Exercises: Approximation algorithms

To be returned for November 27th 2015

The goal of the following problems is to analyze approximation algorithms for two problem : Maximum Cut Problem and Knapsack Problem. The two problems are independent.

Recall that, for any $c \geq 1$, a c-approximation algorithm for a maximization problem is an algorithm that computes in polynomial-time a feasible solution such that

$$
O P T / c \leq \operatorname{value}(\text { solution }) \leq O P T
$$

where $O P T$ is the optimal value.

1 Maximum Cut Problem

Notations : In this section, n will always denote the number of vertices of a graph and m will denote the number of its edges.

Let $G=(V, E)$ be a graph. A cut in G is a partition of V into two sets. Let $S \subseteq V$ be a subset of vertices. The cost of the cut $(S, V \backslash S)$, denoted by $\operatorname{cost}(S)$, equals the number of edges between S and $V \backslash S$, i.e., the size of the set $\{\{x, y\} \in E \mid x \in S, y \in V \backslash S\}$.

The Maximum Cut Problem takes a graph $G=(V, E)$ as input and the objective is to find a cut with maximum cost.

Question 1 Let $G=(A \cup B, E)$ be a bipartite graph (i.e., A and B are stable sets). Give a maximum cut of G. What is its cost? (prove that the solution is optimal)

Question 2 Give an exponential-time algorithm that computes a maximum cut in arbitrary graphs. Prove that its time-complexity is $O\left(m \cdot 2^{n}\right)$.

The Maximum Cut Problem is NP-hard, meaning that it does not admit a polynomial-time algorithm unless $P=N P$. The goal of next questions is to analyze an approximation algorithm for it.
Definition : Let $(S, V \backslash S)$ be a cut. A vertex v is movable if

- either $v \in S$ and $\operatorname{cost}(S)<\operatorname{cost}(S \backslash\{v\})$;
- or $v \in V \backslash S$ and $\operatorname{cost}(S)<\operatorname{cost}(S \cup\{v\})$.

That is, v is movable if moving v on the other side strictly increases the cost of the cut.

```
Algorithm 1 2-approximation algorithm for MAXIMUM CUT
Require: A graph \(G=(V, E)\)
Ensure: A cut \((S, V \backslash S)\)
    \(S=\emptyset\)
    while There is a movable vertex \(v\) do
        Move the vertex \(v\) on the other side, that is :
    - if \(v \in S\) then replace \(S\) by \(S \backslash\{v\}\)
    - if \(v \in V \backslash S\) then replace \(S\) by \(S \cup\{v\}\)
    return \(S\)
```


Figure 1 - A graph with 8 nodes and 14 edges

Question 3 Apply Algorithm 1 on the example depicted in Figure 1
Question 4 What is the maximum number of iterations of the While loop of Algorithm 1?
Let us assume that checking if a vertex is movable can be done in constant time. What is the order of magnitude of the time-complexity of Algorithm 1?

Notation : Let $G=(V, E)$ be a graph, $v \in V$ and $X \subseteq V$. Let $\operatorname{deg}_{X}(v)$ denote the degree of v in X, that is the size of the set $\{w \in X \mid\{v, w\} \in E\}$. Let $d(v)$ denote the (classical) degree of v, i.e., $d(v)=d e g_{V}(v)$.

Question 5 Let $(S, V \backslash S$) be a solution computed by the algorithm.

1. Let $v \in S$. Show that $\operatorname{deg}_{S}(v) \leq\lfloor d(v) / 2\rfloor$.
2. Similarly, show that $\operatorname{deg}_{V \backslash S}(v) \leq\lfloor d(v) / 2\rfloor$ for any $v \in V \backslash S$.

Question 6 Let $(S, V \backslash S)$ be a solution computed by the algorithm. Let $X=\{\{u, v\} \in E \mid$ $u, v \in S\}$ be the set of edges between nodes in S. Let $Y=\{\{x, y\} \in E \mid x, y \notin S\}$ be the set of edges between nodes in $V \backslash S$. Let $Z=E \backslash(X \cup Y)$ be the set of edges between S and $V \backslash S$.

1. By summing the degree of the nodes in S, and using previous question, show that $2|X| \leq$ $|Z|$.
2. Similarly, show that $2|Y| \leq|Z|$.
3. Deduce that $|Z| \geq|E| / 2$.

Question 7 Prove that Algorithm 1 is a 2-approximation algorithm for the MAXIMUM CuT problem.

2 Knapsack Problem

The Simple Knapsack problem takes a set of integers $\mathcal{S}=\left\{w_{1}, \cdots, w_{n}\right\}$ and an integer b as inputs. The objective is to compute a subset $T \subseteq\{1, \cdots, n\}$ of items such that $\sum_{i \in T} w_{i} \leq b$ and $\sum_{i \in T} w_{i}$ is maximum. That is, we want to fill our knapsack without exceeding its capacity b and putting the maximum total weight in it.

2.1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem by combining the solutions of sub-problems.

As an example, the Simple Knapsack Problem consists in computing an optimal solution for an instance $\mathcal{S}=\left\{w_{1}, \cdots, w_{n}\right\}$ and an integer b. Let $\operatorname{OPT}(\mathcal{S}, b)$ denote such a solution. We will compute it using solutions for sub-problems with inputs $\mathcal{S}_{i}=\left\{w_{1}, \cdots, w_{i}\right\}$ and $b^{\prime} \in \mathbb{N}$, for any $i \leq n$ and $b^{\prime}<b$. That is, we will compute $\operatorname{OPT}(\mathcal{S}, b)$ from all solutions $\operatorname{OPT}\left(\mathcal{S}_{i}, b^{\prime}\right)$ for $i \leq n$ and $b^{\prime}<b$.

```
Algorithm 2 Dynamic programming algorithm for Simple Knapsack
Require: A set of integers \(\mathcal{S}=\left\{w_{1}, \cdots, w_{n}\right\}\) and \(b \in \mathbb{N}\).
Ensure: A subset \(O P T \subseteq\{1, \cdots, n\}\) of items such that \(\sum_{i \in T} w_{i} \leq b\)
    For any \(0 \leq i \leq n\) and any \(0 \leq b^{\prime} \leq b\), let \(O P T\left[i, b^{\prime}\right]=\emptyset\);
    For any \(0 \leq i \leq n\) and any \(0 \leq b^{\prime} \leq b\), let opt_cost \(\left[i, b^{\prime}\right]=0\);
    for \(i=1\) to \(n\) do
    for \(b^{\prime}=1\) to \(b\) do
        if \(w_{i} \leq b^{\prime}\) and opt_cost \(\left[i-1, b^{\prime}-w_{i}\right]+w_{i}>\) opt_cost \(\left[i-1, b^{\prime}\right]\) then
            \(O P T\left[i, b^{\prime}\right]=O P T\left[i-1, b^{\prime}-w_{i}\right] \cup\{i\}\)
            opt_cost \(\left[i, b^{\prime}\right]=\) opt_cost \(\left[i-1, b^{\prime}-w_{i}\right]+w_{i}\)
        else
            \(O P T\left[i, b^{\prime}\right]=O P T\left[i-1, b^{\prime}\right]\)
            opt_cost \(\left[i, b^{\prime}\right]=\) opt_cost \(\left[i-1, b^{\prime}\right]\)
    return \(O P T=O P T[n, b]\)
```

Question 8 Prove that Algorithm 2 has time-complexity $O(n \cdot b)$.
Question 9 Prove that Algorithm 2 proceed in polynomial-time if $\max _{i} w_{i}$ is polynomial in n but exponential if $\max _{i} w_{i}$ is exponential in n.

Actually, the Knapsack Problem is an example of Weakly NP-hard (roughly, it can be solved in polynomial-time if the weights are polynomial).

Question 10 Prove by induction on i and b^{\prime} that the solution $O P T=O P T[n, b]$ returned by Algorithm 2 is optimal.

2.2 Approximation Algorithm and PTAS

```
Algorithm 3 Greedy algorithm for Simple Knapsack
Require: A set of integers \(\mathcal{S}=\left\{w_{1}, \cdots, w_{n}\right\}\) and \(b \in \mathbb{N}\).
Ensure: A subset \(T \subseteq\{1, \cdots, n\}\) of items such that \(\sum_{i \in T} w_{i} \leq b\)
\(\quad 1: T=\emptyset\)
    total_weight \(=0\)
    Sort \(\mathcal{S}\). Let us assume that \(w_{1} \geq w_{2} \geq \cdots \geq w_{n}\).
    for \(i=1\) to \(n\) do
        if total_weight \(+w_{i} \leq b\) then
            Add \(i\) to \(T\)
            Add \(w_{i}\) to total_weight
    return \(T\)
```

Question 11 What is the time-complexity of Algorithm 3?
Question 12 Prove that Algorithm 3 is a 2-approximation algorithm for the SIMPLE KNAPSACK problem.
hint : let T be the computed solution and assume it is not optimal. Let $j \geq 1$ be the smallest integer such that $i+1$ is NOT in T. Show that $w_{j+1} \leq b / j$.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an instance of an optimization problem and a parameter $\epsilon>0$ and, in polynomial time in the size of the instance (not necessarily in ϵ), produces a solution that is within a factor $1+\epsilon$ of being optimal.

That is, when ϵ tends to 0 , the solution tends to an optimal one, while the complexity increases (generally, the complexity is of the form $O\left(n^{1 / \epsilon}\right)$).

```
Algorithm 4 PTAS for Simple Knapsack
Require: A set of integers \(\mathcal{S}=\left\{w_{1}, \cdots, w_{n}\right\}, b \in \mathbb{N}\) and a real \(\epsilon>0\).
Ensure: A subset \(T \subseteq\{1, \cdots, n\}\) of items such that \(\sum_{i \in T} w_{i} \leq b\)
1: best \(=\emptyset\)
    best_cost \(=0\)
    \(k=\lceil 1 / \epsilon\rceil\)
    for Any subset \(X \subseteq \mathcal{S}\) of size \(k\) do
        Complete \(X\) using the Greedy Algorithm. That is :
        \(T=X\)
        total_weight \(=\sum_{i \in X} w_{i}\)
        Sort \(\mathcal{S} \backslash X\). Let us assume that \(\mathcal{S} \backslash X=\left\{w_{1}, \cdots, w_{n-k}\right\}\) and \(w_{1} \geq w_{2} \geq \cdots \geq w_{n-k}\).
        for \(i=1\) to \(n-k\) do
            if total_weight \(+w_{i} \leq b\) then
                    Add \(i\) to \(T\)
            Add \(w_{i}\) to total_weight
        if total_weight > best_cost then
            Replace best by \(T\)
    return \(T\)
```

Question 13 Prove that Algorithm 4 has time-complexity $O\left(n^{[1 / \epsilon\rceil+1}\right)$.
Question 14 Prove that Algorithm 4 is a $(1+\epsilon)$-approximation algorithm for the Simple KnapsACK problem.
hint : Consider an optimal solution M and let $X^{*}=\left\{i_{1}, \cdots, i_{k}\right\}$ be the k items with largest weight in M. Consider the iteration of Algorithm 4 when it considers X^{*}.

Actually, we can do better. Indeed, the Knapsack Problem admits a fully polynomialtime approximation scheme (FPTAS) algorithm, that is an algorithm that computes a solution that is within a factor $1+\epsilon$ of being optimal in time polynomial both in the size of the instance AND in $1 / \epsilon$.

