University Nice Sophia-Antipolis Resolution methods
Master 1 international + Data Science October 2015

Exercises : Approximation algorithms

To be returned for November 27th 2015

The goal of the following problems is to analyze approximation algorithms for two problem :
MaximMmuM CUT Problem and KNAPSACK Problem. The two problems are independent.

Recall that, for any ¢ > 1, a c-approximation algorithm for a maximization problem is an
algorithm that computes in polynomial-time a feasible solution such that

OPT/c < value(solution) < OPT

where OPT is the optimal value.

1 MaxiMmuMm Cut Problem

Notations : In this section, n will always denote the number of vertices of a graph and m will
denote the number of its edges.

Let G = (V,E) be a graph. A cut in G is a partition of V into two sets. Let S C V be a
subset of vertices. The cost of the cut (S, V '\ S), denoted by cost(S), equals the number of edges
between S and V'\ S, i.e., the size of the set {{z,y} € E |z € S,y € V'\ S}.

The MAxiMuM CuUT Problem takes a graph G = (V, E) as input and the objective is to find
a cut with maximum cost.

Question 1 Let G = (AU B, E) be a bipartite graph (i.e., A and B are stable sets). Give a
mazimum cut of G. What is its cost ¢ (prove that the solution is optimal)

Question 2 Give an exponential-time algorithm that computes a maximum cut in arbitrary
graphs. Prove that its time-complexity is O(m - 2™).

The MAXiMUM CuUT Problem is NP-hard, meaning that it does not admit a polynomial-time
algorithm unless P = N P. The goal of next questions is to analyze an approximation algorithm
for it.

Definition : Let (S,V \ S) be a cut. A vertex v is movable if

— either v € S and cost(S) < cost(S\ {v});

—orv € V\S and cost(S) < cost(S U {v}).

That is, v is movable if moving v on the other side strictly increases the cost of the cut.

Algorithm 1 2-approximation algorithm for MAXiMmum CuUT
Require: A graph G = (V, E)
Ensure: A cut (S,V'\ S)
1: S=10
2: while There is a movable vertex v do
3: Move the vertex v on the other side, that is :
— if v € S then replace S by S\ {v}
— ifv e V'\ S then replace S by SU {v}

4: return S

FIGURE 1 — A graph with 8 nodes and 14 edges

Question 3 Apply Algorithm 1 on the example depicted in Figure 1

Question 4 What is the mazimum number of iterations of the While loop of Algorithm 17
Let us assume that checking if a vertex is movable can be done in constant time. What is the
order of magnitude of the time-complexity of Algorithm 17

Notation : Let G = (V, E) be a graph, v € V and X C V. Let degx (v) denote the degree of v
in X, that is the size of the set {w € X | {v,w} € E}. Let d(v) denote the (classical) degree of
v, i.e., d(v) = degy (v).

Question 5 Let (S,V '\ S) be a solution computed by the algorithm.
1. Letv € S. Show that degg(v) < |d(v)/2].
2. Similarly, show that degy\s(v) < [d(v)/2] for anyv € V'\ S.

Question 6 Let (S,V \ S) be a solution computed by the algorithm. Let X = {{u,v} € E |
u,v € S} be the set of edges between nodes in S. Let Y = {{x,y} € E | x,y ¢ S} be the set of
edges between nodes in V' \ S. Let Z = E \ (X UY) be the set of edges between S and V'\ S.
1. By summing the degree of the nodes in S, and using previous question, show that 2|X| <
|1Z].
2. Similarly, show that 2|Y| < |Z|.
3. Deduce that |Z| > |E|/2.

Question 7 Prove that Algorithm 1 is a 2-approximation algorithm for the MAximumMm CuUT
problem.

2 KNAPSACK Problem

The SIMPLE KNAPSACK problem takes a set of integers S = {w1, -+ ,w,} and an integer b
as inputs. The objective is to compute a subset T' C {1,--- ,n} of items such that Zwi <b
€T
and Z w; is maximum. That is, we want to fill our knapsack without exceeding its capacity b
€T
and putting the maximum total weight in it.

2.1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem
by combining the solutions of sub-problems.

As an example, the SIMPLE KNAPSACK Problem consists in computing an optimal solution
for an instance S = {wy, - ,w,} and an integer b. Let OPT(S,b) denote such a solution. We
will compute it using solutions for sub-problems with inputs S; = {w1,--- ,w;} and V' € N, for
any ¢ < n and b’ < b. That is, we will compute OPT(S,b) from all solutions OPT(S;, V') for
i <mnand b <b.

Algorithm 2 Dynamic programming algorithm for SIMPLE KNAPSACK
Require: A set of integers S = {wy, -+ ,w,} and b € N.
Ensure: A subset OPT C {1,--- ,n} of items such that Zwi <b
€T

1: For any 0 <4 <n and any 0 < b < b, let OPT[i, V'] :E(Z);

2: For any 0 < i <n and any 0 < b < b, let opt_cost[i,b'] =0;

3: fori=1ton do

4: for b =1to bdo

5: if w; < and opt_cost[i — 1,V — w;] + w; > opt_cost[i — 1,b] then
6: OPTIi,b'] = OPT[i — 1,V — w;] U {i}

7 opt_cost[i, b'] = opt_cost[i — 1,V — w;] + w;

8: else

0: OPTIi,l/] = OPT]i — 1, /]

10: opt_costli, b'] = opt_cost[i — 1,V

11: return OPT = OPT|n,}]

Question 8 Prove that Algorithm 2 has time-complezity O(n - b).
Question 9 Prove that Algorithm 2 proceed in polynomial-time if max; w; is polynomial in n
but exponential if max; w; is exponential in n.

Actually, the KNAPSACK Problem is an example of Weakly NP-hard (roughly, it can be solved
in polynomial-time if the weights are polynomial).

Question 10 Prove by induction on i and b’ that the solution OPT = OPT[n,b] returned by
Algorithm 2 is optimal.

2.2 Approximation Algorithm and PTAS

Algorithm 3 Greedy algorithm for SIMPLE KNAPSACK
Require: A set of integers S = {wy,--+ ,w,} and b € N.
Ensure: A subset T'C {1,---,n} of items such that Zwi <b
1. T=0 €T
2: total_weight =0
3: Sort S. Let us assume that wy; > wg > -+ - > w,.
4: for i =1ton do
5. if total_weight + w; < b then
6
7
8

Addito T
Add w; to total_weight
: return T

Question 11 What is the time-complezity of Algorithm 8¢

Question 12 Prove that Algorithm 3 is a 2-approximation algorithm for the SIMPLE KNAPSACK
problem.

hint : let T be the computed solution and assume it is not optimal. Let j > 1 be the smallest
integer such that i + 1 is NOT in T. Show that wj;1 < b/j.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an
instance of an optimization problem and a parameter ¢ > 0 and, in polynomial time in the size
of the instance (not necessarily in €), produces a solution that is within a factor 1 + € of being
optimal.

That is, when € tends to 0, the solution tends to an optimal one, while the complexity
increases (generally, the complexity is of the form O(n'/¢)).

Algorithm 4 PTAS for SIMPLE KNAPSACK

Require: A set of integers S = {wy, -+ ,w,}, b € N and a real € > 0.
Ensure: A subset T'C {1,--- ,n} of items such that Zwi <b
1: best =0 ieT

2: best_cost =0
3 k= [1/¢€]
4: for Any subset X C S of size k do

5. Complete X using the Greedy Algorithm. That is :

6: T=X

7. total_weight = Y, w;

8: Sort S\ X. Let us assume that S\ X = {wy, -+ ,w,—x} and wy > wa > -+ > wy_.
90 fori=1ton—kdo

10: if total_weight + w; < b then

11: Addito T

12: Add w; to total_weight

13: if total_weight > best_cost then

14: Replace best by T

15: return T

Question 13 Prove that Algorithm 4 has time-complexity O(n!1/€1+1),

Question 14 Prove that Algorithm 4 is a (1+€)-approzimation algorithm for the SIMPLE KNAP-
SACK problem.

hint : Consider an optimal solution M and let X* = {iy,--- ,ir} be the k items with largest
weight in M. Consider the iteration of Algorithm 4 when it considers X*.

Actually, we can do better. Indeed, the KNAPSACK Problem admits a fully polynomial-
time approximation scheme (FPTAS) algorithm, that is an algorithm that computes a
solution that is within a factor 1 + € of being optimal in time polynomial both in the size
of the instance AND in 1/e.

