Exercises : Approximation algorithms

To be returned for November 27th 2015

The goal of the following problems is to analyze approximation algorithms for two problem : MAXIMUM CUT Problem and KNAPSACK Problem. The two problems are independent.

Recall that, for any $c \ge 1$, a c-approximation algorithm for a maximization problem is an algorithm that computes in **polynomial-time** a feasible solution such that

 $OPT/c \leq value(solution) \leq OPT$

where OPT is the optimal value.

1 MAXIMUM CUT Problem

Notations : In this section, n will always denote the number of vertices of a graph and m will denote the number of its edges.

Let G = (V, E) be a graph. A *cut* in G is a partition of V into two sets. Let $S \subseteq V$ be a subset of vertices. The *cost of the cut* $(S, V \setminus S)$, denoted by cost(S), equals the number of edges between S and $V \setminus S$, i.e., the size of the set $\{\{x, y\} \in E \mid x \in S, y \in V \setminus S\}$.

The MAXIMUM CUT Problem takes a graph G = (V, E) as input and the objective is to find a cut with maximum cost.

Question 1 Let $G = (A \cup B, E)$ be a bipartite graph (i.e., A and B are stable sets). Give a maximum cut of G. What is its cost? (prove that the solution is optimal)

Question 2 Give an exponential-time algorithm that computes a maximum cut in arbitrary graphs. Prove that its time-complexity is $O(m \cdot 2^n)$.

The MAXIMUM CUT Problem is NP-hard, meaning that it does not admit a polynomial-time algorithm unless P = NP. The goal of next questions is to analyze an approximation algorithm for it.

Definition : Let $(S, V \setminus S)$ be a cut. A vertex v is *movable* if

- either $v \in S$ and $cost(S) < cost(S \setminus \{v\});$

- or $v \in V \setminus S$ and $cost(S) < cost(S \cup \{v\})$.

That is, v is movable if moving v on the other side strictly increases the cost of the cut.

Algorithm 1 2-approximation algorithm for MAXIMUM CUT

Require: A graph G = (V, E) **Ensure:** A cut $(S, V \setminus S)$ 1: $S = \emptyset$ 2: while There is a movable vertex v do 3: Move the vertex v on the other side, that is : - if $v \in S$ then replace S by $S \setminus \{v\}$ - if $v \in V \setminus S$ then replace S by $S \cup \{v\}$ 4: return S

FIGURE 1 – A graph with 8 nodes and 14 edges

Question 3 Apply Algorithm 1 on the example depicted in Figure 1

Question 4 What is the maximum number of iterations of the While loop of Algorithm 1? Let us assume that checking if a vertex is movable can be done in constant time. What is the order of magnitude of the time-complexity of Algorithm 1?

Notation : Let G = (V, E) be a graph, $v \in V$ and $X \subseteq V$. Let $deg_X(v)$ denote the degree of v in X, that is the size of the set $\{w \in X \mid \{v, w\} \in E\}$. Let d(v) denote the (classical) degree of v, i.e., $d(v) = deg_V(v)$.

Question 5 Let $(S, V \setminus S)$ be a solution computed by the algorithm.

- 1. Let $v \in S$. Show that $deg_S(v) \leq \lfloor d(v)/2 \rfloor$.
- 2. Similarly, show that $deg_{V\setminus S}(v) \leq \lfloor d(v)/2 \rfloor$ for any $v \in V \setminus S$.

Question 6 Let $(S, V \setminus S)$ be a solution computed by the algorithm. Let $X = \{\{u, v\} \in E \mid u, v \in S\}$ be the set of edges between nodes in S. Let $Y = \{\{x, y\} \in E \mid x, y \notin S\}$ be the set of edges between nodes in $V \setminus S$. Let $Z = E \setminus (X \cup Y)$ be the set of edges between S and $V \setminus S$.

- 1. By summing the degree of the nodes in S, and using previous question, show that $2|X| \leq |Z|$.
- 2. Similarly, show that $2|Y| \leq |Z|$.
- 3. Deduce that $|Z| \ge |E|/2$.

Question 7 Prove that Algorithm 1 is a 2-approximation algorithm for the MAXIMUM CUT problem.

2 KNAPSACK Problem

The SIMPLE KNAPSACK problem takes a set of integers $S = \{w_1, \dots, w_n\}$ and an integer b as inputs. The objective is to compute a subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$

and $\sum_{i \in T} w_i$ is maximum. That is, we want to fill our knapsack without exceeding its capacity b and putting the maximum total weight in it.

2.1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem by combining the solutions of sub-problems.

As an example, the SIMPLE KNAPSACK Problem consists in computing an optimal solution for an instance $S = \{w_1, \dots, w_n\}$ and an integer b. Let OPT(S, b) denote such a solution. We will compute it using solutions for sub-problems with inputs $S_i = \{w_1, \dots, w_i\}$ and $b' \in \mathbb{N}$, for any $i \leq n$ and b' < b. That is, we will compute OPT(S, b) from all solutions $OPT(S_i, b')$ for $i \leq n$ and b' < b.

Algorithm 2 Dynamic programming algorithm for SIMPLE KNAPSACK **Require:** A set of integers $S = \{w_1, \dots, w_n\}$ and $b \in \mathbb{N}$. **Ensure:** A subset $OPT \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$ 1: For any $0 \le i \le n$ and any $0 \le b' \le b$, let $OPT[i, b'] = \emptyset$; 2: For any $0 \le i \le n$ and any $0 \le b' \le b$, let $opt_cost[i, b'] = 0$; 3: for i = 1 to n do for b' = 1 to b do 4: if $w_i \leq b'$ and $opt_cost[i-1, b'-w_i] + w_i > opt_cost[i-1, b']$ then 5: $OPT[i, b'] = OPT[i - 1, b' - w_i] \cup \{i\}$ 6: $opt_cost[i, b'] = opt_cost[i-1, b'-w_i] + w_i$ 7: 8: else OPT[i, b'] = OPT[i - 1, b']9: $opt_cost[i, b'] = opt_cost[i - 1, b']$ 10:11: return OPT = OPT[n, b]

Question 8 Prove that Algorithm 2 has time-complexity $O(n \cdot b)$.

Question 9 Prove that Algorithm 2 proceed in polynomial-time if $\max_i w_i$ is polynomial in n but exponential if $\max_i w_i$ is exponential in n.

Actually, the KNAPSACK Problem is an example of *Weakly NP-hard* (roughly, it can be solved in polynomial-time if the weights are polynomial).

Question 10 Prove by induction on i and b' that the solution OPT = OPT[n, b] returned by Algorithm 2 is optimal.

2.2 Approximation Algorithm and PTAS

 Algorithm 3 Greedy algorithm for SIMPLE KNAPSACK

 Require: A set of integers $S = \{w_1, \dots, w_n\}$ and $b \in \mathbb{N}$.

 Ensure: A subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$

 1: $T = \emptyset$

 2: $total_weight = 0$

 3: Sort S. Let us assume that $w_1 \geq w_2 \geq \dots \geq w_n$.

 4: for i = 1 to n do

 5: if $total_weight + w_i \leq b$ then

 6: Add i to T

 7: Add w_i to $total_weight$

 8: return T

Question 11 What is the time-complexity of Algorithm 3?

Question 12 Prove that Algorithm 3 is a 2-approximation algorithm for the SIMPLE KNAPSACK problem.

hint : let T be the computed solution and assume it is not optimal. Let $j \ge 1$ be the smallest integer such that i + 1 is NOT in T. Show that $w_{j+1} \le b/j$.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an instance of an optimization problem and a parameter $\epsilon > 0$ and, in polynomial time in the size of the instance (not necessarily in ϵ), produces a solution that is within a factor $1 + \epsilon$ of being optimal.

That is, when ϵ tends to 0, the solution tends to an optimal one, while the complexity increases (generally, the complexity is of the form $O(n^{1/\epsilon})$).

Algorithm 4 PTAS for SIMPLE KNAPSACK **Require:** A set of integers $S = \{w_1, \dots, w_n\}, b \in \mathbb{N}$ and a real $\epsilon > 0$. **Ensure:** A subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i=1}^{n} w_i \leq b$ 1: $best = \emptyset$ 2: $best_cost = 0$ 3: $k = \lceil 1/\epsilon \rceil$ 4: for Any subset $X \subseteq S$ of size k do Complete X using the Greedy Algorithm. That is : 5:T = X6: $total_weight = \sum_{i \in X} w_i$ 7: Sort $\mathcal{S} \setminus X$. Let us assume that $\mathcal{S} \setminus X = \{w_1, \cdots, w_{n-k}\}$ and $w_1 \ge w_2 \ge \cdots \ge w_{n-k}$. 8: for i = 1 to n - k do 9: if $total_weight + w_i \leq b$ then 10: Add i to T11:Add w_i to total_weight 12:13: if $total_weight > best_cost$ then Replace *best* by T14: 15: return T

Question 13 Prove that Algorithm 4 has time-complexity $O(n^{\lceil 1/\epsilon \rceil+1})$.

Question 14 Prove that Algorithm 4 is a $(1+\epsilon)$ -approximation algorithm for the SIMPLE KNAP-SACK problem.

hint : Consider an optimal solution M and let $X^* = \{i_1, \dots, i_k\}$ be the k items with largest weight in M. Consider the iteration of Algorithm 4 when it considers X^* .

Actually, we can do better. Indeed, the KNAPSACK Problem admits a fully polynomialtime approximation scheme (FPTAS) algorithm, that is an algorithm that computes a solution that is within a factor $1 + \epsilon$ of being optimal in time polynomial both in the size of the instance AND in $1/\epsilon$.