
University Nice Sophia-Antipolis Resolution methods
Master 1 international + Data Science October 2015

Exercises : Approximation algorithms

To be returned for November 27th 2015

The goal of the following problems is to analyze approximation algorithms for two problem :
Maximum Cut Problem and Knapsack Problem. The two problems are independent.

Recall that, for any c ≥ 1, a c-approximation algorithm for a maximization problem is an
algorithm that computes in polynomial-time a feasible solution such that

OPT/c ≤ value(solution) ≤ OPT

where OPT is the optimal value.

1 Maximum Cut Problem

Notations : In this section, n will always denote the number of vertices of a graph and m will
denote the number of its edges.

Let G = (V,E) be a graph. A cut in G is a partition of V into two sets. Let S ⊆ V be a
subset of vertices. The cost of the cut (S, V \S), denoted by cost(S), equals the number of edges
between S and V \ S, i.e., the size of the set {{x, y} ∈ E | x ∈ S, y ∈ V \ S}.

The Maximum Cut Problem takes a graph G = (V,E) as input and the objective is to find
a cut with maximum cost.

Question 1 Let G = (A ∪ B,E) be a bipartite graph (i.e., A and B are stable sets). Give a
maximum cut of G. What is its cost ? (prove that the solution is optimal)

Question 2 Give an exponential-time algorithm that computes a maximum cut in arbitrary
graphs. Prove that its time-complexity is O(m · 2n).

The Maximum Cut Problem is NP-hard, meaning that it does not admit a polynomial-time
algorithm unless P = NP . The goal of next questions is to analyze an approximation algorithm
for it.
Definition : Let (S, V \ S) be a cut. A vertex v is movable if

– either v ∈ S and cost(S) < cost(S \ {v}) ;
– or v ∈ V \ S and cost(S) < cost(S ∪ {v}).

That is, v is movable if moving v on the other side strictly increases the cost of the cut.

Algorithm 1 2-approximation algorithm for Maximum Cut

Require: A graph G = (V,E)
Ensure: A cut (S, V \ S)
1: S = ∅
2: while There is a movable vertex v do
3: Move the vertex v on the other side, that is :

– if v ∈ S then replace S by S \ {v}
– if v ∈ V \ S then replace S by S ∪ {v}

4: return S

1

a

b

c

d

e

f

g

h

Figure 1 – A graph with 8 nodes and 14 edges

Question 3 Apply Algorithm 1 on the example depicted in Figure 1

Question 4 What is the maximum number of iterations of the While loop of Algorithm 1 ?
Let us assume that checking if a vertex is movable can be done in constant time. What is the

order of magnitude of the time-complexity of Algorithm 1 ?

Notation : Let G = (V,E) be a graph, v ∈ V and X ⊆ V . Let degX(v) denote the degree of v
in X, that is the size of the set {w ∈ X | {v, w} ∈ E}. Let d(v) denote the (classical) degree of
v, i.e., d(v) = degV (v).

Question 5 Let (S, V \ S) be a solution computed by the algorithm.

1. Let v ∈ S. Show that degS(v) ≤ bd(v)/2c.
2. Similarly, show that degV \S(v) ≤ bd(v)/2c for any v ∈ V \ S.

Question 6 Let (S, V \ S) be a solution computed by the algorithm. Let X = {{u, v} ∈ E |
u, v ∈ S} be the set of edges between nodes in S. Let Y = {{x, y} ∈ E | x, y /∈ S} be the set of
edges between nodes in V \ S. Let Z = E \ (X ∪ Y) be the set of edges between S and V \ S.

1. By summing the degree of the nodes in S, and using previous question, show that 2|X| ≤
|Z|.

2. Similarly, show that 2|Y | ≤ |Z|.
3. Deduce that |Z| ≥ |E|/2.

Question 7 Prove that Algorithm 1 is a 2-approximation algorithm for the Maximum Cut
problem.

2 Knapsack Problem

The Simple Knapsack problem takes a set of integers S = {w1, · · · , wn} and an integer b

as inputs. The objective is to compute a subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b

and
∑
i∈T

wi is maximum. That is, we want to fill our knapsack without exceeding its capacity b

and putting the maximum total weight in it.

2

2.1 Exact Algorithm via dynamic programming
Dynamic programming is a generic algorithmic method that consists in solving a problem

by combining the solutions of sub-problems.
As an example, the Simple Knapsack Problem consists in computing an optimal solution

for an instance S = {w1, · · · , wn} and an integer b. Let OPT (S, b) denote such a solution. We
will compute it using solutions for sub-problems with inputs Si = {w1, · · · , wi} and b′ ∈ N, for
any i ≤ n and b′ < b. That is, we will compute OPT (S, b) from all solutions OPT (Si, b′) for
i ≤ n and b′ < b.

Algorithm 2 Dynamic programming algorithm for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset OPT ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b

1: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let OPT [i, b′] = ∅ ;
2: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let opt cost[i, b′] = 0 ;
3: for i = 1 to n do
4: for b′ = 1 to b do
5: if wi ≤ b′ and opt cost[i− 1, b′ − wi] + wi > opt cost[i− 1, b′] then
6: OPT [i, b′] = OPT [i− 1, b′ − wi] ∪ {i}
7: opt cost[i, b′] = opt cost[i− 1, b′ − wi] + wi
8: else
9: OPT [i, b′] = OPT [i− 1, b′]

10: opt cost[i, b′] = opt cost[i− 1, b′]
11: return OPT = OPT [n, b]

Question 8 Prove that Algorithm 2 has time-complexity O(n · b).

Question 9 Prove that Algorithm 2 proceed in polynomial-time if maxiwi is polynomial in n
but exponential if maxiwi is exponential in n.

Actually, the Knapsack Problem is an example of Weakly NP-hard (roughly, it can be solved
in polynomial-time if the weights are polynomial).

Question 10 Prove by induction on i and b′ that the solution OPT = OPT [n, b] returned by
Algorithm 2 is optimal.

2.2 Approximation Algorithm and PTAS

Algorithm 3 Greedy algorithm for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: T = ∅
2: total weight = 0
3: Sort S. Let us assume that w1 ≥ w2 ≥ · · · ≥ wn.
4: for i = 1 to n do
5: if total weight+ wi ≤ b then
6: Add i to T
7: Add wi to total weight
8: return T

3

Question 11 What is the time-complexity of Algorithm 3 ?

Question 12 Prove that Algorithm 3 is a 2-approximation algorithm for the Simple Knapsack
problem.

hint : let T be the computed solution and assume it is not optimal. Let j ≥ 1 be the smallest
integer such that i+ 1 is NOT in T . Show that wj+1 ≤ b/j.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an
instance of an optimization problem and a parameter ε > 0 and, in polynomial time in the size
of the instance (not necessarily in ε), produces a solution that is within a factor 1 + ε of being
optimal.

That is, when ε tends to 0, the solution tends to an optimal one, while the complexity
increases (generally, the complexity is of the form O(n1/ε)).

Algorithm 4 PTAS for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn}, b ∈ N and a real ε > 0.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: best = ∅
2: best cost = 0
3: k = d1/εe
4: for Any subset X ⊆ S of size k do
5: Complete X using the Greedy Algorithm. That is :
6: T = X
7: total weight =

∑
i∈X wi

8: Sort S \X. Let us assume that S \X = {w1, · · · , wn−k} and w1 ≥ w2 ≥ · · · ≥ wn−k.
9: for i = 1 to n− k do

10: if total weight+ wi ≤ b then
11: Add i to T
12: Add wi to total weight
13: if total weight > best cost then
14: Replace best by T
15: return T

Question 13 Prove that Algorithm 4 has time-complexity O(nd1/εe+1).

Question 14 Prove that Algorithm 4 is a (1+ε)-approximation algorithm for the Simple Knap-
sack problem.

hint : Consider an optimal solution M and let X∗ = {i1, · · · , ik} be the k items with largest
weight in M . Consider the iteration of Algorithm 4 when it considers X∗.

Actually, we can do better. Indeed, the Knapsack Problem admits a fully polynomial-
time approximation scheme (FPTAS) algorithm, that is an algorithm that computes a
solution that is within a factor 1 + ε of being optimal in time polynomial both in the size
of the instance AND in 1/ε.

4

