n−1
i=1 L2(vi) and S �⊆ ⋃n

i=2 L2(vi), tet t be any vertex

in (L2(vn) ∩ S) \ ⋃n−1
i=1 L2(vi) and vn+1 be any vertex in N(vn) ∩ N(t). By defi-

nition, vn+1 /∈ ⋃n−1
i=1 N(vi) so that v1, v2, .., vn+1 induce a chordless path. We can

“add” a “new cop” at vn+1. Let N ′ =
⋃

i≤n+1 N2[vi], and X ′ be the connected

component of G \ N ′ occupied by the robber, then because N(t) ∩ X �= ∅, hence
L2(vn+1) ∩X �= ∅, X ′ ⊂ X .

(iii) If n = k − 4 and S �⊆ ⋃k−5
i=1 L2(vi) and S �⊆ ⋃k−4

i=2 L2(vi). We will prove that

there must exist a vertex z ∈ N(v1) such that S ⊆ ⋃k−5
1 L2(vi) ∪ N2(z) or z ∈

N(vk−4) such that S ⊆ ⋃k−4
2 L2(vi)∪N2(z) and {z, v1, ..., vk−5} or {v2, ..., vk−4, z}

is chordless. Therefore, k − 4 cops can move from {v1, ..., vk−4} to {z, v1, ..., vk−5}
or {v2, ..., vk−4, z}. The Figure 3 illustrates for case (iii).

3v

1v
2v

5kv −
4kv −

z y

s t

PX

S

Figure 3. Illustration of case (iii)

Without loss of generality, suppose that there exists a vertex z ∈ N(v1)\
⋃k−4

i=2 N(vi))

such that |N(z) ∩ S| is maximum among all vertices in (N(v1) \
⋃k−4

i=2 N(vi)) ∪
(N(vk−4) \

⋃k−5
i=1 N(vi)). By definition, there is no egde between z and vi, i =

2, .., k − 4. Next, denote N ′ = (
⋃k−5

i=1 L2(vi)) ∪ N2(z) , we need to prove S ⊆ N ′.
Considering some vertex t ∈ L2(vk−4) ∩ S \ ⋃k−5

i=1 L2(vi). We need to prove
that t ∈ N2(z); hence, S ⊆ N ′. By definition, there is no edge between t and
vi, i = 1, 2, ..., k − 4. If t /∈ N(z), we will prove that t ∈ L2(z). By definition, there

must exist some vertex y ∈ N(vk−4) \ (
⋃k−5

i=1 N(vi) ∪ N(z)) such that t ∈ N(y).
By definition also, there is no edge between y and v1, v2, ..., vk−5 and z. Because
|N1(y) ∩ S| ≤ |N1(z) ∩ S|, there must exist a vertex s ∈ N1(z) ∩ S such that
s /∈ N1(y). Because X is connected, there exist a path P in X connecting s and
t. We have the cycle (s, z, v1, v2, .., vk−4, y, t, P, s) with length > k. Hence,there
must be an edge between s and t. Hence, t ∈ L2(z). So, the cops can move
from {v1, .., vk−4} to {z, v1, ..., vk−5}. Because there is no egde between z and

{v1, ..., vk−5}, {z, v1, ..., vk−5} is a chordless. Let N ′ =
⋃k−5

i=1 N2[vi]∪N2[z], and X ′

is the connected component of G \N ′ occupied by the robber. Because there is a
vertex w ∈ X ∩N2(z), then X ′ ⊂ X .
We see that in case (ii) and (iii), after the cops’ move, the connected component
including the robber is strictly shrinked. In case (i), after a finite steps “remove”
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the cops without increasing the connected component including the robber, we can
change to case (ii) or (iii) to “add” some cops, then the connected component in-
cluding the robber is strictly shrinked. Therefore, after a finite steps, the cops can
capture the robber. �
3.3. Outerplanar Graph.
First, we give the proof for the lemma below which is applied to prove all theorem
in this section.

Lemma 1 (Folklore). Let G = (V,E) be a 2-connected outerplanar graph, then V
can be order as (v1, v2, ..., vn) such that V is embedded in a cycle, (vi, vi+1) ∈ E
where i = 1, 2, .., n, vn+1 = v1 and all other edges are “inside” the area bounded by
the cycle (v1, v2, ..., vn, v1) .

Proof. Suppose that {v1, v2, ..., vn} are embedded in a circle by the clockwise direc-

tion such that
−−−−−−→
(vi, vi+1) = ∅ (*) where vn+1 = v1. We will prove that (vi, vi+1) ∈ E

and all other edges are “inside” the the area bounded by the cycle (v1, v2, ..., vn, v1).
By contradiction, without loss of generality, suppose that (v1, v2) /∈ E. Because G
is 2-connected, by Menger’s Theorem, there must exist 2 independent paths from
v1 to v2. Suppose that vi and vj are 2 vertices in 2 independent paths. By prop-
erty of independent paths, vi, vj are distinct. By (*) and symmetry, without loss

of generality, suppose that j < i, then vj ∈ −−−−→
(v2, vi). Hence, the path from v1 to

vj cross the path from v2 to vi (contradictory to property of planar graph). So
∀i ∈ {1, 2, .., n}, (vi, vi+1) ∈ E(G) where vn+1 = v1. By the property of outer-
planar, all the other edges of E(G) are “inside” the area bounded by the cycle
(v1, v2, ..., vn, v1). The Figure 4 illustrate for the proof of Lemma 1. �

1v

2vnv

iv
jv

Figure 4. Illustration of Lemma 1

Corollary 1. This Lemma 1 can be applied for each outerface of k-outerplanar
graph.
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Theorem 8. Let G be a connected outerplanar graph. G ∈ CWRC(1) if and only
if length of every internal face of G < 6.

Before giving the proof of Theorem 8, we will consider the following lemma:

Lemma 2. Let G be an outerplanar graph and F be an internal face of G. V(F)
is ordered as (v1, v2, ..., vk) such that vi, vi+1 are adjacent (vk+1 = v1) . Let vi, vj
be 2 non adjacent vertices in V(F), then {vi−1, vi+1} are (vi, vj)-separator where
v0 = vk, v1 = vk+1.

Proof. We prove by contradiction, if {vi−1, vi+1} is not the separator of vi and vj
, there must exist a a path P = (vi, ..., y, ..., vj) such that vi−1, vi+1 /∈ V (P ) and
∃y ∈ V (P )\ {vi−1, vi+1}. Without loss of generalization, 4 vertices vi, vi−1, vi+1, vj
can be drawn as illustrated in Figure 5

y

iv
1iv− 1iv +

jv

yy

y

Figure 5. Illustration of Lemma 2

By definition of outerplanar graph, 5 vertices vi, vi−1, vi+1, vj , y can be embedded

in a circle. So y ∈ −−−−−−→
(vi, vi+1) ∪

−−−−−−→
(vi+1, vj) ∪

−−−−−−→
(vi+1, vj) ∪

−−−−−−→
(vj , vi−1). By symmetry,

suppose that y ∈ −−−−−−→
(vi, vi+1) ∪

−−−−−−→
(vi+1, vj). If y ∈ −−−−−−→

(vi, vi+1), the path from vi to vj

crosses (vi, vi+1). If y ∈ −−−−−−→
(vi+1, vj), the path from vi to y will cross the path from

vi+1 to vj . So it is a contradiction. �
Proof. ⇒: We prove the Theorem 8 by contraposition. We need to prove that if
G admits an internal face > 5 , G /∈ CWRC(1) . Let F be the largest internal
face in G and {v1, v2, ...vk} = V (F ) such that (vi, vi+1) ∈ E(G) where i = 0, 1, .., k
and vk+1 = v1, k ≥ 6. By definition of the outerplanar graph and internal face
F , (vi, vj) /∈ E(G) if |i − j| /∈ {1, k − 1}. Without loss of generalization, suppose

that at the initial configuration, C is on a vertex in
−−−−→
[v1, v2). R can be put at

vertex v4 correspondingly in the initial configuration. Because length of F ≥ 6,
hence dist(v1, v4) = 3. If C is on v1, dist(C,R) = 3; otherwise, suppose C is

on some vertex u ∈ −−−−→
(v1, v2). By planar property, {v1, v2} is a (u, v4)separator,
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then dist(C,R) ≥ 1 + min{dist(v1, v4), dist(v2, v4)} = 3. Because {v1, v2} is a
(u, v4)separator and by Lemma 2, {vk, v2} is a (v1, v4)-separator, then {vk, v2} is
also a (u, v4)-separator. Hence {vk, v2} is also a (C,R)-separator. R escapes C as
follow the strategy:
R stays at v4 and waits for C get closer to R. C has to move to v2 or vk. If C
moves to v2, R moves to v5. If C moves to vk, R moves to v3. So dist(C,R) always
≥ 2. Therefore, the robber can escape the cop infinitively.
⇐: We need to prove that if G is outerplanar graph and all internal faces ≤ 5,
G ∈ CWRC(1).
Case 1: G is 2-connected.
By applying the Lemma 1, we order the set of vertices V = {v1, v2, ..., vn} embedded
in a cycle such that (vi, vi+1) ∈ E where i = 1, 2, .., n, vn+1 = v1. Without loss of
generality, suppose that C and R are on v1 and vi respectively where 1 ≤ i ≤ n.
If dist(v1, vi) ≤ 2, R will be captured after one move. If dist(v1, vi) ≥ 3,then
3 ≤ i ≤ n − 2. Let vs be some vertex adjacent to v1 such that 1 < s < i − 1 and
i−s is minimum. There exists vs because v2 is a vertex adjacent to v1 and 1 < 2 < i.
Then let vx be adjacent to vs such that s < x < i and i − x is minimum. There
exists vx because vs+1 is a vertex adjacent to vs and vs+1 �= vi, so s < s + 1 < i.
By the analog way, let vt be some vertex adjacent to v1 such that i < t < n− 1 and
t− i is minimum and vy be some vertex adjacent to vt such that i < y < t and y− i
is minimum. The Figure 6 illustrates the position of vertices v1, vi, vs, vt, vx, vy.

1v
sv

tv

xv

yv

iv

Figure 6. Positions of v1, vi, vs, vt, vx, vy

Let X be the connected component including R in G \N2[v1]. We will prove that
V (X) ⊆ S = {vx+1, vx+2, ..., vy−1}. So R is restricted in S if C stays at v1. By
contradiction, suppose that there is some vertex vk ∈ X\S. Because vk /∈ N2[v1]∪S,
then vk /∈ {v1, vs, vt, vx, vy} ∪ S. Hence, every path from vk to vi crosses the path
(vx, vs, v1, vt, vy) (contradiction).
Now we will prove that there exists a vertex z ∈ N(v1) such that if C move to
z, R is restricted in the set S′ ⊂ S. By definition, ∀k, s ≤ k ≤ t, vk /∈ N(v1);
, x < k ≤ i, vk /∈ N(vs) ; ∀k, i ≤ k < y, vk /∈ N(vt) .

• If ∃k, i < k < y such that vk ∈ N(vs) , then z ≡ vs because R is restricted
in S′ = {vx+2, ..., vk−1} ⊂ S.
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• By the analog proof, if ∃k, x < k < i such that vk ∈ N(vt) , then z ≡ vt.
• If � ∃k, i < k < y such that vk ∈ N(vs) and � ∃k, x < k < i such that
vk ∈ N(vt) , then N(vs)∩ S = ∅ and N(vt) ∩ S = ∅. Let P be the shortest
path from vx to vy in S.

– If (vs, vt), (vs, vy), (vx, vt), (vx, vy) /∈ E(G), then V (P ) �= ∅. Hence,
(v1, vs, vx, P, vy , vt, v1) is an internal face > 5 (contradiction).

– If (vs, vy) ∈ V (G), let S′ = {vx+2, ..., vy−1} ⊂ S then z ≡ vs.
– If (vt, vx) ∈ V (G) and z ≡ vt, the proof is analog.
– If (vx, vy) ∈ V (G), let S′ = {vx+2, ..., vy−1} ⊂ S and z ≡ vs. Let X

′ be
the connected component including R in G\N2(z). If there exists some
vertex vk ∈ X ′ \ S′. By definition, vk /∈ {vs, vx, vx+1, vt} ∪ S′. Hence,
any path from vk to any vertex in S′ crosses (vx, vy) (contradiction).
Therefore, X ′ ⊆ S′. So R is restricted in area S′ ⊂ S.

Because the size of V (S) strictly decreases after the cop’s moves, therefore, after
finite steps, |V (S)| = 0, it implies |V (X)| = 0, then the robber is captured.
Case 2: G is 1-connected but 2-connected.
By Proposition 1 , there must exist a tree T satisfying the conditions Proposition
1. Suppose that at initial configuration, the cop is in the 2-connected component
C1 ∈ V (T ). Let U ⊆ V (C1) be a set of cut vertices. Let u be some vertex in U ,
then Comp(u) is denoted by the biggest connected component including the vertex
u such that V (Comp(u)) ∩ V (C1) = {u}.
If the robber has a valid sequence of moves Sr = {r1, r2, ...., rp, ...} in G, we can
define a retract sequence of moves S′

r = {r′1, r′2, ..., r′p, ...} in C1 where r′i = ri if
ri ∈ V (C1) \ U and r′i = u if ri ∈ V (Comp(u)). We need to verify S′

r valid by
proving ∀i ≥ 1, dist(r′i, r

′
i+1) ≤ 1.

• If ri, ri+1 ∈ V (C1), d(r
′
i, r

′
i+1) = d(ri, ri+1) ≤ 1.

• If ri ∈ V (C1), ri+1 /∈ V (C1), because dist(ri, ri+1) = 1, then ri+1 ∈
Comp(ri). Hence, dist(r

′
i, r

′
i+1) = dist(ri, ri) = 0.

• If ri /∈ V (C1), ri+1 ∈ V (C1). By analog proof, dist(r′i, r
′
i+1) = 0.

• If ri, ri+t /∈ V (C1), because dist(ri, ri+1) = 1,there must exist a cut vertex
v such that ri, ri+1 ∈ Comp(v). Hence, dist(r′i, r

′
i+1) = dist(v, v) = 0.

Because C1 is 2-connected, by case 1, the cop has a winning strategy σ in C1.
C will play the strategy Σ in G based on σ in C1. First, C plays strategy σ by
considering Sr in G as S′

r in C1. If by σ, C can capture R at v ∈ V (C1) \ U , C
can capture R in G at that step. If by σ, C capture R at u ∈ U , hence at that
move, R ∈ Comp(u) and C ∈ N(u) . Now C will play Σ by moving to u. Let
denote C2 be a 2-connected component such that C2 is a isomorphic subgraph of
Comp(u), C2 ∈ V (T ) and u ∈ V (C2). By induction, we can define a strategy σ2

for C playing in C2. We remark that if the cop using the strategy as presented in
case 1 for 2-connected outerplanar, the robber never moves to the vertex occupied
by the cop at initial configuration. Hence R cannot move to u in C2; hence, R
cannot move to C1 if C plays the Σ strategy. So because T is a tree of 2-connected
components, by induction, the cop can capture the robber after finite steps. �
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Theorem 9. Let G be a k-outerplanar (k ≥ 1) graph and E be a planar embedding
satisfying the following properties:
i) No internal face with length > 5
ii) If Fi is the ith outerface, then Fi is 2-connected ∀1 ≤ i ≤ k.
iii) ∀v ∈ V (Fi), N(v) ∩ V (Fi+1) �= ∅ where 1 ≤ i ≤ k − 1
iv) ∀v ∈ Fi where 2 ≤ i ≤ k − 1, d(v) ≤ 4
v) ∀v ∈ Fk, d(v) ≤ 3 ,
vi) |V (Fi)| < |V (Fi+1| where 1 ≤ i ≤ k − 1,
then G ∈ CWRC(1).

Before giving the proof of Theorem 9, we prove some lemmas as follows:

Lemma 3. Let G, E be k-outerplanar and planar embedding satisfying the condi-
tions in Theorem 9. If u ∈ V (Fi), then |N(u) ∩ V (Fi−1)| ≤ 1 where 2 ≤ i ≤ k.

Proof. If i = k, because d(u) ≤ 3, then |N(u)| ≤ 3. Because Fk is 2-connected and
v, w ∈ N(u)∩ V (Fk). Hence |N(u)∩ V (Fk−1)| ≤ 1. If 2 ≤ i < k, because d(u) ≤ 4,
then |N(u)| ≤ 4. By definition, there are 3 distinct vertices y, v, w in N(u) such
that y ∈ N(u)∩V (Fi+1) and v, w ∈ N(u)∩V (Fi). Hence |N(u)∩V (Fk−1)| ≤ 1. �

Corollary 2. � ∃u ∈ V (Fk) such that V (Fk−1) ⊆ N(u).

Lemma 4. Let G, E be k-outerplanar and planar embedding satisfying the condi-
tions in Theorem 9. If u,w are 2 adjacent vertices in Fk , then (N(u) ∪ N(w)) ∩
V (Fk−1) �= ∅.
Proof. By contradiction, suppose that there exist 2 adjacent vertices in V (Fk) such
that (N(u) ∪ N(w)) ∩ V (Fk−1) = ∅. Because Fk is 2-connected, without loss
of generalization, by corollary 1, suppose that V (Fk) is ordered as (u ≡ y1, v ≡
y2, ...., ynk

) satisfying the condition of Lemma 1. By corollary 2, suppose that yi, yj
are the vertices in V (Fk) such that N(yi)∩ V (Fk−1) �= ∅ and N(yj)∩ V (Fk−1) �= ∅
and i is minimum and j is maximum (2 ≤ i ≤ j ≤ n). Let s ∈ N(yi) ∩ V (Fk−1)

and t ∈ N(yj) ∩ V (Fk−1) such that |−−→(t, s)| is minimum. Let P1 be shortest path

from yj to yi such that V (P1) ⊆
−−−−→
(yj , yi). Let P2 be the shortest path from t to s

such that V (P2) ⊆
−−→
(t, s). Because there is no edge crossing between vertex in P1

and P2, we have an internal face (s, P2, t, yj , P1, yi). Because d(yi), d(yj) ≤ 3, and
N(yi) ∩ V (Fk−1) �= ∅, there is no edge between yi and {yj, yj+1, ..., yi−2}. Hence,
yi−1 ∈ V (P1). By analog proof, yj+1 ∈ V (P1). There are at least 6 distinct vertices
as yi, yi−1, yj+1, yj, s, t in this internal face . It is a contradiction.
The Figure 4 illustrates for the proof above.

�

Proof. Now we will prove Theorem 9 by induction. For the base case: k = 1, the
claim is true by applying Theorem 8 with G admitting no internal face ≥ 5. Now
suppose that the claim is true with some k, we will prove it is also true with k+1.
By induction hypothesis, G is a (k+1)-outerplanar. Let G′ be k-outerplanar graph
obtained from G by removing the vertices on the (k + 1)-outerface. By induction
hypothesis, G′ ∈ CWRC(1). By the condition (iii), ∀u ∈ Fk, there exists a vertex
v ∈ Fk+1 such that (u, v) ∈ E(G). Let Sr = (r1, r2, ..., rp, ...) be a arbitrary valid
sequence of moves of the robber in G.
Let fi(v) be a function mapping some vertex in Fi+1 to some vertex in Fi, where
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1P
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1y u≡ 2y v≡
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kF

Figure 7. Illustration of Lemma 4’s Proof

1 ≤ i ≤ k. So ∀v ∈ Fi+1, fi(v) = N(v) ∩ V (Fi). Let S′
r = (r′1, r

′
2, ..., r

′
p, ...) be a

sequence of moves of the robber in G′ such that for r1,

r′1 =

⎧⎨
⎩

r1 if r1 ∈ Fl and 1 ≤ l ≤ k,
fk(r1) if r1 ∈ Fk+1 and fk(r1) �= ∅,
u ∈ Fk where u is defined below.

Without loss of generality, by corollary 1, we can suppose that V (Fk+1) can be
order as (v1, v2, ..., vp) where r1 ≡ v1. Let vx ∈ V (Fk+1) such that fk(vx) �= ∅ and
x is minimum. So u = fk(vx). And for i ≥ 2,

r′i =

⎧⎨
⎩

ri if ri ∈ Fl and 1 ≤ l ≤ k,
fk(ri) if ri ∈ Fk+1 and fk(ri) �= ∅,
r′i−1 ,otherwise.

We will prove that S′
r is valid sequence of moves of the robber in G′ by showing

that dist(r′i, r
′
i−1) ≤ 1∀i ∈ N .

By contradiction, suppose that there exists some i such that dist(r′i, r
′
i−1) ≥ 2.

Because dist(ri, ri−1) = 1 �= dist(r′i, r
′
i−1), so at least one vertex of ri , ri−1 must

be in V (Fk+1).
If ri ∈ V (Fk+1) and ri−1 /∈ V (Fk+1), we have ri−1 ≡ r′i−1 and r′i = f(ri) = r′i−1,
then dist(r′i−1, r

′
i) = 0 (Contradiction).

The proof for ri−1 ∈ V (Fk+1) and ri /∈ V (Fk+1) is analog.
If ri−1, ri ∈ V (Fk+1), there are 3 paths going from r′i to r

′
i−1 as (r

′
i, ri, ri−1, ri−2..., rj , r

′
i−1)

where ri−1, ri−2..., rj ∈ V (Fk+1),
−−−−−−→
(r′i, r

′
i−1),

−−−−−−→
(r′i−1, r

′
i). Without loss of generality,

suppose that
−−−−−−→
(r′i, r

′
i−1) is inside the area bounded by (r′i, ri, ri−1, ri−2..., rj , r

′
i−1) and−−−−−−→

(r′i−1, r
′
i). Because r′i, r

′
i−1 is not adjacent, there must exist a vertex u ∈ −−−−−−→

(r′i, r
′
i−1).

By definition of S′
r, there is no edge between u and the vertices ri, ri−1, ri−2..., rj .

So if there exists a vertex v ∈ V (Fk+1) such that v ∈ N(u), (u, v) must cross

(r′i, ri, ri−1, ri−2..., rj , r
′
i−1) or

−−−−−−→
(r′i−1, r

′
i). It is contradictory to planar property. So
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we have S′
r is valid moves of the robber.

By induction, suppose that Σ is a winning strategy for cop in G′ with S′
c =

(c′1, c
′
2, ..., c

′
p, ...), the corresponding valid sequence of moves of the cop playing Σ.

We define a winning strategy σ for C with valid sequence of moves in G with
Sc = (c1, c2, ..., cp, ...). Let ci = c′i until the cop captures the robber in G′, suppose
at the step q. If rq−1 /∈ Fk+1, then rq−1 ≡ r′q−1, thus d(cq, rq−1) = d(c′q, r

′
q−1) = 1,

then R is captured. If rq−1 ∈ Fk+1 and dist(rq−1, cq) = 1, then R is also captured
at step q, otherwise, R can move to rq at some vertex in Fk+1. At step q+1 when
R is at rq, C moves to cq+1 ≡ r′q−1. We will prove that dist(cq+1, rq) ≤ 2.
By contradiction, suppose dist(cq+1, rq) ≥ 3, thus dist(cq+1, rq−1) ≥ 2. Because
dist(r′q−1, rq−1) = dist(cq+1, rq−1) ≥ 2, thenN(rq−1)∩V (Fk) = ∅, otherwise r′q−1 =
N(rq−1)∩V (Fk) then dist(r′q−1, rq−1) = 1. By Lemma 4 and N(rq−1)∩V (Fk) = ∅,
there exists some vertex u ∈ V (Fk) ∩ N(rq). Because dist(cq+1, rq) ≥ 3, then

dist(cq+1, u) ≥ 2. There must exist some vertex y ∈ −−−−−→
(cq+1, u) and some vertex

z ∈ −−−−−→
(u, cq+1). Let consider 3 paths from r′q−1 = cq+1 to u as

−−−−−→
(cq+1, u),

−−−−−→
(u, cq+1) and

P = (r′q−1 = cq+1, rj , ..., rq−1, rq). Without loss of generality, suppose that
−−−−−→
(u, cq+1)

is inside the area X bounded by
−−−−−→
(cq+1, u) and P . Be definition of S′

r and corollary
2, there is no edge between z and the vertices {rj , ..., rq−1, rq}. And because z is
bounded by X , therefore, N(z) ∩ V (Fk+1) = ∅ (Contradiction).
Now we have dist(cq+1, rq) ≤ 2. If dist(cq+1, rq) = 1, the robber is already cap-
tured, otherwise, dist(cq+1, rq) = 2, and it is the robber’s turn. We consider 2 cases
as follows:
i) If there exists some vertex u ∈ V (Fk) ∩ N(cq+1) ∩ N(rq),then by Lemma 3,
{u} = V (Fk) ∩ N(rq). So R cannot move to u or stay at rq, R has to move
to rq+1 ∈ V (Fk+1) ∩ N(rq). So C can move to cq+2 at u ∈ Fk and maintain
dist(C,R) = 2 . By Lemma 3 and |V (Fk+1) > V (Fk)|, x ∈ V (Fk+1) such that
N(x) ∩ V (Fk) = ∅. Let the cop continues to use this strategy, the robber must
move to some vertex x such that N(x) ∩ V (Fk) = ∅ and dist(C,R) = 2. And the
configuration is analog to the case ii.
ii)If ∅ = V (Fk)∩N(cq+1)∩N(rq). Because dist(cq+1, rq) = 2, w ∈ N(cq+1)∩N(rq),
then w must be in V (Fk+1). We will prove that N(rq) ∩ V (Fk) = ∅. By contra-
diction, suppose N(rq) ∩ V (Fk) = u. Because u /∈ N(cq+1), dist(cq+1, u) ≥ 2. Let

consider 3 paths from cq+1 to u as (cq+1, w, rq, u),
−−−−−→
(cq+1, u),

−−−−−→
(u, cq+1). Suppose

that
−−−−−→
(cq+1, u) is inside the area S bounded by (cq+1, w, rq , u) and

−−−−−→
(u, cq+1). Let

v ∈ −−−−−→
(cq+1, u). By Lemma 3, there is no edge between v and w. Because v is inside

S, so N(v) ∩ V (Fk+1) = ∅. It is contradictory to the condition (iii).
Now, because the robber can not stay at rq or move to w, thus, he has to move
to some vertex y ∈ Fk+1. By Lemma 4, there exists a vertex z in Fk ∩ N(y). If
z ∈ N(cq+1), the cop will capture the robber by moving to z, otherwise, there is a

internal face of G as {cq+1, w, rq , y, z, P} where P is
−−−−−→
(z, cq+1) or

−−−−−→
(cq+1, z). Length

of this internal face is > 5. It is a contradiction.
�

If we relax the constraints in Theorem 9 by removing the condition (v) or (vi), the
claim is not true. We will consider the couter-examples as follows:
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Counter example 1 A counter-example if we relax the condition (v).

2A

1A

2B

2C 2D

1B

1C
1D

Figure 8. Illustration of Counter Example 1

Consider a graph G as illustrated in Figure 8. Without loss of generality, suppose
that C,R occupies the vertex A2, A1 correspondingly. In G, there are 4 pairs of
vertices (A1, A2), (B1, B2), (C1, C2), (D1, D2) with distance 3. So if C remains at
A2, R remains at A1 respectively. If C moves to some vertex in {B2, C1, D2}, R
can moves to the corresponding vertex as B1, C2, D1. Hence, dist(C,R) always ≥ 2
and R can escape C infinitively.
Counter example 2 A counter-example if we relax the condition (v).

2B
2A

1A

2C
2D

1B

1C
1D

2E

Figure 9. Illustration of Counter Example 2

Consider a graphG as illustrated in Figure 9. We observe that V (F2) = {A2, B2, C2, D2, E2}
and V (F1) = {A1, B1, C1, D1}. So |V (F2)| > |V (F1)|. d(B2) = d(D2) = 4 > 3
does not satisfy the condition (v). We also observe that ∀v ∈ {A2, C2, D2} ∪
V (F1), dist(B2, v) = dist(E2, v). So if we consider {B2, E2} as one vertex X for C,
R can escape from C infinitively by applying the strategy in the counter example
1.

Theorem 10. Let G be a 2-outerplanar and triangulated graph and F1,F2 be the
internal and external outerplanar face respectively. If F1 and F2 are 2-connected,
then G ∈ CWRC(1).

Lemma 5. There must exist at least 2 distinct vertices u, v in F1 such that N(u)∩
V (F2) �= ∅ and N(v) ∩ V (F2) �= ∅.
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Proof. Because G is connected, then there must exist at least 1 vertex u such that
N(u) ∩ V (F2) �= ∅. By contradiction, suppose that � ∃v �= u, v ∈ V (F1) such that
N(v) ∩ V (F2) �= ∅. By corollary 1, V (F2) can be ordered as (v1, v2, ..., vn2) such
that ∀1 ≤ i ≤ n2, (vi, vi+1) ∈ E(F2) where vn2+1 = v1. Without loss of generality,
suppose that N(u)∩V (F2) = {vi1 , vi2 , ..., vik} where 1 ≤ vi1 < vi2 < ... < vik ≤ n2.

By planar property, F1 must be restricted in area bounded by u, vij ,
−−−−−−−→
(vij , vij+1), vij+1

where 1 ≤ j ≤ k. Therefore, V (F1), vij ,
−−−−−−−→
(vij , vij+1 ), vij+1 make an internal whose

length greater than 3 (contradiction). This Figure 10 illustrates the Lemma 5. �

1i
v

u
ki

v

ji
v

1ji
v

+

1( )V F

Figure 10. Illustration of Lemma 5

Lemma 6. ∀u ∈ V (F1), then N(u) ∩ V (F2) �= ∅
Proof. By contradiction, suppose that ∃u ∈ V (F1) such that N(u) ∩ V (F2) = ∅.
By corollary 1, without loss of generality, we can order V (F1) = {u ≡ v1, v2, ..., vk}
such that (vi, vi+1) ∈ E(F1) where vk+1 = v1. By Lemma 5, let vi, vj be the vertices
such that N(vi) ∩ V (F2) �= ∅ (resp., N(vj) ∩ V (F2) �= ∅) and i is miminum (resp.,
j is maximum).
Let y and w are two vertices such that y ∈ N(vi) ∩ V (F2) , w ∈ N(vj) ∩ V (F2)
and dist(y, w) is minimum, and suppose the shortest path from y to w is P . By
planar hypothesis, (vi, y) and (vj , w) do not cross each other. By contradiction

hypothesis, there is no edge between some vertex in P with the vertices in
−−−−→
(vi, vj).

By definition of w and y, there must be no edge between vi and vj with any vertex
in P . By applying Lemma 1 for the outerface F1, any edge between two arbitrary
vertices in {u = v1, v2, ..., vi} ∪ {vj , vj+1, ..., vk} does not cross the internal face
(u, v2, ..., vi, y, P, w, vj , vj+1, ..., vk, u). Hence this internal face includes four distinct
vertices u,vi,vj ,y, it is contradictory to the triangulated property. This Figure 11
illustrates the Lemma 6. �

Lemma 7. If the vertices of V (F1) are embedded in a circle and ordered as (v1, v2, ..., vk)
such that (vi, vi+1) ∈ E(G) where vk+1 ≡ v1 and ∃i �= j such that vi, vj ∈ N(u)

where u ∈ V (F2),
−−−−→
[vi, vj ] ⊆ N(u) or

−−−−→
[vj , vi] ⊆ N(u).

Proof. If j = i−1 or j = i+1, it is a trivial case because
−−−−−−→
(vi−1, vi) =

−−−−−−→
(vi, vi+1) = ∅.

If j /∈ {i− 1, i+ 1}, we prove by contradiction, suppose that there exist 2 vertices

y and w in F1, such that w ∈ −−−−→
(vi, vj) and y ∈ −−−−→

(vj , vi) and w, y /∈ N(u). Consider 3
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u
iv

jv

yw

Figure 11. Illustration of Lemma 6

independent paths from vj to vi as P1 = (vj , u, vi), P2 = (vj , vj+1, ..., y, .., vi−1, vi),
P3 = (vj , vj−1, ..., w, ..., vi+1, vi). Because u /∈ F1, there are 2 cases P2 is inside the
area bounded by (P1, P3) or P3 is inside the area bounded by (P1, P2). Without
loss of generality, suppose that P2 is inside the area bounded by (P1, P3), hence, u
is inside the cycle (P1, P3). Hence, there is no edge between u and some vertex in
F2, it is contradictory to Lemma 6. This Figure 12 illustrates the Lemma 7. �

u

ivjv
y

w

Figure 12. Illustration of Lemma 7

Proof. If R moves only in F1, by Theorem 8, C has a strategy to capture R after
a finite steps by moving only in F1. If R has some moves in F2, let consider the
configuration such that at the first time after some finite moves, C in F1 and R in
F2 and it is C’s turn. If dist(C,R) ≤ 2, C can capture R after one move; otherwise,
without loss of generality, suppose that C (resp.,R) is at v1 (resp., y1) where V (F1)
is ordered as (v1, v2, ..., vn1) (resp., V (F2) is ordered as (y1, y2, ..., yn2)) such that
∀1 ≤ i ≤ n1, (vi, vi+1) ∈ E(F1) where vn1+1 = v1 (resp., ∀1 ≤ i ≤ n2, (yi, yi+1) ∈
E(F2) where yn2+1 = y1). Let ys ∈ N(v2) ∩ V (F2) and yt ∈ N(vn1) ∩ V (F2). By

symmetry, without loss of generality, suppose that s ≥ t and R ∈ −−−−→
(ys, yt). Let
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S = {u|u ∈ −−−−→
[ys, y1]; ∅ �= N(v1) ∩N(u) ∩ V (F1)} . We have ys ∈ S and with u ∈ S,

dist(v1, u) ≤ 2. Let T = {u|u ∈ −−−−→
[y1, yt]; ∅ �= N(v1)∩N(u)∩V (F1)}. We have yt ∈ T

and with u ∈ T , dist(v1, u) ≤ 2. Let yh ∈ S and yl ∈ T where (1 ≤ l ≤ h ≤ n2) such

that |−−−−→(yh, yl)| is minimum. By order of V (F2), we have y1 ∈ −−−−→
(yh, yl). Let vi be some

vertex such that vi ∈ N(v1) ∩N(yh) ∩ V (F1) and i is maximum. Let vj be some
vertex vj ∈ N(v1)∩N(yl)∩ V (F1) and j is minimum. By planar property, 2 paths
(v1, vi, yh) and (v1, vj , yl) do not cross each other and dist(C,R) = dist(v1, y1) ≥ 3,
then 2 ≤ i < j ≤ n.

Let N1 =
−−−−→
[vi, vj ], N2 =

−−−−→
[yh, yl]. Let N = N1 ∪ N2. If C remains stay at v1, R is

restricted in N . We will prove that there exist z ∈ N(v1) ∩ V (F1) and N ′ ⊂ N so
that if C moves to z and stays at z, R is restricted in N ′ .
We will prove that ∀vk, i < k < j, (v1, vk) /∈ E(G). By Lemma 6, N(vk) ∩N2 �= ∅.
If (v1, vk) ∈ E, let yw ∈ N(vk) ∩ V (F2). By planar property, yw ∈ [yh, yl]. It

is contradictory to condition |−−−−→[yh, yl]| minimum. Hence, because of triangulated
property, 3 vertices (v1, vi, vj) must be in a triangulated face, then (vi, vj) ∈ E(G).
Let z be vi. Because yh ∈ N(vi) and yl ∈ N2(vi), so R is still restricted in N when

C moves to z. Let N ′
1 =

−−−−−→
[vi+1, vj ], N

′
1 =

−−−−−→
[yh+1, yl] and N ′ = N ′

1 ∩ N ′
2. Because

yh+1, yl, vi+1, vj ∈ N2(z), then R is restricted in N ′ ⊂ N . So after a finite steps, C
can capture R. This Figure 13 illustrates the proof of Theorem 10. �

1v

2v

1nv

iv

jv

hy

ly

sy

ty

1y

Figure 13. Illustration of Theorem 10

Theorem 10 is not true if G is 3-outerplanar. We will consider the following counter-
example as illustrated in Figure 14 . We denote F1, F2, F3 by 1st,2nd,3rd outerfaces.
Let consider F3 and F2, we have 6 pairs of vertices with distance 3 as (A3, A2),
(B3, B2), (C3, C2), (D3, D2), (M2, O2), (N2, P2).
Case 1: If C chooses some vertex u ∈ V (F3) ∪ V (F2), R chooses some vertex v
respectively such that (u, v) is one of 6 pairs.
Case 1.1: If C only moves within V (F3) ∪ V (F2). By symmetry, suppose that
C stays at a vertex in {A3, C2,M2}, then R stays at the corresponding vertex
{A2, C3, O2}.
(a): If C stays at A3, R stays at A2 respectively. C can move to some vertex as
A3, B3, D3, C2,M2, P2, then Rmove to the corresponding vertex asA2, B2, D2, C3, O2, N2.
So dist(C,R) = 2 after the cop’s move and dist(C,R) remains 3 after the robber’s
move.
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(b): If C stays at C2, R stays at C3 respectively. C can move to some vertex as
C2,M2, D2, B2, P2, A3, then Rmoves to the corresponding vertex as C3, O2, D3, B3, N2, O2.
So dist(C,R) = 2 after the cop’s move and dist(C,R) remains 3 after the robber’s
move.
(c): If C stays at M2, R stays at O2 respectively. C can move to some ver-
tex as M2, C2, D2. Then R moves to the corresponding vertex as O2, C3, D3. So
dist(C,R) = 2 after the cop’s move and dist(C,R) remains 3 after the robber’s
move.
Hence, if C moves within V (F3) ∪ V (F2), R has a strategy to move such that
dist(C,R) always ≥ 2.
Case 1.2: If C moves to V (F1). So at the previous turn of C, C is at some vertex in
V (F2), without loss of generality, suppose that C is at A2. It implies that R is at
A3 at this step. C can only move to some vertex in {E1, F1, G1}. So dist(C,R) ≥ 3
and the configuration of C and R changes to case 2.
Case 2: If C chooses some vertex u ∈ V (F1), R chooses some vertex v ∈ V (F3)
such that dist(u, v) ≥ 3. We remark that each vertex in
V (F1) = {A1, B1, C1, D1, E1, F1, G1, H1} having at most 2 vertices in V (F3) such
that distance ≤ 3 (*).
Case 2.1: If C moves only within V (F1). Because R ∈ V (F3), if dist(C,R) ≥ 3,
R remains at his position, otherwise, if dist(C,R) = 2, by (*) and each vertex in
V (F3) having 2 adjacent vertices in V (F3) , R can move to another vertex in V (F3)
such that dist(C,R) ≥ 3.
Case 2.2: If at some step, C moves to some vertex in V (F2). We remark that
this vertex must be in {A2, B2, C2, D2} and dist(C,R) ≥ 2. If dist(C,R) ≥ 3, C,R
must occupy two vertices in {(A3, A2), (B3, B2), (C3, C2), (D3, D2)} then R remains
at his position at this step. If dist(C,R) = 2, without loss of generality, suppose
that C is at A2. So R must be at B3 or D3, then R moves to A3 at this step.
Hence, the configuration of C and R changes to Case 1.

3A 3B

3C
3D

2A2B

2C 2D2M

2N

2O

1A 1B
1C

1D

1E

1F
1G

1H
2P

Figure 14. Counter Example of 3-outerplanar and triangulated graph

By analysis of case 1 and case 2, it shows that R can escape from C infinitively.
�
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4. Faster robber

In this variant, the robber has a speed s and a cop has a speed s′ ≤ s. A cop can
capture the robber if the cop can move to the vertex occupied by the robber.

4.1. Faster robber in Gk.

Theorem 11. Let G = (V,E) be a graph and k be an positive integer. Let F k =
{(u, v) ∈ V × V |d(u, v) = k} and Gk = (V,E ∪ F k). Then G ∈ CWFR(k, k) iff
Gk ∈ CW .

Proof. If k = 1, it is trivial. If k ≥ 2, by Theorem 2, G ∈ CWFR(k, k) iff V can be
ordered as {v1, v2, ..., vn} such that ∀i, ∃j > i such that Nk(vi, G\vj)∩Xi ⊆ Nk(vj)
in G where Xi = {vi, vi+1, ..., vn} (*).
We denote Nk[u] = N [u] in Gk andNk(u) = N(u) in Gk. By Theorem 1, Gk ∈ CW
iff V can be ordered as {v1, v2, ..., vn} such that ∀i, ∃j > i such that Nk[vi] ∩Xi ⊆
Nk[vj ] (**).
Now we need to prove that if the order of vertices in V satisfies (*) , it also satisfies
(**) and vice verse.
⇒: Let V = (v1, ..., vn) satisfy (*). We need to prove ∀1 ≤ i < n, ∃j > i such that
Nk[vi] ∩Xi ⊆ Nk[vj ]. Let y ∈ Xi+1 be the vertex satisfying Nk(vi, G \ y) ∩Xi ⊆
Nk(y). We will prove that we can take vj = y. Consider some vertex z ∈ Nk[vi]∩Xi,
we need to prove that z ∈ Nk[y]. By definition, d(vi, z) ≤ k in G. There are 3 cases:
(i) If z = y, z ∈ Nk[y].
(ii) If z �= y and y is not in a shortest path from vi to z in G, then z ∈ Nk(vi, G \
y) ∩Xi ⊆ Nk(y) . Hence, z ∈ Nk[y].
(iii) If z �= y and y is in shortest paths from vi to z in G, then, d(y, z) < k in G.
Hence, z ∈ Nk[y].
So, ∃vj = y such that j > i and Nk[vi] ∩Xi ⊆ Nk[vj ].
⇐: Let V = (v1, ..., vn) satisfy (**). We need to prove ∀1 ≤ i < n, ∃j > i
such that Nk(vi, G \ vj) ∩ Xi ⊆ Nk(vj). Let y ∈ Xi+1 be the vertex sastifying
Nk[vi]∩Xi ⊆ Nk(vj). We will prove that we can take vj = y. Consider some vertex
z ∈ Nk(vi, G \ vj), we need to prove that z ∈ Nk(vj) in G. Because d(vi, z) ≤ k in
G and z ∈ Xi, therefore, z ∈ Nk[vi] ∩Xi ⊆ Nk(vj) . Because z �= vj , z ∈ Nk(vj).
So ∃j > i such that Nk(vi, G \ vj) ∩Xi ⊆ Nk(vj). �
Conjecture 2. Let G = (V,E) be a graph. Let F = {(u, v)|d(u, v) = 2, N(u) ⊆
N(v)} and G′ = (V,E ∪ F ). The question is if G′ ∈ CW (1), then G ∈ CWRC(1).

4.2. Faster Robber in Square-Grid.
This section presents the theoretical result of “Game of Cops and Faster Robber
in Square-Grid” which the speed of cops is 1 and the speed of robber is 2. This
version of games is investigated by Fomin et al. [9] with the proof that the sufficient
number of cops to capture the robber in the n×n square grid is Ω(

√
logn). In this

section, we will prove that the upper bound of the cop number is �n− 1/4�+ 4.

Theorem 12. Let n be an integer greater than 4 and G be a n × n square grid,
then cn(G) ≤ �(n− 1)/4�+ 4.

Let denote ith cop by Ci. For a square gird m × n, let row(i)(resp.,col(j)) be the
set of vertices in the ith row (resp., the jth column). The vertex v in row(i)∩col(j)
has abs(v) = j, ord(v) = i. Before giving the proof of this theorem, we consider
the following lemmas:
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Lemma 8. Let G(m,n) be a square grid m × n (m,n ≥ 1). If h cops (with speed
= 1) are sufficient to capture the robber (with speed s ∈ N and s ≥ 2), then h
cops are sufficient to capture the robber in a square grid G’(m’,n’) (m ≥ m′ ≥ 1 ;
n ≥ n′ ≥ 1).

Proof. We will prove the lemma is true for a square grid G′(m,n−1). By induction
and symmetry, the claim is true for grid G′(m′, n′) where m′, n′ ∈ N , m ≥ m′ ≥ 1
, n ≥ n′ ≥ 1. We have G′ = G \ col(n− 1). Let Sr = (r1, r2, ..., rp, ...) be the valid
sequence of moves of the robber in G′. Obviously, Sr also is the valid sequence of
moves of the robber in G. Suppose that the cops play the winning strategy σ with
the sequence of moves of Ck in G as Sck = {ck1 , ck2 , ..., ckp, ....} where 1 ≤ k ≤ h.
In G′, the cops play the strategy Σ with the valid retract sequence of moves as

S′
ck = (ck1

′
, ck2

′
, ..., ckp

′
, ...) where 1 ≤ k ≤ h where

cki
′
=

{
cki if abs(cki

′
) < n− 1

(n− 2, ord(cki )) ,otherwise.

We will prove that S′
ck is valid sequence of moves by showing that dist(cki

′
, cki+1

′
) ≤

1, ∀i ∈ N . For convenience, we will write ci, c
′
i instead of cki , c

k
i
′
.

If c′i ≡ ci, c
′
i+1 ≡ ci+1, it is trivial.

If c′i �= ci, c
′
i+1 �= ci+1, then c′i = (n−2, ord(ci)) and c′i+1 = (n−2, ord(ci+1)). Then

dist(c′i, c
′
i+1) = |ord(ci+1)− ord(ci)| ≤ dist(ci, ci+1) ≤ 1.

If c′i �= ci, c
′
i+1 ≡ ci+1, then c′i = (n−2, ord(ci)), ci = (n−1, ord(ci)) and abs(ci+1) ≤

n− 2. Because dist(ci, ci+1) = |abs(ci+1)− abs(ci)|+ |ord(ci+1)− ord(ci)| ≤ 1 and
|abs(ci+1)− abs(ci)| = |(n− 2)− (n− 1)| = 1, then ord(ci+1) = ord(ci). Therefore
c′i ≡ c′i+1, then dist(c′i, c

′
i+1) = 0 < 1.

If c′i ≡ ci, c
′
i+1 �= ci+1, the prove is analog. Because σ is the winning strategy,

suppose the robber is captured by the cop Ck at some step q in G. Because
abs(rq) = abs(ci1) < n − 1, so ciq

′ ≡ ciq. Hence, the robber also is captured by the

cop Ck at the step q in G′. �
Let �(n − 1)/4� = k. Hence, n ∈ {4k − 2, 4k − 1, 4k, 4k + 1}. We only need to
prove the theorem with n = 4k+1, then by Lemma 8, it is true for the other cases.
Before going in theorem’s proof, we consider Lemma 9.

Lemma 9. Let G be a square grid m× (4k+ 1) where m ≥ 4 , k ≥ 1. In the rows
l and l + 1 , (k + 1) cops are positioned as follows:
C2i in (8i, l) for 0 ≤ i ≤ �k/2�
C2i+1 in (8i+ 4, l+ 1) for 0 ≤ i ≤ �(k − 1)/2� − 1
If the robber is at some arbitrary vertex of row l + 2 or l + 3 and never moves to
row l + 4 and cops moving first, the cops will have a strategy to avoid the robber
move to the row l.

Proof. The initial configuration (the configuration O) is shown in Figure 15. The
circles represent the cops while the square represents the robber. In the next fig-
ures, the circles always represents the cops.
By definition, there exists a number i such that abs(Ci) ≤ abs(R) ≤ abs(Ci+1).
Case 1: 0 < i < k − 1. By symmetry, without loss of generality , we assume that
i is even. Hence, 2 ≤ i ≤ k − 2. The first move of the cops depends on abs(R),
which leads 3 typical configurations of the cops and the robber. For convenience,
we assume that the cops will not capture the robber at the first move.
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l

l+1

l+2
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l+4
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i−1
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C
i+1

C
i

Figure 15. The initial configuration O

(i) If abs(Ci) = abs(R), the robber can occupy the square points as illustrated in
Figure 16. The cops Ci remain at his position while the cops Cj shift to the right
if 0 ≤ j < i and shift to the left if k ≥ j > i. Hence, the configuration of the cops
and the robber changes to the configuration A as illustrated in Figure 16 and this
is the robber’s turn.

l

l+1

l+2

l+3

l+4

l+5

R

C
i−1 C

i

C
i+1

Figure 16. The configuration A

(ii) If abs(Ci) < abs(R) < abs(Ci+1), the robber can occupy the square points as
illustrated in Figure 17. The cops Cj will shift to the right if 0 ≤ j ≤ i and to the
left if i + 1 ≤ j ≤ k. Hence, the configuration of the cops and the robber changes
to the configuration B1 as illustrated in Figure 17 and this is the robber’s turn.

By symmetry, we consider the configuration B2 as illustrated in Figure 18 :

(iii) If abs(Ci+1) = abs(R), the robber can occupy the square points as illustrated
in Figure 19. The cop Ci remain at his position while the cops Cj shift to the right
if 0 ≤ j < i and to the left if k ≥ j > i. Hence, the configuration of the cops and
the robber changes to the configuration C as illustrated in Figure 19 and this is the
robber’s turn.

After the first move of the cops, we consider the robber’s move.
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Figure 17. The configuration B1
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Figure 18. The configuration B2
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Figure 19. The configuration C

Configuration A
In the configuration A, all possible positions for the robber’s move are the square
or triangle points as illustrated in Figure 20.
Let consider 5 cases:

A.i. If the robber only moves within the square points, the cops remain at their
positions. Hence, at the robber’s turn, the configuration of the cops and the robber
is still the configuration A.

A.ii. If the robber moves to the � points, the cop Ci shifts 1-vertex to the left
while the other cops remain at their positions. Hence, the configuration of the cops
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Figure 20. All possible positions for the robber’s move from the
configuration A

and the robber changes to the configuration B2.

A.iii. If the robber moves to the � points, the cop Ci shifts 1-vertex to the right
while the other cops remain at their positions. Hence, the configuration of the cops
and the robber changes to the configuration B1.

A.iv. If the robber moves to the � point as (abs(Ci)−1, l+1), then the cops Cj

with j ≥ i shift 1-vertex to the left while the other cops remain at their positions.
Hence, the configuration of the cops and the robber changes to the new configura-
tion D1 as illustrated in Figure 21
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Figure 21. The configuration D1

We remark that in the D1 configuration, the cop Cj is shifted 1-vertex to the right
if 0 ≤ j < i and 2-vertex to the left if i+ 1 ≤ j ≤ k.

A.v. If the robber moves to the � point as (abs(Ci)+1, l+1), then the cops Cj

with j ≤ i shift 1-vertex to the right while the other cops remain at their positions.
Hence, the configuration of the cops and the robber changes to the new configura-
tion D2 as illustrated in Figure 22
We remark that in the D2 configuration, Cj is shifted 2-vertex to the right if
0 ≤ j < i and 1-vertex to the left if i+ 1 ≤ j ≤ k.
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Figure 22. The configuration D2

Configuration D1
Let consider the configuration D1. It is the robber’s turn and all possible positions
for the robber’s move are the triangle points as illustrated in Figure 23
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Figure 23. All possible positions for the robber’s move in the
configuration D1

D1.i. If the robber moves to the � points, the cops Cj with j > i shift 1-vertex
to the right while the other cops remain at their positions. The configuration of
the cops and the robber changes to the configuration B2.

D1.ii. If the robber moves to the � point, the cops Cj with j ≥ i shift 1-vertex
to the right while the other cops remain at their positions. The configuration of
the cops and the robber changes to the configuration A.

Configuration D2
Let consider the configuration of the cops and robber be D2. It is the robber’s turn
and all possible positions for the robber’s move are the triangle points as illustrated
in Figure 24

D2.i. If the robber moves to the � points, the cops Cj with j ≤ i shift 1-vertex
to the right while the other cops remain at their positions. The configuration of
the cops and the robber changes to the configuration A.
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Figure 24. All possible positions for the robber’s move in the
configuration D2

D2.ii. If the robber moves to the � points, the cops Cj with j < i shift 1-vertex
to the right while the other cops remain at their positions. The configuration of
the cops and the robber changes to the configuration B1.

Configuration C.
Let consider the configuration C. It is the robber’s turn and all possible positions
for the robber’s move are the square and triangle points as illustrated in Figure 25
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Figure 25. All possible positions for the robber’s move in the
configuration C

C.i. If the robber moves to the square point, all the cops remain at their posi-
tions, hence the configuration of the cops and the robber still is the configuration C.

C.ii. If the robber moves to the � points, all the cops remain at their positions
except the cop Ci+1 shifting 1-vertex to the left. Then the configuration of the cops
and the robber changes to the configuration B1.

C.iii. If the robber moves to the � points, all the cops remain at their positions
except the cop Ci+1 shifting 1-vertex to the right. Then the configuration of the
cops and the robber changes to B2 (by considering Ci+2 as Ci) if i + 2 < k. If
i = k − 2 (k is even), the configuration of the cops and the robber changes to
B2− border which we will discuss later.
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Configuration B1.
Let consider the configuration B1. It is the robber’s turn and all possible positions
for the robber’s move are the square and triangle points as illustrated in Figure 26
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Figure 26. All possible positions for the robber’s move in the
configuration B1

B1.i. If the robber moves to the square points, all the cops remain at their posi-
tions. Hence, the configuration of the cops and the robber still is the configuration
B1.

B1.ii. If the robber moves to the � points, all the cops remain at their positions
except the cop Ci shifting 1-vertex to the left. Then the configuration of the cops
and the robber changes to the configuration A.

B1.iii. If the robber moves to the � points, all the cops remain at their positions
except the cop Ci+1 shifting 1-vertex to the right. Then the configuration of the
cops and the robber changes to the configuration C.

B1.iv. If the robber move to the � points, all the cops shift 1-vertex to the
right except Ci shifting 1-vertex to the left. The configuration of the cops and the
robber change to the configuration B2′ as illustrated in Figure 27.

We remark that in the configuration B2′, the cops Cj with 0 ≤ j < i are shifted
2-vertex to the right while the cops Cj with i ≤ j ≤ k remain at the same positions
in comparison with their positions in the initial configuration O. It means that the
configurationB2′ is equivalent to the configurationB2 shifting 1-vertex to the right.

B1.v. If the robber move to the � points, all the cops shift 1-vertex to the
left except Ci shifting 1-vertex to the right. If i < k − 2, the configuration of the
cops and the robber changes to the configuration B2′′ as illustrated in Figure 28,
otherwise, it is the configuration B2′′ − border which we will discuss later .

We remark that in the configuration B2′′, the cops Cj with i+1 < j ≤ k are shifted
2-vertex to the left while the cops Cj with 0 ≤ j ≤ i + 1 remain at their positions
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Figure 27. The typical configuration B2′
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Figure 28. The configuration B2′′

in comparison with their positions in the initial configuration O. It means that the
configuration B2′′ is equivalent to the configuration B2 shifting 1-vertex to the left.

Configuration B2’.
Let consider the configuration B2′. It is the robber’s turn and all the possible
positions for robber are the triangle points as illustrated in Figure 29

B2’.i. If the robber moves to the � points, all the cops shift 1-vertex to the left.
The configuration of the cops and the robber changes to the configuration B2.

B2’.ii. If the robber moves to the � points, all the cops shift 1-vertex to the left
except Ci remaining at his position. The configuration of the cops and the robber
changes to the configuration A.

B2’.iii. If the robber moves to the � points, all the cops shift 1-vertex to the
left except Ci shifting 1-vertex to the right. The configuration of the cops and the
robber changes to the configuration B1.

Configuration B2”. Let consider the configuration B2′′. All possible positions
for the robber are the triangle points as illustrated in Figure 30
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Figure 29. All possible positions for robber’s move from the con-
figuration B2’
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Figure 30. All possible positions for robber’s move from the con-
figuration B2′′

B2”.i. If the robber moves to the � points, all the cops shift 1-vertex to the
right. The configuration of the cops and the robber changes to the configuration B2.

B2”.ii. If the robber moves to the � points, all the cops shift 1-vertex to the
right except Ci+1 remaining at his position. The configuration of the cops and the
robber changes to the configuration C.

B2”.iii. If the robber moves to the � points, all the cops shift 1-vertex to the
right except Ci+1 shifting 1-veretx to the left. The configuration of the cops and
the robber changes to the configuration B1.
We remark that the configuration of the cops and the robber always changes to one
of the configurations A, B1, B2 or C from the configurations B2′ and B2′′. By
symmetry, analysis of the configuration B2 is analog to the configuration B1.
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Case 2: Now we consider case 2 where i = k − 1. There are 2 sub-cases:
Case 2.1: k is even.
We only need to consider the position of the robber such that ord(Ck−1) < ord(R) ≤
ord(Ck) because if ord(R) = ord(Ck−1), it is the case 1 with i = k − 2.
If ord(Ck−1) < ord(R) < ord(Ck), all the cops shift 1-vertex to the right except
the cop Ck shifts 1-vertex to the left. Then the configuration of the cops and the
robber changes to the configuration B2 − border as illustrated in Figure 31 where
the square points represent all the possible positions of the robber.

l

l+1

l+2

l+3

l+4

l+5

C
k−2

C
k−1 C

k

R

Figure 31. The configuration B2− border

If ord(R) = ord(Ck), all the cops shift 1-vertex to the right except the cop Ck re-
maining at his position. Then the configuration of the cops and the robber changes
to the configuration A− border as illustrated in Figure 32 where the square points
represent all the possible positions of the robber.
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Figure 32. The configuration A− border

By analog to Case 1, we have the configuration D1− border as illustrated in Figure
33 where the square point represent all the possible positions of the robber.
By analog proof as Case 1, from the configuration B2− border, the cops have the
strategy to move after the robber’s move so that the configuration of cops and the
robber can change to one of the configurations B2− border, A− border, C and the
new B1′ as illustrated in Figure 34. In this particular case, i = k − 2.
By the analog analysis, from the configuration B1′, the configuration of the cops
and the robber can change to one of the configurations C,B1, B2 or B2 − border.
Also by the analog analysis, from the configuration A − border, the configuration
of the cops and the robber can change to one of the configurations A − border,
B2− border and D1− border.
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Figure 33. The configuration D1− border
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Figure 34. The configuration B1′

Also by the analog analysis, from the configuration D1− border, the configuration
of the cops and the robber can change to one of the configurations B2− border or
A− border.
We also consider the configuration B2′′ − border as illustrated in Figure 35 where
the square points represent all the possible positions of the robber.
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Figure 35. The configuration B2′′ − border

By analog proof, we have that the configuration of cops and robber can changes to
C,B1, B2− border.
Case 2.2: k is odd. We only need to consider position of the robber such that
ord(Ck−1) < ord(R) ≤ ord(Ck) because if ord(R) = ord(Ck−1), it is the case 1
with i = k − 2.
If ord(Ck−1) < ord(R) < ord(Ck), all the cops shift 1-vertex to the right except
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Ck shift 1-vertex to the left. Then the configuration of cops and robber changes to
the configuration B1 − border as illustrated in Figure 36 where the square points
represent all the possible positions of the robber.
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Figure 36. The configuration B1− border

If ord(R) = ord(Ck), all the cops shift 1-vertex to the right except the cop Ck re-
maining at his position. Then the configuration of the cops and the robber changes
to the configuration C − border as illustrated in Figure 37 where the square points
represent the possible positions of the robber.
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Figure 37. The configuration C − border

The analysis of the typical configuration B1− border and C − border is analog as
B1 and C.
Case 3: If i = 0, by symmetry, the analysis of i = 0 is analog as Case 2.1 where k
even.
Let S be the set of the configurations O, A,B1,B2,C,D1,D2,A−border,B1−border,
B2− border,C − border,B1′,B2′,B2′′,B2′′ − border. We remark that after the rob-
ber’s move, the cops always have the corresponding move such that the configura-
tion of cops and robber belongs to S. Because there is no configuration in S such
that the robber is on row l; hence, the cops have a strategy to avoid the robber
move to row l by applying the corresponding move for each configuration and the
robber’s move. �
Remark 2. If the configuration of the cops and the robber belongs to
X = {A,B1, B2, C,A− border,B1− border,B2− border, C− border}, the cops can
change to their positions to the same as those in the configuration O after 1 move.

Remark 3. If the configuration of the cops and the robber belongs to
Y = {B1′, B2′, B2′′, B2′′ − border}, wherever the robber moves, the cops can move
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correspondingly and the configuration of the cops and the robber changes to a con-
figuration in X.

Remark 4. If the robber stays on row l + 2 or l + 3, at the robber’s turn, the
configuration of the cops and the robber always belongs to X ∪ Y .

Proof. We will prove that with k+4 cops in square grid n×n where n = 4k+1, the
cops have a strategy to capture the robber after finite steps. The k + 1 cops called
guard cops are put on rows 0 and 1 as follows: The cop Ci is put at (4i, 0) if i is even
and at (4i, 1) if i is odd. In addition, 3 cops called search cops are put at the vertices
(0, 2), (0, 3) and (0, 4). There search cops will move from left (colum 0) to right
(column n) and vice verse in case 3, 4 as below. Now, we consider 4 cases as follows:

Case 1: The robber is on row l ≤ 5. All the cops will move up vertically until
ord(R) − ord(C0) ≤ 4. In this situation, this configuration of the cops and the
robber is analog to the configuration in cases 3 or 4.

Case 2: If at the initial configuration, the robber is on row 0 or 1. We will prove
that there exists a step that the robber moves to row 3 while all the guard cops
remain at their positions. By contradiction, suppose that the robber’s movement
is restricted in the rows 0, 1, 2. First, the three search cops (on the vertices (0,2),
(0,3), (0,4)) move to (0,0), (0,1), (0,2). Then they move from the left (column 0)
to the right (column n) to search three rows 0, 1, 2. Because the robber cannot
pass through three search cops, so after one move of the cops, the search cops get
closer 1-vertex to the right border. So the robber is captured after finite steps if he
does not move to row 3. Hence, there must exist some step that the robber moves
to row 3 and the next turn is the cops’ turn. Hence, the configuration of the k + 1
guard cops and the robber changes to Case 4. By maintaining the configuration of
the guard cops and the robber belonging to case 1 or 3 or 4, there search cops can
move back to (0,2), (0,3), (0,4).

Case 3: The robber is on row 4.

(a) If the robber’s movement is restricted in row 4, k + 1 guard cops remain at
their initial positions.

(b) If at one step, the robber moves to line 2 or 3, the configuration of the guard
cops and the robber changes to case 4.

(c) If at one step, the robber moves up to row 5 or 6, the configuration of the
guard cops and the robber changes to Case 1. Then k+1 guard cops can move up
at least 1 vertex until ord(R) − ord(C0) ≤ 4.

We remark that three search cops move on rows 2, 3, 4 from left to right; therefore,
the robber cannot stays on row 4 infinitively. So the configuration of the guard
cops and robber must change to Case 1 or Case 4 at some step.

Case 4: If the robber is on row 2 or 3.
We will prove that in Case 4, k + 1 guard cops use the modified strategy from
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Lemma 9 to avoid the robber move to row 0. Furthermore, after finite steps, co-
operating with three searching cops, k + 1 guard cops can move from rows 0, 1 to
rows 1, 2 and avoid the robber move to row 1.
We define the modified strategy as:
(4-a) If the robber moves within the rows 2 and 3, the guarding cops use the strat-
egy as Lemma 9.
(4-b) If the robber moves up 1-vertex from row 3 to row 4, or move up 2-vertex
from row 2 to row 4, all k + 1 cops move up 1-vertex from rows 0, 1 to rows 1, 2.
So the type of configuration in X ∪ Y remains unchanged but the row l changes
from 0 to 1. Applying the strategy as Lemma 9, the k + 1 guard cops can avoid
the robber move to row 1.
(4-c) If the robber moves up 2-vertex from row 3 to row 5, all the k+1 guard cops
move up 1-vertex from rows 0, 1 to rows 1, 2. If in the next move of the robber:

(4-c-i) The robber moves to row 3 or 4, by considering the robber at (abs(R), 5)
as (abs(R), 4), all the k + 1 guard cops move as Lemma 9 and avoid the robber
move to row 1.

(4-c-ii) If the robber moves to row l ≥ 5 and the positions of the guard cops as
the same as those in one of the configurations in X , the guard cops will change
their positions to those in the configuration O. The configuration of the guard cops
and the robber changes to case 1 (if l > 5)or case 2(if l = 5).

(4-c-iii) If the robber moves to row l ≥ 5 and the positions of the guard cops is
the same as those in one of the configurations in Y , the guard cops will change to the
positions as those in the configuration X by considering the robber at (abs(R), l)
as (abs(R), 4) and applying the strategy as Lemma 9. So the configuration of the
guard cops and the robber changes to 4-c-ii.
We remark that if the robber moves up vertically 1-vertex or 2-vertex, the guard
cops can also move up 1-vertex and avoid the robber move to row 1.

(4-d) Now let consider the case 4-d where the robber does not move up vertically
1-vertex or 2-vertex.
Because 3 search cops move from left (column 0) to right (column n), then there
exists one step that the robber has to move to row l ≥ 5. Because the robber
cannot move up vertically 2-vertex, in order to move to row l ≥ 5, he has to move
to from row 3 to row 4 then from row 4 to row 5.
After the robber moves from row 3 to row 4, if the positions of the guard cops is
the same as those in one of the configurations in X , the guard cops will change
their positions to those in the initial configuration O. If the positions of guard cops
are the same as those in one of the configurations in Y , the guard cops will change
their positions to those in one of the configurations in X by applying the strategy
in Lemma 9 and considering the position of the robber at (abs(R), 4) as (abs(R), 3).
So when the robber is on row 4, the positions of the guard cops are the same as
those in one of configurations of X ∪ {O}.
After the robber moves from row 4 to row 5, if the positions of the guard cops are
the same as those in the configuration O, all the guard cops will move up at least
1-vertex as Case 1. If the positions of guard cops are the same as those in one of
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configurations in X , all the guard cops will change the positions the same as those
in the configuration O.
Now the robber stays on row 5 and the k + 1 guard cops stay at the positions as
those in the initial configuration O.
If at the next move, the robber moves to some row l ≥ 5, all the guard cops can
move up 1-vertex as Case 1.
If at the next move, the robber moves to row 3 or 4, so the robber is still able to
be captured by there search cops when they keep moving from the left to the right.
Because after finite steps, there search cops finish searching from the left to the
right, the robber has to escape by moving to row 5 and the next move he does not
go back to row 3 and 4. Hence, obviously, the guard cops can move up 1-vertex
and avoid the robber move to row 1.
We remark that after the guard cops move to row 1, if the robber on row 3,4, the
configuration of the guard cops and the robber belongs S. If the robber on row
l ≥ 5, the configuration of the guard cops and the robber changes to Case 1.
So the guard cops can repeat the strategy to move up and after finite steps, the
guard cops can move to rows n− 3, n− 2 and avoid the robber move to row n− 3.
Finally, the search cops search the rows n− 2, n− 1, n and capture the robber after
finite steps. �

5. Conclusion

In this report, we present the novel results in the radius capture and faster rob-
ber variants with particular graphs such as square grid, k-chordal, outerplanar,
k-outerplanar, triangulated.
In the radius capture variant, we proved that ifG is k-chordal graph,G ∈ CWRC(k−
4) and cn(G) ≤ k−4 with radius capture 1. We also proved that outerplanar graph
G ∈ CWRC(1) if and only if G admits no internal face whose length > 5. In ad-
dition, we found the sufficient conditions for k-graph and triangulated graphs to
be in CWRC(1). For future work, we will try to characterize the planar graphs
in CWRC(1). We have gained the preliminary result as if an outerplanr graph
G = (V,E) satisfying V can be ordered as (v1, v2, ..., vn) such that (vn−1, vn) ∈ E,
∀i < n− 1, ∃j > i, d(vi, vj) = 2, N [vi] ∩Xi ⊆ N2(vj) where Xi = {vi, vi+1, .., vn},
then G ∈ CWRC(1).
In the faster robber variant, we found the relation between CW and CWFR(k, k)
and proved formally the upper bound of cops number in n × n square grid with
speed of robber 2 and speed of cop 1 as �(n− 1)/4� + 1. Because there is big gap
between the lower bound as Ω(

√
logn) and the upper bound as �(n− 1)/4�+1, we

will try to find the better lower bound and upper bound for the cops’ number in
n× n square grid.
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