
The k-Shortest Simple Path Problem Using

Hub-Labelling

Eleni Batziou

April 25, 2018

1 Introduction

In the present work, we introduce an efficient algorithm for the k-Shortest Sim-
ple Paths (k − SSP ) problem. By this definition, one refers to the k shortest
paths from a source s to a sink t in a graph G = (V,E), without including
cycles. Cycles are defined as multiple visits in a vertex or edge inside a path.
The core ingredient in our algorithm is the use of a landmark labelling tech-
nique. This method, called Hub-Labelling, basically constitutes a method of
storing and efficiently extracting all-pairs shortest path distances in a graph.
The basis of most current methods on the k−SSP problem is Yen’s algorithm.
This algorithm uses the notion of detour edges, namely gradually includes non-
shortest path edges as small detours in an already calculated shortest path.
Yen’s algorithm works by dividing a shortest path in a prefix and suffix path,
for each node in this path uses Dijkstra to calculate the shortest path from the
deviating node to the sink.
Our algorithm relies on Yen’s technique, and provides an alternative method of
calculating the shortest simple path from the deviating node to the sink. We
use hub-labelling to improve upon Dijkstra’s bound, and output the shortest
simple path in a more efficient manner, rather than exhaustively examining the
entire graph for every deviating node.

1



2

2 Yen’s Algorithm for the k − SSP Problem

Yen’s algorithm, published by Jin Y. Yen in 1971, computes k single-source
shortest simple (loopless) paths in a graph with non-negative edge costs. Ini-
tially, the algorithm uses some known algorithm to compute the initial shortest
simple path from a source s to a sink t, and then proceeds by finding k − 1
deviations of the optimal path.
Formally, the algorithm receives as input a graph G = (V,E), a source s, a
sink t, and the number K, which is the number of shortest paths required from
s to t. The output produces by the algorithm are the K-SSPs, stored inside a
container A, in decreasing order from A[1] to A[k].
The process is divided in two main parts. The first part consists of calculating
the shortest simple path from source s to sink t. The second part consists of
finding k − 1 deviations of this particular path.
The algorithm makes use of two containers: A for the actual SSPs, and B for
the potential SSPs. Therefore, A1 refers to the smaller SSP from s to t. One
can deploy any shortest path algorithm to determine this path. In Yen’s original
version, Dijkstra’s algorithm is used to calculate A1.
Our goal is to determine the paths Ai, where 2 ≤ i ≤ k. In order to calculate
Ak, the k-th SSP, we assume that Ak−1 has previously been found. First, one
has to determine all the deviations, for each node in the (k − 1)-th SSP, and
then to chose the best solution among those candidate paths. The number of
deviating paths from a single path is equal to the number of nodes in this Ak−1

path.
The last phase can be described by the following procedure: Let i be the devi-
ating node, or spurNode as it is mentioned in the original version, when trying
to determine Ak. First, we find the prefix path (namely, the subpath in Ak−1

including all nodes before i in the previous SSP). This constitutes the rootPath.
This means that, for each iteration of j from 1 to k − 1, we remove the first i
nodes of the (j − 1)-th SSP, in order to result with a unique SSP, not cycling
with nodes from the previous SSPs. Additionally, we remove the edge between
e = (i, i+ 1) that was included in the previous (j − 1)-th SSP.
Then, we remove the nodes and edges of the rootPath of j− 1, plus the edge e.
We then run a shortest path algorithm, from the spurNode i to sink t, in order
to result with the remaining SSP, the replacementPath. The removal of the
previous edges ensures that the new path is different from the (j − 1)-th SSP.
Finally, from the shortest path property, by combining the rootPath and the
replacementPath, we result with Ak

i, that is the replacement path for each
deviating node i from path A[k − 1]. The latter path is then added to the con-
tainer B, while restoring all the original nodes and edges in the graph G.
After calculating a replacement path for all deviating nodes from A[k − 1], we
extract the path Ak from B as the path with the lowest cost. The path is in-
serted to A, and the algorithm continues with the next iteration. If the number
of paths that are present inside B is equal or greater to the number of paths
remaining to be found, then the algorithm terminates by moving these shortest
paths from B to A.
Our contribution to Yen’s algorithm, described in detail in Section 4, is that
we present an alternative method of computing the replacement path problem.
In our technique, we use hub-labelling, in addition to a modified Breadth-First
Search, in order to determine the shortest path from spurNode to sink t.



3

Algorithm 1 Modified Yen’s Algorithm

1: function modifiedYens(Shortest path list A, Labels L, Graph G, source
s, sink t, spurNode x, int K)

2: // Determine the shortest path from the source s to the sink t.
3: A[0] = Dijkstra(G, s, t);
4: // Initialize the heap to store the potential kth shortest path.
5: B = [];
6: // Here we maintain information about a potential change in level for

the nodes of the graph. Change of level in the BFS tree means that the
shortest path information on the label may not be usable, as it may include
nodes from a previous SSP.

7: modified = [];
8: for k from 1 to K do
9: // The spur node ranges from the first node to the next to last node

in the previous k-shortest path.
10: for i from 0 to size(A[k − 1])− 1 do
11: // Spur node is retrieved from the previous k-shortest path, k-1.
12: spurNode = A[k-1].node(i);
13: // The sequence of nodes from the source to the spur node of the

previous k-shortest path.
14: rootPath = A[k-1].nodes(0, i);
15: // Run a BFS in the original graph, and output the level of each

node.
16: oldLevel, backEdgeCount = levelBFS(G, spurNode);
17: for each path p in A do
18: if rootPath == p.nodes(0, i) then
19: // Remove the links that are part of the previous shortest

paths which share the same root path.
20: remove p.edge(i,i + 1) from G;
21: end if
22: end for
23: for each node rootPathNode in rootPath except spurNode do
24: remove rootPathNode from G;
25: end for
26: // Run a BFS in the modified graph, excluding nodes from previ-

ously found SSPs that may cause cycling.
27: newLevel, backEdgeCount = levelBFS(G, spurNode);
28: for each node u in G do
29: if oldLevel[u] != newLevel[u] then modified[u] = 1
30: end if
31: end for
32: // Calculate the spur path from the spur node to the sink.
33: spurPath = replacementPath(G, L, spurNode, sink, modified,

backEdges);
34: // Entire path is made up of the root path and spur path.
35: totalPath = rootPath + spurPath;
36: // Add the potential k-shortest path to the heap.
37: B.append(totalPath);
38: // Add back the edges and nodes that were removed from the

graph.
39: restore edges to G;
40: restore nodes in rootPath to G;
41: end for
42: end for
43: end function



4

3 Akiba’s Algorithm for Pruned Landmark La-
belling

Akiba et al. proposed an efficient exact method for shortest-path distance
queries in large networks. This method uses preprocessing in a graph G, in
order to result in a container with all-pairs shortest paths. It belongs to a
broader family of algorithms performing distance labelling. In this setting, for
each node u ∈ V , we store a subset S(u) ⊆ V of other nodes, such that, for each
queried pair u, v ∈ V we get:

d′(u, v) = minw∈S(u)∩S(v)d(u,w) + d(w, v)

where d represents the shortest path distance between two nodes.
A core notion in this study is that of a hubset. A hubset Hu ⊆ V of a node u
in a graph G is a set of other nodes such that, if Puv is the shortest path from
u to v in G:

∀u, v ∃a ∈ Hu ∩Hv, a ∈ Puv

This algorithm takes as input a graph G = (V,E) and an ordering of the vertices,
and outputs the hub-set of each node, with a few modifications.
The output of the algorithm complies to the following form:

L(u) = {(w, d(u,w))}w∈Hu

where L[u] is the label of u. The shortest path distance d(u, v) between two ver-
tices u and v can therefore be computed as min{δ+ δ′ | (w, δ) ∈ L(u), (w, δ′) ∈
L(v)}. The family of labels {L(u)} is called a 2-hop cover.
The main modification applied in this paper is the introduction of the notion of
pruning. A naive implementation of the above algorithm for labelling yields a
complexity of O(nm) preprocessing time, as well as O(n2) space for storage of
information. The pruning process takes place during the BFS searches.
We assume that S is a set of vertices and suppose that we already have labels
capable of producing the correct distance between any two vertices, if a shortest
path between them passes through a vertex in S. In this case, if there exists a
vertex w ∈ S such that d(v, u) = d(v, w)+d(w, u), we prune u. This means that
the resulting label L(v) does not contain information about u, but only about
w, since the shortest path from v to u passes from an already calculated vertex
w.
The result of the above process is an improved, reduced label size. This is a
crucial improvement, since for the majority of hub-labelling procedures and al-
gorithms, the label size is not known or can be arbitrarily large. There is not
an exact known upper bound for the label size in any algorithm, but we do
know that, by using this pruned landmark labelling technique, the label size is
significantly smaller.
To conclude, Akiba’s algorithm provides a good trade-off between label size and
query time. An important aspect of this algorithm is that it produces label with
minimum size, and their minimality can be formally proved. Thus, by employ-
ing this algorithm to produce a labelling in a graph, we can guarantee that our
complexity remains minimal. By query time, one defines the time required to
output the exact shortest path between any two vertices in a graph.



5

4 Replacement Path Algorithm

In the current section, we present our version for the replacement path problem,
using information extracted by the pruned hub-labelling procedure.

Our algorithm takes as input a graph G, spurNode s, sink t, the container A
of the previously calculated SSPs, and two variables, a matrix modified and a
flag backEdges. These variables result from the modified BFS algorithm. The
output of the algorithm is the spurPath, the SSP from spurNode to t. As
discussed above, a key feature of our algorithm is the modified BFS process,
levelBFS, described in Section 5. This procedure enables us to check if some
information from the labels results in cycling with previous SSPs or not.

Instead of running a Dijkstra, as is the initial version of Yen’s algorithm,
we propose a different version, using information from labels, created by a hub-
labelling process. Here, we make use of Akiba’s algorithm for pruned landmark
labeling, which provides an optimal tradeoff between query time and label size.
Label size is crucial, since it defines the complexity of our algorithm.

In most hub labeling algorithms, the maximum size of a label is not known or
upper bounded. Therefore, even though we can achieve a good query time, such
as O(2L), where L denotes the maximum size of a label, we do not know how
much information needs to be stored and examined, and the preprocessing may
result in a higher complexity than previously known algorithms. Akiba’s algo-
rithm however, by using pruning, results in a much smaller complexity, namely
it computes a labelling in O(n(n+m)), with label size upper bounded by O(n)
and query time O(n). The upper bound on the total size of all the labels for
the n nodes of the graph remains to be proved..

Our algorithm progresses by following the information extracted from the
labels. Starting from the spurNode, we proceed by examining its label, and
adding nodes in the queue, if we are allowed to do so. The latter means that,
if this label contains a node whose path is not simple, we do not enqueue this
node. This check is performed by examining if this target node is modified or
not, by the comparison of oldLevel and newLevel, as discussed below. If it is,
the node is not enqueued. If not, the node is enqueued, and we examine its
label, by following the exact same process, when it is dequeued from the queue.

The only case where we actually take into account the data from one node
i’s label towards a modified node, is when i is adjacent to the modified node.
Only then can we be sure that there is no cycling in the resulting path with
nodes used in previous SSPs, since the two nodes are direct neighbors, therefore
there is no cycle possibly occuring.



6

Another case when we do not enqueue a node is if it is below t in the newBFS
tree, and the flag backEdges is set to 0. We’ve previously set the variable
backEdges to represent if there is some node below t in the BFS tree leading
to a node in a level before t in the tree. This means that, if backEdges is set to
0, there is no possible path from nodes below t leading up to t. Therefore, the
search can stop. Otherwise, for some node j with newLevel[j] > newLevel[t],
if backEdges = 1 there exists an edge (j, i), with newLevel[i] <= newLevel[t].
Therefore, one has to examine the whole graph, even edges below t’s level.

An aspect of our algorithm that is worth mentioning is that, if for some node
i we know the shortest path to t and t is not modified, then we do not examine or
enqueue any of i’s neighbors. This statement holds, since the labels contain the
shortest path distance, therefore if t is not modified, that means that we already
know the SSP from i to t. This check aids in the optimization of our algorithm,
and is a key ingredient of its improved performance comparing to Dijkstra’s
algorithm. The only remaining aspect to be improved is the path from i to t,
given that we need to find the exact nodes to be added in the resulting spurPath.



7

Algorithm 2 Replacement Path calculation using Hub-Labelling

1: function replacementPath(Graph G, Labels L, rootnode root, sink t,
modified, backEdges)

2: // Output: Shortest path from root to sink t in spurPath
3: Q ← empty;
4: d = [];
5: parent = [];
6: tempRoot = root;
7: Q.push(tempRoot);
8: while Q not empty do
9: while (examined[tempRoot]) or ((not backEdges) and

(newLevel[tempRoot] > newLevel[t])) do
10: tempRoot = Q.pop();
11: end while
12: if (not modified[t]) and (t in L[tempRoot]) then
13: if d[t] ≤ w+d[tempRoot] then
14: d[t] = w+d[tempRoot];
15: parent[t] = tempRoot;
16: end if
17: else
18: for each node u in L[tempRoot] do
19: examined[u] = 1;
20: if (not modified[u]) and (not backEdges) and (newLevel[u] >

newLevel[t]) then
21: continue; // Go to next iteration of For-loop
22: else if (not modified[u]) or ((modified[u]) and (u == neigh-

bour(tempRoot)) then
23: if not examined[u] then
24: Q.push(u);
25: end if
26: if d[u] ≤ w+d[tempRoot] then
27: d[u] = w+d[tempRoot];
28: parent[u] = tempRoot;
29: end if
30: end if
31: end for
32: end if
33: end while
34: visiting = t;
35: reversePath ← empty;
36: neighboringQueue ← empty;
37: // We trace back the SSP leading from spurNode to sink.
38: while visiting != root do
39: reversePath.push(visiting);
40: visiting = parent[visiting];
41: end while
42: spurPath = [];
43: i ← reversePath.size()-1;
44: while i ≥ 0 do
45: spurPath[i] = reversePath.pop();
46: end while
47: return spurPath
48: end function



8

5 BFS Search and Level Calculation

In this section, we present the procedure used to calculate the levels in a BFS
tree, namely the unweighted distance, in number of hops, of a node from the
root of the BFS tree.
As input, levelBFS receives a graph G1 = (V,E), and outputs a matrix repre-
senting each node’s level in the BFS tree, as well as a flag, backEdges, indicating
if there exists any path from nodes below t’s level in the BFS tree leading back
to t.
The purpose of this procedure is the following: If some node has a different level
in the BFS tree before the removal of the edges of the previous SSPs, then it
is possible that a path leading from another node to it uses some of the edges
from the previous SSPs. This can be more clearly illustrated in the example
below.

s

t

A B

E

F

C

D

1

15

1

11 1

1 1116

Figure 1: Graph G1.

s

t A

B

E

F

C

D

1

15

1 1

1

1

1 1116

Figure 2: preBFS: BFS in the non-modified graph G1.

In the above graph G1, we consider s as the source, t as the sink and B
as the spurNode. Therefore, we compare the outcomes of the two BFS trees
rooted at B.
We assume that we have some information concerning the shortest simple path
from s to t. This path uses the edges (s,A), (A,B), (B,C), (C,D), (D, t).



9

Now, we chose B as the spurNode, from which we search for a shortest path to
t. Then, for the first BFS in the non-modified input graph G1 rooted at B (the
spurNode), A,E,C have oldLevel set to 1, and t, S, F,D, set to 2.
In this graph, by chosingB as the spurNode we result in a spurPath : (s,A), (A,B).
Following Yen’s technique, we remove the nodes and edges from all shortest
paths before the spurNode B, that is the nodes of the prefix path (or rootpath),
and the edges from B that have also been used in previous SSPs. Therefore,
we remove nodes s,A from the graph (along with their edges), that create the
rootPath, as well as edge (B,C).
The newBFS tree for the resulting graph G′ is illustrated just below.

t

B

E

F

1

1

16

Figure 3: newBFS: BFS in the modified graph G′1.

The levels in the newBFS tree are as follows: E = 1, F = 2, t= 3. There-
fore, oldLevel[t]! = newLevel[t] and hence modified[t] = 1. Also, we do not
add vertices C,D, since removing edge (B,C), as instructed by Yen’s technique,
there is no alternative path from B to C or D in the graph, and therefore are
unreachable.
After the pruned hub-labelling process, we result with label L[u] for each node
u, that contains information on the shortest paths. Our algorithm is not order-
sensitive, and therefore the order by which the labelling process is performed is
of no significance.
The data is in the form:
L[u] = {(v, w)|v : destination node of path from u, w: weight of shortest path
from u to v}.
Because of the definition of the labels, it is possible that for node E we have:
L[E] = {(A, 1), (E, 0), (t, 16)}, if one assumes that the labelling process covers
F before t -this has to do with the order by which we cover the vertices in the
pruned BFS.
The reason for the above is that the shortest path from E to t passes by node
A, and has a weight of 16.



10

Since edge (B,C) was removed, the only way of reaching t from B is by
passing through E. Therefore, edge (B,E) is bound to exist on the spurPath.
By using this information from the label, one would result with the following
spurPath: (B,E), (E,A), (A, t). Following Yen’s technique, after chosing the
spurPath, we concatenate it with the rootPath. Therefore, we get the candi-
date SSP as: (s,A), (A,B), (B,E), (E,A), (A, t), which contains a cycle! This
means that we can not use E’s shortest path to t, as given from E’s label L[E],
since its’ level has been modified.
As a result, when running the replacementPath procedure to find the shortest
path from B to t in the modified graph, excluding previous shortest path edges,
we ignore t when we come across it in some node’s label. The only case when we
can take t into account, is when examining the labels of his neighbours (adjacent
vertices).
Concluding, by checking the level of each node, one can verify if the labelling
information is actually usable or not, during the replacementPath process.



11

6 Back Edges in BFS tree

In addition to the BFS procedure described in the previous Section, we add a
check for back edges. Here, backEdges is a binary flag, demonstrating if there
are edges below t in the BFS tree that may lead to t after some number of hops.
That means that, if all nodes leading to t are situated above t in the BFS tree,
then there is no reason to proceed the search after the level of t. As a result, if
there are no back edges leading to upper levels in the new BFS tree, when we
come across a node below t, we do not take it into account.
However, having back edges to levels above, means that there exists a path from
nodes below t’s level leading up, above t’s level. Therefore, we take into account
all edges of the graph in this case.

This argument can be clearly illustrated by the following example.

s A B C

D

t

E

G

F

H

1 1 1

1

1

1

1

1

1

1

1

Figure 4: Graph G2.

For the above graph, we use the same notation for source and sink nodes.
The spurNode in this case is chosen as node ?. As one can easily observe, there
is no path from nodes after E to sink t.
Following Yen’s technique, we remove nodes s,A, as they create the rootPath,
and their respective edges. Furthermore, we remove edge (?, D), as it is the first
node of the previous spurPath.
The outcome of levelBFS for the modified graph is the following.



12

B

C

t E

G

F

H

1

11

1

1

1

1

Figure 5: newBFS for modified Graph G′2.

As one can easily observe in Figures 4 and 5, there is no path from edges
E,F,G,H leading to t. Therefore, examining them during the search of our
algorithm would only result in additional computational complexity and cost,
without yielding any result. In this case, flag backEdges remains 0.
During levelBFS, we examine nodes per level. When arriving to nodes equal to
t’s level, and assign them as temporary roots (tempRoot in our algorithm),we
examine if they have any outcoming edges to nodes with a level smaller than t,
that is above t in the BFS tree. If yes, then backEdges is set to 1. This means
that there is a path from nodes below t’s level leading back to t. Otherwise, we
continue the search until the whole graph is explored. If there does not exist any
node below t with edges above or at the same level as t, then backEdges = 0.
Therefore, there is no path that may lead to t, when progressing to lower levels.



13

Algorithm 3 BFS with Level and Back Edge Calculation

1: function levelBFS(Graph G, rootnode root, sink t)
2: // Output: level: representing each node’s level in the BFS tree,

backEdges: if there exists a path from nodes below sink’s level that may
lead to sink t.

3: Q ← empty;
4: level[root] = 0;
5: marked[root] = 1;
6: Q.push(root);
7: // If, after the level of sink t there exist any back edges leading to upper

levels, that means that we have to explore other levels as well. Otherwise, if
beyond t’s level, there is no path leading to t, then we stop the exploration
at a smaller level.

8: backEdges = 0;
9: while Q not empty do

10: tempRoot = Q.pop();
11: for each u in neighbour(tempRoot) do
12: if not marked[u] then
13: Q.push(u);
14: level[u] = level[tempRoot]+1;
15: marked[u] = 1;
16: else if (not backEdges) and (marked[u]) and (level[tempRoot]
≥ level[t]) and (level[u] ≤ level[t]) then

17: backEdges =1;
18: end if
19: end for
20: end while
21: return level, backEdges;
22: end function



14

7 Proof of correctness for the replacementPath
algorithm

In this proof of correctness, we will prove that our algorithm replacementPath
correctly determines the simple shortest path distance from spurNode to sink
t, output in d[t]. If this statement holds, then by retracing the parent matrix,
one can retrieve the actual shortest path.
Let us assume some indexing on the n nodes of the graph G = (V,E). Now, let
s have an index of 0, and we can suppose, without loss of generality, that the
indexes are given according to the levels of the newBFS tree. This fact however
is rather irrelevant, since the proof stands for any other random indexing.
We will prove our argument by mathematical induction on k, where k is the
index of some node in G.
Since distances are initialised at 0, for k = s = 0, d[s] = 0. Therefore, for the
base case, the property holds.
We assume that the property holds for every node i with 0 ≤ i ≤ k. This
means that, for every i between 0 and k, the algorithm computes the correct
SSP distance from spurNode to i in d[i].
For the last step, we need to prove that the property holds for some node k+ 1.
In order to examine node k + 1, the algorithm must eventually reach it. The
only way to reach a node, is by extracting it from the priority queue Q. Nodes
are inserted in the priority queue when they are discovered inside a previously
examined node’s label. Therefore, in order to insert node k + 1 in the priority
queue Q, it must have been in some node’s label, say node k’s label L[k]. This
means that: L[k] = {(k+ 1, w(k, k+ 1)}, among others, where w(k, k+ 1) is the
weight of the shortest path, we will explain why the SP is simple shortly, from
k to k + 1, as set during the hub labelling procedure.
If just one single node k has it k+ 1 on its label, then this means that k+ 1 has
only one incoming edge, and therefore one single SSP.
If more than one nodes have k on their labels, we examine all the cases iden-
tically, since the procedure is always the same, resulting from the for-loop. In
the following proof, we show that, for any node containing k + 1 in its label,
the algorithm produces the shortest path from that node k to k + 1. In the
case where more than one nodes contain k + 1, then, as the algorithm covers
the graph, it compares the shortest paths produced by possible paths to k + 1,
and eventually keeps the best solution. This check is performed in steps 19−21
of replacementPath algorithm. Since we examine the whole graph, we end up
with the correct SSP distance.
In steps 13 − 17, we perform an initial check. If the examined node used as
temporary root, say node k as stated above, has t on its label and t’s level is
not modified, therefore there is no cycle possibly occuring, there is no need to
examine k’s neighbors.
We can prove this fact by contradiction. Assume that one of k’s neighbors, say
u, has a shorter path from u to t than the path from k to t. In this case, the
label of k would be wrong, since it contains the shortest path from k to t, and
that path is simple since t is not modified. Therefore, there is no neighbor of k
that may lead to a shorter simple path to t.
Now, moving forward to the examination of the SSP towards k+ 1. We assume
that k + 1 is contained in one node’s label. As stated above, if k + 1 exists in



15

more than one labels, the different candidate SSP distances from different nodes
are compared, and the minimum one is chosen.
There are two cases for k + 1. Either it is a non-modified node, meaning that
it is situated in the same level in the preBFS and newBFS trees, either it is
modified and k = neighbor(k + 1).

• Case 1 Same level in the BFS tree
This means that no edges from the previous shortest paths are used in the
path from k + 1 to k. Therefore, if we already know the shortest simple
path from s to k, then by adding just the weight of the shortest path from
k to k + 1, calculated by the label, we get the shortest path from s to k,
by the property of the shortest paths.
In this case, we may have shortest paths in the labels directly in more than
one hops. The former means that k and k + 1 are not direct neighbors,
but the shortest path is guaranteed to be given by the label of k+ 1. Ad-
ditionally, it is simple, since there is no way that the path can be include
nodes from previous SSPs, as they do not affect k + 1’s level in the tree.

• Case 2 Different level in the BFS tree
When k is located at a different level in the newBFS tree, that means that
there might be some link to the previous shortest paths, that leads to k.
So, there may be some weight inside one node?s label that passes from a
node that has been already used. In order to avoid that, we do not take
into account modified nodes, in the path from s to k.
Therefore, if we arrive to t from some node k, given that k + 1 is in k’s
label, and modified[k + 1] = 1, this means that k and k + 1 are adja-
cent/neighbors. In this case, the path between k and k + 1 is bound to
be simple, since it only consists of one edge. Given that, in the inductive
hypothesis, we assumed that for all nodes up to k, we already know that
d[k] is the SSP distance from spurNode, and in order to arrive to k + 1
it must exist in some node k’s label, then d[k + 1] = d[k] + w(k, k + 1),
which is the exact SSP from spurNode to k + 1.

Additionally, for steps 21 − 22, we can prove that the check is correct. This
means that, we do not consider nodes below t’s level, when there do no exist
backEdges. This fact is straight-forward, and is presented again in Section 5.
If backEdges = 0, this means that below t’s level in the newBFS tree, there
is no path leading back to t. Therefore, all nodes below t’s level, need not be
considered as potential roots in the search process, as their processing may only
result in additional computation time. As a result, if this condition holds, we
do not examine that node.


	Introduction
	Yen's Algorithm for the k-SSP Problem
	Akiba's Algorithm for Pruned Landmark Labelling
	Replacement Path Algorithm
	BFS Search and Level Calculation
	Back Edges in BFS tree
	Proof of correctness for the replacementPath algorithm

