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Résumé

Dans cette thèse, les jeux à 2 joueurs dans les graphes et leurs aspects algorithmiques
et structurels sont étudiés. Nous explorons tout d’abord le jeu de domination éternelle
ainsi que sa généralisation, le jeu de l’espion, deux jeux qui reposent sur les en-
sembles dominants dynamiques. Dans ces deux jeux, une équipe de gardes poursuit
un attaquant ou espion rapide dans un graphe, avec l’objectif de rester près de lui
éternellement. Le but est de calculer le nombre de domination éternelle (nombre de
gardes pour le jeu de l’espion) qui est le nombre minimum de gardes nécessaires pour
réaliser l’objectif. La dimension métrique des digraphes et une version séquentielle de
la dimension métrique des graphes sont aussi étudiées. Ces deux problèmes ont pour
objectif de trouver un sous-ensemble de sommets de taille minimum tel que tous les
sommets du graphe sont identifiés uniquement par leurs distances aux sommets du
sous-ensemble. En particulier, dans ce dernier problème, on peut “interroger” un cer-
tain nombre de sommets par tour. Les sommets interrogés retournent leurs distances à
une cible cachée. Le but est de minimiser le nombre de tours nécessaires pour localiser
la cible. Ces jeux et problèmes sont étudiés pour des classes de graphe particulières et
leurs complexités temporelles sont aussi étudiées.

Précisément, dans le Chapitre 3, il est démontré que le jeu de l’espion est NP-
difficile et les nombres de gardes des chemins et des cycles sont présentés. Ensuite,
des résultats sur le jeu de l’espion dans les arbres et les grilles sont présentés. Notam-
ment, nous démontrons une équivalence entre la variante fractionnaire et la variante
“intégrale” du jeu de l’espion dans les arbres qui nous a permise d’utiliser la program-
mation linéaire pour concevoir ce que nous pensons être le premier algorithme exact qui
utilise la variante fractionnaire d’un jeu pour résoudre sa variante “intégrale”. Dans le
Chapitre 4, des bornes asymptotiques sur le nombre de domination éternelle de la grille
du roi sont présentées. Dans le Chapitre 5, des résultats sur la NP-complétude du jeu
de Localisation sous différentes conditions (et une variante de ce jeu) sont présentés.
Notamment, nous démontrons que le problème est NP-complet dans les arbres. Malgré
cela, nous concevons un (+1)-algorithme d’approximation qui résout le problème en
temps polynomial. Autant que nous sachions, il n’existe pas d’autres telles approxima-
tions pour les jeux dans les graphes. Finalement, dans le Chapitre 6, des résultats sur la
dimension métrique des graphes orientés sont présentés. En particulier, les orientations
qui maximisent la dimension métrique sont explorées pour les graphes de degré borné,
les tores et les grilles.
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Abstract

In this thesis, 2-player games on graphs and their algorithmic and structural aspects
are studied. First, we investigate two dynamic dominating set games: the eternal
domination game and its generalization, the spy game. In these two games, a team of
guards pursue a fast attacker or spy in a graph with the objective of staying close to
him eternally and one wants to calculate the eternal domination number (guard number
in the spy game) which is the minimum number of guards needed to do this. Secondly,
the metric dimension of digraphs and a sequential version of the metric dimension of
graphs are then studied. These two problems are those of finding a minimum subset
of vertices that uniquely identify all the vertices of the graph by their distances from
the vertices in the subset. In particular, in the latter, one can probe a certain number
of vertices per turn which return their distances to a hidden target and the goal is to
minimize the number of turns in order to ensure locating the target. These games and
problems are studied in particular graph classes and their computational complexities
are also studied.

Precisely, in Chapter 3, the NP-hardness of the spy game and the guard numbers
of paths and cycles are first presented. Then, results for the spy game on trees and
grids are presented. Notably, we show an equivalence between the fractional variant
and the “integral” version of the spy game in trees which allowed us to use Linear
Programming to come up with what we believe to be the first exact algorithm using
the fractional variant of a game to solve the “integral” version. In Chapter 4, asymptotic
bounds on the eternal domination number of strong grids are presented. In Chapter 5,
results on the NP-completeness of the Localization game under different conditions
(and a variant of it) and the game in trees are presented. Notably, we show that the
problem is NP-complete in trees, but despite this, we come up with a polynomial-time
(+1)-approximation algorithm in trees. We consider such an approximation to be rare
as we are not aware of any other such approximation in games on graphs. Lastly,
in Chapter 6, results on the metric dimension of oriented graphs are presented. In
particular, the orientations which maximize the metric dimension are investigated for
graphs of bounded degree, tori, and grids.
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Chapter 1

Introduction

1.1 2-Player Combinatorial Games

Games in general have been vastly studied for their applications, entertainment factor,
and because the problems therein are usually intriguing and easy to state. The field
of the study of games is very large. In this section, I will try to give an overview of
the different areas in games and where the results of this thesis fit into this scheme.
Before doing so, a general definition of a game must be given. A game is a form of play
in which the players take turns changing the position of the game in order to achieve
some winning condition with the rules of the game defining how the game proceeds,
the capabilities of the players, and the winning conditions. Games with more than two
players have been studied (see, e.g., [84, 101, 119]), but seeing as the field of 2-player
games is already large enough and has been much more extensively studied, I will only
focus on 2-player games.

There are two main strands of the study of 2-player games: combinatorial game
theory and economic game theory. Combinatorial game theory typically deals with
games of no chance that are sequential in nature (the players take turns) and where
all players have perfect information (both the state of the game and what both players
can do is known to all players). Economic game theory typically deals with games of
chance that may or may not involve simultaneous play (sequential games also exist)
and where some or all players may have imperfect information (e.g., the moves of one
player may not be known to the other). I will again focus on games that fall within
combinatorial game theory but note that a gray area exists between both these strands
(there are games that can be considered in both strands) since the definitions of both
strands are not stringent.

Combinatorial games can be broken down into many subclasses of games and here
I will discuss some of these. Impartial games are sequential perfect information games
in which a play or move available to one player is always available to the other player
(they both have the same capabilities of moving on their respective turns). An example
of such a game is Nim, first studied in [32], in which both players take turns removing
objects from piles and the first player who cannot remove an object loses. Other
examples of impartial games are Sprouts [64], Kayles [54], Cram [65], etc. In Cram, for
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example, the two players take turns placing dominoes vertically or horizontally on a
rectangular board (although it is not limited to these boards), and the first player who
cannot place a domino, loses. Partisan games are like impartial games except a play
or move available to one player is not available to the other player. Examples include
chess and Go since each player can only play with their tokens or pieces. This thesis
will focus on partisan games.

Games can also be played on different surfaces such as boards or graphs. This thesis
will focus on partisan games played on graphs. In the next paragraph, we still mention
games like Nim, which are not played on graphs.

Partisan games (and impartial ones in most cases) can be broken down into sub-
classes based on their winning conditions. Five of these subclasses will be defined in
this section. The first one is games played under the normal play convention. In these
games, the first player who cannot move, loses. Examples include Nim, Cram, and
Domineering [65]. Domineering, for example, is the same game as Cram, except that
one of the players can only place their dominoes vertically and the other, only horizon-
tally. The second subclass is Misère play, which has the opposite winning condition of
normal play, which is that the first player who cannot move, wins. Recently, there has
been the development of a theory of scoring games, where the winner is the one with
the greater score [93, 94, 95]. The fourth one is maker-breaker games, where one player
wants to maximize a score (often the number of turns that occur) and the other wants
to minimize it. Examples include the Domination game [37] and the graph colouring
game [26]. For example, in the first, two players take turns adding vertices to a set such
that each new vertex added dominates at least one new vertex, and one player wants
to maximize the size of this set while the other wants to minimize it. This game has
been vastly studied, see, e.g., [36, 38, 51]. Finally, pursuit-evasion games can be seen
as a special type of maker-breaker games. Pursuit-evasion games are played on graphs,
in which a team of agents (pursuers) collaborate to accomplish a specified task while
the evader tries to stop the pursuers achieving their goal.

The principal games in this thesis fit into the category of pursuit-evasion games. The
three games that are studied are the eternal domination game [70], the spy game [j-3],
and the localization game [c-5]. In the first two, a team of guards pursue a fast attacker
or spy in a graph with the objective of staying close to him eternally and the goal
is to calculate the eternal domination number (guard number in the spy game) which
is the minimum number of guards needed to do this. In the latter, one can probe a
certain number of vertices per turn which return their distances to a hidden immobile
target and the goal is to minimize the number of turns in order to ensure locating
the target. The latter is more of a 1-player game as the second player (the one that
places the target) only has one move at the beginning of the game. The first two games
fall into the following categories of games. They are both pursuit-evasion, partisan,
sequential, perfect information, and combinatorial games of no chance. The localization
game is, roughly, a pursuit-evasion, partisan, sequential, imperfect information, and
combinatorial game of no chance.
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1.2 Related Work: Pursuit-Evasion Games in Graphs

1.2.1 Games in Graphs & Cops and Robbers

We now focus on games in graphs and specifically, pursuit-evasion games. The full state
of the art of the games studied in this thesis as well a lighter state of the art of the
problems that motivate the study of these games is given in this chapter. The reader
is referred to Chapter 2 for graph theoretic notation and definitions if needed.

Games in graphs have been vastly studied due to their various applications and
because the problems therein are usually intriguing and easy to state. This has attracted
a lot of interest to the field. In particular, the main focus has been the study of
two-player games in which the objective is to minimize the “resources” (e.g., number
of agents) of one player while ensuring they can always “win” or achieve their goal
regardless of their opponent’s strategy. For such games where one player controls a team
of agents with the goal of accomplishing a specified task, the combinatorial problem of
minimizing the number of agents (resources) to accomplish the task and the algorithmic
problem of computing a “winning” strategy for the agents to accomplish the task, have
applications in robotics, network security, artificial intelligence, graph theory, logic,
routing, telecommunications, etc. (e.g., see [58, 79, 90]).
Game of cops and robbers. The most well-known two-player games of this type
are the pursuit-evasion games. In particular, the game of cops and robbers [102, 104]
has been extensively studied and most of the other pursuit-evasion games have been
derived from or have been created as a consequence of this game. In cops and robbers,
a team of cops place themselves on the vertices of a graph. Then, a single robber
places himself on a vertex. Turn-by-turn, first each of the cops may move to one of
their neighbours or stay put, and then the robber may do the same. The cops win if,
after a finite number of turns, a cop captures the robber, i.e., moves to the vertex the
robber currently occupies. Otherwise, if, for an infinite number of turns, the robber
can evade capture, then the robber wins. The objective of the game is to determine
the cop number, denoted by c(G), of a graph G, which is the minimum number of cops
necessary to ensure capturing the robber in G. For example, for any tree T , c(T ) = 1.
Indeed, in any tree T , there is one unique shortest path between any two vertices and
if the cop follows the shortest path between himself and the robber at each turn, he
will eventually capture the robber as the robber cannot move past or around the cop.
Another easy example is the case of cycles of size at least 4, it is easy to see that one
cop is not enough but also that 2 are always enough, so c(Cn) = 2.
Complexity of cops and robbers. Typically, the method of research for such a
game is to first determine its computational complexity and then to solve the game for
particular classes of graphs. Deciding whether c(G) ≤ k when a graph G is part of
the input but k is fixed, is polynomial-time solvable [25]. Deciding whether c(G) ≤ k
when a graph G and an integer k are part of the input, is NP-hard and W[2]-hard [59].
There is also no polynomial-time algorithm to approximate the cop number to within a
multiplicative factor c log n, where c > 0 is a constant and n is the size of the graph [59].
It was then proven that cops and robbers is PSPACE-hard [99]. Finally, it was proven
that cops and robbers is EXPTIME-complete [85]. As can be seen in the following para-
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graph, a typical approach when a problem is shown to be at least NP-hard in general,
is to determine under what conditions the problem is computationally tractable. There
are many approaches such as designing better exponential-time algorithms, studying
approximation algorithms, considering further the parameterized complexity, etc. The
common approach, which is the one taken in this thesis, however, is to restrict the prob-
lem to particular classes of graphs. The hope being to show that the problem is in P
for such classes or, even better, that a closed formula exists to calculate the parameters
that we seek in such classes.

With this in mind, the common approach to tackle these games is to try and solve
them for particular graph classes by using their structural properties, which is why
pursuit-evasion games are often considered to give a better understanding of structural
properties of graphs.
Particular graph classes. In cops and robbers, most of the work has been dedicated
to particular graph classes. Graphs with cop number equal to one were characterized
in [102]. Three cops are sufficient in planar graphs and this bound is sharp [16]. Two
cops are sufficient in outerplanar graphs and this bound is sharp [47]. The cop number
of intersection graphs was studied in [68] where, among other things, they showed that
the cop number of interval filament graphs is at most 2, the cop number of outer-string
graphs is at most 4, and the cop number of string graphs is at most 15. For graphs G
with genus g, c(G) ≤ b3g

2
c+ 3 and in the same paper, one of the two main conjectures

for cops and robbers was given and that is that c(G) ≤ g + 3 [109]. The other main
conjecture is that of Meyniel, which asks whether c(G) = O(

√
n) for any connected

graph G on n vertices. This conjecture is considered the biggest conjecture (since many
strong researchers have worked on it) in cops and robbers and is mentioned in [63]
as a personal communication between Frankl and Meyniel in 1985. For the bipartite
graph G(P ) formed from the points and the lines of a projective plane, where the
points and the lines are the two partitions, c(G(P )) =

√
n, where n is the number of

vertices in G(P ). Therefore, if Meyniel’s conjecture is true, then the bounds on the cop
number (for connected graphs) are asymptotically tight. Several works have been done
in regards to Meyniel’s conjecture (see, e.g., [45, 63, 97, 110]), yet no one has managed
to even prove that c(G) = O(n1−ε) for any ε > 0. For more on cops and robbers, see
the book [28].

In this thesis, the intersection of pursuit-evasion games in graphs and domination
and identification in graphs is studied. Once introduced, it will be clear that all these
problems are related to distances in graphs. The study of which, from different angles,
allows for a better understanding of distance properties of graphs. In the next subsec-
tions, some background on domination and identification in graphs is given to provide
a basis for the study of the games.

1.2.2 Domination in Graphs

A subset of vertices S ⊆ V is a dominating set of G = (V,E) if, for every vertex v ∈ V ,
either v ∈ S or uv ∈ E and u ∈ S. The domination number of a graph G, denoted
by γ(G), is the size of a minimum dominating set of G. Domination in graphs has
found its applications in, e.g., facility location problems, designing electrical networks,
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and land surveying [53, 78]. Much like games in graphs, the approach to studying
domination in graphs has been the same. The problem of deciding whether γ(G) ≤ k
when G and k are part of the input is NP-complete [82]. Moreover, the problem is
W[2]-complete [52]. The problem is also α lnn-inapproximable [17]. The fastest exact
algorithm (to the best of our knowledge) for finding a minimum dominating set runs
in time O(1.4969n) [118]. Seeing as the problem was most likely not computationally
tractable in general graphs, it was studied in particular graph classes. For example, the
domination number of planar graphs with diameter at most two (three respectively) is
at most 3 (10 respectively) [98]. Goddard and Henning showed that the bound is tight
for planar graphs with diameter two and showed that the graph they constructed is the
unique graph of diameter two with domination number equal to 3 [71]. MacGillivray and
Seyffarth also gave an example of a planar graph with diameter three with domination
number equal to 6 [98]. The exact domination number of Cartesian grids was only
recently determined in 2011 [73]. The domination number has also been investigated,
e.g., for series-parallel graphs [80], the cross product of paths [44], and the cross products
of graphs in general [74]. A big conjecture concerning domination in graphs is due
to Vizing and it dates back to 1968. It states that, for all finite graphs G and H,
γ(G�H) ≥ γ(G)γ(H) [120]. Significant progress was made by Clark and Suen when
they proved that γ(G�H) ≥ 1

2
γ(G)γ(H) [46]. For more on progress made on the

conjecture, the interested reader is referred to the survey [35]. For more on domination
in graphs and its variants see [78].

Domination in graphs is clearly related to the distance properties of a graph. For
example, the results on planar graphs with diameters at most 2 and 3 above show that
the domination number of a graph depends on the diameter of the graph.

1.2.2.1 Eternal Domination Game

In terms of dominating games, the all-guards-move model of the eternal domination
game [70] and its generalization, the spy game [j-3], will be considered in this thesis.
The eternal domination game was introduced by Burger et al. [39] in 2004. The game
is played on a simple undirected graph G. There is a team of guards playing against an
attacker. The guards place themselves on the vertices of G and then, at each turn, the
attacker first attacks a vertex v ∈ V and then only one guard may move to a vertex
adjacent to his current position (vertex) and one guard must move to v, otherwise, the
attacker wins. If a guard moves to v, then the guards are said to have defended against
the attack. If the guards can defend against an infinite sequence of attacks, then the
guards win. Hence, the guards must always maintain a dominating set. The objective
of the game is to determine the eternal domination number of G, denoted by γ∞(G),
which is the minimum number of guards necessary in order to ensure winning against
the attacker.

Goddard et al. [70] introduced the all-guards-move model of the eternal domination
game in 2005. In this variant, each guard may move to a neighbour on their turn, with
at least one guard having to move to the attacked vertex v after each attack. Such a
problem found its applications in the study of military strategies that date back to the
Roman Empire where armies needed to be mobilized to defend the empire but there
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were only a limited number of armies [18, 106, 107, 116]. There are two variants of
this model, one in which multiple guards may occupy a vertex at any time, and one in
which at most one guard may occupy a vertex at any time. Both associated parameters
are defined analogously to γ∞(G), with the former, which will be mainly considered
in this thesis, being denoted by γ∞all(G), and the latter being denoted by γ∗∞all (G). The
constraint that at most one guard may occupy a vertex is not a stringent one for the
original eternal domination game since it is easy to see that the guards do not gain any
advantage from this as only one guard may move at each turn [39]. However, there
exist graphs in which this constraint is important for the all-guards-move model, i.e.,
γ∞all(G) < γ∗∞all (G) for any of these graphs G [89].

It is clear that γ∞(G) ≤ γ∞all(G) ≤ γ∗∞all (G), however these parameters can also be
bounded by well-known graph parameters such as the domination number, indepen-
dence number, and clique cover number, denoted by γ(G), α(G), and θ(G) respec-
tively. In particular, the following chain of inequalities holds, γ(G) ≤ γ∞(G) ≤ α(G) ≤
γ∞all(G) ≤ γ∗∞all (G) ≤ θ(G) [39, 70].

From the variants of the eternal domination game mentioned thus far, seeing as
this thesis focuses on the study of γ∞all, only the state of the art of this variant will be
presented. Again, the complexity of the game was studied and the game in particular
graph classes. Deciding whether γ∞all(G) ≤ k is NP-hard when G and k are part of
the input and this holds for split graphs [21]. While it is not explicitly stated, it can
be seen that the problem is also W[2]-hard through the reductions given in [21]. Note
that it is not known whether the problem is in NP or in PSPACE and so this leaves
the very interesting open problem of determining the exact complexity class, i.e., is
it NP-complete? PSPACE-complete? EXPTIME-complete? In the case of particular
graph classes, paths and cycles are trivial with γ∞all(Pn) = dn

2
e and γ∞all(Cn) = dn

3
e [70].

A linear-time algorithm to calculate γ∞all(T ) for any tree T was conceived in [87]. For
any proper interval graph G, γ∞all(G) = α(G) [33]. There are many papers that have
focused on determining γ∞all(G) for Cartesian grids. Exact values have been determined
for 2×n grids [72] and 4×n grids [22]. It proved to be more difficult for 3×n grids with
asymptotically tight bounds being given in [57] and improved in [48]. Finally, the best
upper bound for Cartesian grids in general is γ∞all(Pn�Pm) = γ(Pn�Pm)+O(n+m) [92].
Note that all the results mentioned in this paragraph also hold for γ∗∞all .

There are other variants of the eternal domination game but they are just mentioned
in passing as they are outside the scope of this thesis. In the eternal total domination
game, a total dominating set must be maintained at each turn, that is, a dominating
set in which every vertex in the dominating set is also dominated by another vertex
(adjacent to another vertex) in the dominating set [88]. In the eviction model of the
eternal domination game, a vertex containing a guard is attacked at each turn, and
the guard at that vertex must move to an adjacent vertex with the condition that the
guards maintain a dominating set each turn [86]. The eternal domination game has
also been studied on digraphs [19]. The interested reader is referred to the survey [89]
for more information and results on the eternal domination game and its variants.

Another way of better understanding distances in graphs and how they can be used
leads to the study of identification problems in graphs.
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1.2.3 Identification in Graphs

Problems where one wants to distinguish the vertices of a graph by their distances
from a smallest subset of its vertices are commonly referred to as identifying problems.
Many of these problems exist, with identifying codes [83], adaptive identifying codes [24],
and locating dominating sets [115] asking for the vertices to be distinguished by their
neighbourhood in the subset chosen. Resolving sets, in which one wants to distinguish
the vertices of a graph by their distances to the vertices in such a set, have been
extensively studied [75, 114]. Formally, for a graph G, an ordered subset of vertices
S = {v1, . . . , vk} ⊆ V (G), and a vertex u ∈ V (G), let the distance vector between S and
u be D(S, u) = (dist(u, v1), dist(u, v2), . . . , dist(u, vk)). The set S is a resolving set, if,
for any two vertices u,w ∈ V (G), the distance vectors D(S, u) and D(S,w) are distinct.
The size of a minimum resolving set of a graph G is called the metric dimension of G
and is denoted by MD(G). This problem models, e.g., the detection of an intruder in
a facility [60]. Sensors that can detect an intruder at a certain distance can be placed
in and around the facility and security wants to be able to know the exact location of
the intruder given the distance information provided by the sensors. The sensors may
be expensive however, and so one wants to minimize the number of sensors they have
to install for the security of their facility.

The associated decision problem, i.e., deciding whether MD(G) ≤ k when G and
k are part of the input, was first shown to be NP-complete in general graphs in [66].
Thus, this motivated studying the problem in restricted graph classes. The problem
was further shown to be NP-complete in planar graphs [49] and in graphs of diameter
2 [62], and W[2]-hard (parameterized by the solution’s size) [76]. On the positive side,
the problem is FPT when parameterized by the treelength of the graph [23]. The metric
dimension of trees can be computed as follows [75, 114]. Contract all vertices of degree
2 and let L be the set of leaves in the remaining tree T ′ and let S be the set of vertices
of degree greater than 1 that are adjacent to at least one leaf in T ′. Then, for each
vertex in S, taking all adjacent vertices but one that are in L is a resolving set. Bounds
on the metric dimension were also shown for interval and permutation graphs [61].
For more on the metric dimension of graphs, the interested reader is referred to the
surveys [20, 41].

A variant of resolving sets, called centroidal bases, where the vertices of a graph
must be distinguished by their relative distances to the probed vertices was introduced
in [60]. A formal definition is given later in Chapter 5. However, intuitively, when a
set of vertices are probed, it results in the knowledge of which vertex is the closest to
the target, second closest, etc., without indicating the exact distances between these
vertices and the target. It is also known if two vertices probed are at the same distance
from the target. The size of a minimum centroidal basis of a graph G is called the
centroidal dimension of G and is denoted by CD(G). The associated decision problem,
i.e., deciding whether CD(G) ≤ k when G and k are part of the input, was shown to
be NP-complete, and almost tight bounds on the centroidal dimension of paths were
given in [60].
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1.2.3.1 Sequential Identifying Games in Graphs

In terms of identifying games, the Localization problem and the Relative-
Localization problem, introduced in [c-5] are considered in this thesis. In [112],
Seager initiated the study of the following sequential locating game: an invisible and
immobile target is hidden at some vertex t, and, at every step, one vertex can be probed
to retrieve its distance to t, and the objective is to locate t using the minimum number
of steps. Seager gave bounds and exact values on this minimum number of steps in par-
ticular subclasses of trees (e.g., subdivisions of caterpillars) [112] but left the problem
open in trees in general. The Localization problem is essentially a generalization of
the metric dimension of a graph and this sequential locating game (multiple vertices
may be probed each turn instead of just one). Indeed, instead of all the information
from probings being given at once, they are given sequentially. This is natural since
maybe it is not possible to probe enough sensors all at once in order to ensure locat-
ing an intruder in a facility or network, but of course one still wants to locate the
intruder. So, one might want to know the minimum number of sequential probings that
are necessary to ensure locating an intruder. That is, in the Localization problem,
an immobile target is hidden at a vertex and one probes the vertices of the graph over
multiple turns in order to locate the target. For a target hidden at a vertex u ∈ V (G),
probing a vertex v ∈ V (G) results in the knowledge of the distance between u and v,
i.e., dist(u, v). Precisely, given a graph G and two integers k, ` ≥ 1, the Localization
problem asks whether an immobile target hidden at a vertex of G can be located in at
most ` turns by probing at most k vertices per step.

The first of such sequential localization games studied the case of a moving target,
with the first one being proposed by Seager in 2012 [111]. In these games, after each
probing, the target may move to one of its neighbours. Sometimes an extra condition
on the movement of the target, known as “backtracking”, is not allowed, i.e., the target
may not move to a neighbour that has just been probed. The goal in these games is to
locate the target in a finite number of turns while minimizing the number of vertices
that can be probed at each turn.

As with the other related problems and games, the complexity of such games was
studied as well as such games in particular graph classes. The number of times all of
the edges of a graph must be subdivided in order to guarantee locating a moving target
by probing one vertex (k vertices respectively) per step was investigated in [40] ([77]
respectively). A locatable graph is one in which there exists a strategy, that probes
one vertex per step, that locates, in a finite number of steps, a target that may not
backtrack. All trees were shown to be locatable and bounds on the number of steps
it takes to locate the target in trees were exhibited in [111]. This upper bound was
improved in [34]. The case of a target that may backtrack was considered in trees
in [113]. Let ζ(G) be the minimum integer k such that there exists a strategy, that
probes k vertices per step, for locating a moving target in G in a finite number of steps.
In [31], it was shown that deciding whether ζ(G) ≤ k is NP-hard and that ζ(G) is
not bounded in the class of graphs G with treewidth 2. Moreover, ζ(G) ≤ 2 for any
outerplanar graph G [27]. The case where relative distances are returned instead of
exact distances was also studied in this context. Let ζrel(G) be the minimum integer k
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such that there exists a strategy, that probes k vertices per step, for locating a moving
target in G in a finite number of steps when relative distances are returned instead of
exact distances. It was notably shown that ζrel(G) ≤ 3 for any outerplanar graph G and
that deciding whether ζrel(G) ≤ k, when G and k are part of the input, is NP-hard [30].

1.2.3.2 Identifying in Oriented Graphs

Motivated by the numerous works on the metric dimension of a graph and its variants,
the continued study of the metric dimension of digraphs is presented in this thesis.
Chartrand, Rains, and Zhang were the first to study the metric dimension of digraphs
in 2000 [42]. In their definition, they require that the vertices of D be distinguished
by their distances (in D) to the vertices in R ⊆ V (D). They also require that the
distances from each pair of distinct vertices to the vertices in R which distinguish them
be defined (not ∞). If both these conditions are met, then R is said to be a resolving
set of D. Our definition, which will be the one used in this thesis, requires that the
vertices of D be distinguished by their distances (in D) from the vertices in R ⊆ V (D).
We also allow for undefined distances (∞) to be used as well. However, if only strong
digraphs D are considered, then our definitions are equivalent except that they consider

the digraph D̃ which is obtained by reversing all the arcs of D.

The works on the metric dimension of digraphs that have appeared between theirs
and ours are with respect to the original definition. In [42], digraphs with metric
dimension 1 were characterized and the open problem of a characterization of digraphs
that admit a metric dimension (following their definition) still remains open as far
as we know. If G has a Hamiltonian path, then there exists an orientation D of G
such that MD(D) = 1 (orient all edges of a Hamiltonian path from the first vertex
towards the last vertex, and all remaining edges in the opposite direction) [42, 96].
The associated decision problem, i.e., deciding whether MD(D) ≤ k when a strong
digraph D and k are part of the input, is NP-complete [105]. Bounds on the metric
dimension of various digraph families were later exhibited (Cayley digraphs [55], line
digraphs [56], tournaments [96], digraphs with cyclic covering [103], De Bruijn and
Kautz digraphs [105], etc.). In [43], the worst orientations of G for the metric dimension
were considered, i.e., orientations of G with maximum metric dimension.

This motivated our study of WOMD(G) which is the maximum value of MD(D)
over all strong orientations D of G. This definition is then extended to graph families as
follows. For any family G of 2-edge-connected graphs (a graph has strong orientations

if and only if it is 2-edge-connected), let WOMD(G) = max
G∈G

WOMD(G)
|V (G)| . In [43], the

authors proved that, for every positive integer k, there exist infinitely many graphs for
which the metric dimension of any of its strongly-connected orientations is exactly k.
They have also proved that there is no constant k such that the metric dimension of
any tournament is at most k.

The necessary background has been presented now so that the main study of this
thesis can be introduced, that is, the intersection of pursuit-evasion games in graphs
and domination and identification in graphs.
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1.3 Results of this Thesis: Dominating and Identifying Games

In this thesis, games that depend on domination and identification are studied. Iden-
tification problems and games are then extended to the metric dimension of oriented
graphs to better understand the role of distances in digraphs in relation to the met-
ric dimension of digraphs. We consider these games as, sometimes, the static nature
of dominating sets is not sufficient for applications of problems of a sequential nature
like the eternal domination game (as discussed in sections 1.2.2.1 and 1.3.1). Other
games, like the spy game (section 1.3.1 and Chapter 3) and the Localization prob-
lem (section 1.3.3 and Chapter 5), can be seen as generalizations of well-studied games
(parameters respectively) in graphs, like the eternal domination game (metric dimen-
sion respectively). All these problems have in common the notion of distances in graphs
(and digraphs) and how they can be used and better understood. The main focus is to
determine the computational complexity of the decision problems associated with such
games and to solve the associated problems (games) in certain graph classes as is the
common approach for the individual components that make up these games, as shown
above.

1.3.1 Chapter 3: Dominating Games - Spy Game

A generalization of the eternal domination game seemed very natural as maybe a guard
just needs to be close enough in order to prevent the attacker from doing something
and maybe the attacker has speed restrictions, so that he cannot just attack any vertex
but one at most a certain distance from his current position. These generalizations are
very natural for a better study of, e.g., military strategies, as was already done for the
eternal domination game. This is why the spy game is the other dominating game that
will be focused on in this thesis.

The spy game was introduced in [j-3] (joint work with N. Cohen, N. Martins, N.
Nisse, S. Pérennes, and R. Sampaio) and further studied in [c-8, j-4] (joint works with
N. Cohen, N. Nisse, and S. Pérennes), and the results of these papers (mentioned below)
are included in Chapter 3.

In the spy game, similarly to the eternal domination game, a team of guards play
against an attacker called the spy. The rules of the spy game are defined in terms of
two parameters, the speed s ∈ N∗ of the spy and the prescribed distance d ∈ N. The
spy first places itself at a vertex and then the guards do the same. The spy moves at
speed s on his turn, that is, he may move to a vertex that is at distance at most s from
his current position (vertex). Then, the guards move as they do in the all-guards-move
model of the eternal domination game, that is, each guard may move to one of its
neighbours and multiple guards may occupy the same vertex. If there is at least one
guard at distance at most d from the spy after the guards move, then the guards are
said to control the spy. The guards must maintain that they control the spy (after they
move) at all times, otherwise, they lose, and if they can do so for an infinite sequence of
moves of the spy, then they win. The aim of the game is to determine the guard number
of G, denoted by gns,d(G), which is the minimum number of guards necessary in order
to ensure winning against the spy. Note that γ∞all(G) = gns,0(G) if s ≥ diam(G).
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In light of the research that has been done on the eternal domination game and
other pursuit-evasion games, in Chapter 3, it is shown that the spy game is NP-hard,
W[2]-hard, and exact values for the guard number of paths and almost tight bounds
for cycles are given (our results from [j-3]). This is then followed by the study of the
spy game in trees and grids (our results from [c-8, j-4]). Linear Programming is used
to calculate the guard number of trees and a corresponding strategy in polynomial
time by showing that the fractional guard number equals the classical guard number
in trees. As far as we know, this is the first exact algorithm for such combinatorial
games using Linear Programming, and we were not able to solve the problem without
it. Lastly, motivated by the study of the eternal domination game in Cartesian grids,
by considering the fractional relaxation of the spy game again, bounds are obtained on
the (fractional) guard number of Cartesian grids and tori.

1.3.2 Chapter 4: Dominating Games - Eternal Domination Game

The extensive work done for the eternal domination game on Cartesian grids motivated
our (joint work with N. Nisse and S. Pérennes [c-9]) study of the game on strong grids
and the general technique that we obtained for grid-like graphs in general which can be
seen as Cayley graphs obtained from abelian groups which are truncated. Precisely, in
Chapter 4, it is shown that for all n,m ∈ N∗ such that m ≥ n, bn

3
cbm

3
c + Ω(n + m) =

γ∞all(Pn�Pm) = dn
3
edm

3
e+O(m

√
n) and this general technique is presented. This same

result is then shown to hold for γ∗∞all .

1.3.3 Chapter 5: Identifying Games - Localization Problem

In Chapter 5, our results from [c-5] (joint work with J. Bensmail, D. Mazauric, N.
Nisse, and S. Pérennes) for both the Localization problem and the Relative-
Localization problem are presented. Precisely, motivated by the study of the game
with a moving target in trees T , we show that the Localization problem is NP-
complete in trees but, despite this, a (+1)-approximation algorithm for determining
the optimal number of turns to locate the target and a corresponding strategy is pre-
sented. As with the associated decision problems of both the parameters ζ(G) and
ζrel(G), that were shown to be NP-hard, we show that both the Localization and
Relative-Localization problems are NP-complete, even when k or ` (but not both)
is fixed, but both problems are polynomial when both k and ` are fixed.

1.3.4 Chapter 6: Identifying in Oriented Graphs

In Chapter 6, our results from [c-6] (joint work with J. Bensmail and N. Nisse) on the
continued study of the metric dimension of digraphs are presented. As in the other
works where specific graph classes were studied, we study WOMD for specific graph
families such as graphs with bounded maximum degree, Eulerian tori, and grids.

The next section gives an overview of the results of the thesis, as well as the orga-
nization of the thesis. The last section gives a list of the publications included in this
thesis and a list of other publications.
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1.4 Results and Layout of this Thesis

• In Chapter 2, graph theoretic notation and definitions used throughout the thesis
are introduced.

• In Chapter 3, joint results on the NP-hardness of the spy game and the guard
numbers of paths and cycles with N. Cohen, N. Martins, N. Nisse, S. Pérennes,
and R. Sampaio from [j-3] are first presented. Then, joint results for the spy game
on trees and grids with N. Cohen, N. Nisse, and S. Pérennes from [c-8, j-4] are
presented. Notably, we show an equivalence between the fractional variant and
the “integral” version of the spy game in trees which allowed us to use Linear
Programming to come up with what we believe to be the first exact algorithm
using the fractional variant of a game to solve the “integral” version.

• In Chapter 4, joint results on the eternal domination number of strong grids with
N. Nisse and S. Pérennes from [c-9] are presented.

• In Chapter 5, joint results on the NP-completeness of the Localization game under
different conditions (and a variant of it) and the game in trees with J. Bensmail,
D. Mazauric, N. Nisse, and S. Pérennes from [c-5] are presented. Notably, we
show that the problem is NP-complete in trees, but despite this, we come up with
a polynomial-time (+1)-approximation algorithm in trees. We consider such an
approximation to be rare as we are not aware of any other such approximation in
games on graphs.

• In Chapter 6, joint results on the metric dimension of oriented graphs with J.
Bensmail and N. Nisse from [c-6] are presented. In particular, the orientations
which maximize the metric dimension are investigated for graphs of bounded de-
gree, tori, and grids.

• Lastly, in Chapter 7, concluding remarks are given and further work is discussed.
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B. Seamone, and V. Virgile. A method for eternally dominating strong grids. Submitted
to DMTCS.

16



Chapter 2

Graph Theory: Definitions and
Notation

2.1 Undirected Graphs

Standard graph theory terminology and notation will be used (see, e.g., [50] for refer-
ence). A graph G = (V,E) consists of a set of vertices V and a set of edges E where
each edge consists of a pair of vertices in V . The order of a graph is the total number
of vertices in the graph and is usually denoted by n, i.e., |V | = n. The size of a graph
is the total number of edges in the graph and is usually denoted by m, i.e., |E| = m.
For any two vertices u, v such that the pair (u, v) is an edge, the edge will be denoted
by uv. A graph G is said to be simple if between any two vertices u, v ∈ V , there is at
most one edge and there are no edges from a vertex to itself (these are called loops). All
graphs considered in this thesis are simple. A graph is said to be undirected if the edges
have no directions on them, e.g., the edge uv is equivalent to the edge vu. The following
definitions apply to undirected graphs, after which directed graphs will be introduced.

A vertex u is said to be adjacent to or a neighbour of a vertex v if the edge uv exists.
The (open) neighbourhood of a vertex v, denoted by N(v), is the set of all vertices
adjacent to v. The closed neighbourhood of a vertex v is denoted by N [v] = N(v)∪{v}.
The degree of a vertex v ∈ V , denoted by d(v), is the size of the neighbourhood of v,
i.e., d(v) = |N(v)|. The minimum degree of a graph G is denoted by δ(G) = min

v∈V
d(v).

The maximum degree of a graph G is denoted by ∆(G) = max
v∈V

d(v). A vertex v is said

to be universal if N [v] = V . A vertex v is said to be isolated if d(v) = 0.
A subset of vertices S ⊆ V is called a dominating set if for any vertex v ∈ V ,

there exists a vertex u ∈ S (it may be the case that v = u) such that v ∈ N [u]. The
minimum size of a dominating set of a graph G is called the domination number of G
and is denoted by γ(G). A subset of vertices S ⊆ V is called an independent set if for
any two vertices u, v ∈ S, uv /∈ E. The maximum size of an independent set in a graph
G is called the independence number of G and is denoted by α(G).

A subgraph H = (V ′, E ′) of a graph G = (V,E) is a graph such that V ′ ⊆ V and
E ′ ⊆ E∩(V ′×V ′). An induced subgraph H = (V ′, E ′) of a graph G = (V,E) is a graph
such that V ′ ⊆ V , E ′ ⊆ E, and for all edges uv ∈ E such that u, v ∈ V ′, uv ∈ E ′. A
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component of a graph G is an induced subgraph of G. A (vertex) partition of a graph
G is a division of its vertices into vertex-disjoint components.

The Cartesian product of two sets A and B is denoted by A×B = {(a, b)|a ∈ A, b ∈
B}. The Cartesian product of two graphs G = (V,E) and H = (V ′, E ′), denoted by
G�H, is a graph such that the vertex set is the Cartesian product V × V ′ and two
vertices (a, a′), (b, b′) ∈ G�H are adjacent if a = b and a′b′ ∈ E ′ or if a′ = b′ and ab ∈ E.
The strong product of two graphs G = (V,E) and H = (V ′, E ′), denoted by G � H,
is a graph such that the vertex set is the Cartesian product V × V ′ and two vertices
(a, a′), (b, b′) ∈ G�H are adjacent if a = b and a′b′ ∈ E ′ or if a′ = b′ and ab ∈ E or if
a′b′ ∈ E ′ and ab ∈ E.

A path on n vertices, denoted by Pn, is a sequence of vertices v1, . . . , vn where vivi+1

is an edge for all integers 1 ≤ i ≤ n − 1. The endpoints of the path are v1 and vn.
A cycle on n vertices, denoted by Cn, is equivalent to a path on n vertices where, in
addition, the edge vnv1 exists. A tree is a graph T that contains no cycles. The vertices
of a tree are also called nodes. A leaf is a node of degree 1 in a tree. A clique (or
complete graph) on n vertices, denoted by Kn, is a graph in which for every two vertices
u, v ∈ V (Kn), the edge uv exists. A graph is bipartite if its vertices can be partitioned
into two components which are independent sets. A complete bipartite graph, denoted
by Kn,m, consists of an independent set of size n and one of size m between which all
possible edges exist. A Cartesian grid is the Cartesian product of two paths Pn and Pm,
denoted by Gn×m = Pn�Pm, that is commonly referred to as an n×m grid or simply
just a grid. A strong grid is the strong product of two paths Pn and Pm, denoted by
SGn×m = Pn � Pm, that is commonly referred to as an n ×m strong grid. A torus is
the Cartesian product of two cycles Cn and Cm, denoted by Tn×m = Cn�Cm, that is
commonly referred to as an n ×m torus. For a family of intervals Si, i = 1, . . . , n, an
interval graph is a graph formed by creating a vertex vi for each interval Si and there
is an edge between two vertices vi and vj (i 6= j) if the intervals Si and Sj overlap
(intersect). A proper interval graph is an interval graph in which no interval is properly
contained in another interval, i.e., for any two intervals Si and Sj (i 6= j), it is not the
case that Si ( Sj nor that Sj ( Si.

A graph G is connected if for any two vertices u, v ∈ V , there exists a subgraph H
such that H is a path with u and v as its endpoints, otherwise, the graph is disconnected.
The distance between two vertices u, v ∈ G, denoted by distG(u, v) or simply dist(u, v)
when no ambiguity is possible, is the length of a shortest path from u to v. If no such
path exists, then dist(u, v) = ∞. The diameter of a graph G, denoted by diam(G), is
the length of a longest shortest path in G, i.e., max

u,v∈V
dist(u, v). For any graph G, any

integer ` and v ∈ V (G), N`[v] is the set of vertices at distance at most ` from v in G.

A clique cover of a graph is a union of complete subgraphs such that the union of
their vertex sets is V . The clique cover number of a graph G, denoted by θ(G), is the
minimum number of cliques whose union is a clique cover of G.

An isomorphism of graphs G and H is a bijective mapping σ : V (G)→ V (H) such
that for all u, v ∈ V (G), uv ∈ E(G) ⇔ σ(u)σ(v) ∈ E(H). The graphs G and H are
said to be isomorphic in this case.
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2.2 Directed Graphs

Note that directed graphs will only be considered in Chapter 6. A directed graph or
digraph D = (V,A) is a graph in which each of the edges has a given direction and
the edges are called arcs instead. If an edge is directed from a vertex u to a vertex v
(from a vertex v to a vertex u respectively), then the arc is denoted by (u, v) ((v, u)
respectively). An orientation D of an undirected graph G is obtained by orienting every
edge uv ∈ E(G) either from u to v, resulting in the arc (u, v) or conversely from v to
u, resulting in the arc (v, u). An oriented graph is a digraph that is an orientation of a
simple graph.

For an arc (u, v) ∈ A, u is an in-neighbour of v and v is an out-neighbour of u. The
set of all in-neighbours (out-neighbours respectively) of a vertex v ∈ V is denoted by
N−(v) (N+(v) respectively). The in-degree (out-degree respectively) of a vertex v ∈ D,
denoted by d−(v) (d+(v) respectively), is the number of in-neighbours (out-neighbours
respectively) of v, i.e., d−(v) = |N−(v)| and d+(v) = |N+(v)|. The maximum in-degree
(maximum out-degree respectively) of a vertex in a digraph D is denoted by ∆−(D)
(∆+(D) respectively). A directed path is an orientation of a path such that all arcs are
oriented in the same direction, i.e., all vertices of the path have in-degree (out-degree
respectively) at most 1. A digraph D is strongly connected if, for every two vertices
u, v ∈ V , there exists (as a subgraph) a directed path from u to v and from v to u.
The directed distance (or simply distance when no ambiguity is possible) between two
vertices u, v ∈ V in D, denoted by distD(u, v) (or simply dist(u, v) when no ambiguity
is possible), is the length of a shortest directed path from u to v in D.
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Part II

Domination Games
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Chapter 3

Spy Game

3.1 Introduction

In this chapter, the study of the notion of sequential dominating sets is continued with
the generalization of the eternal domination game, called the spy game. Specifically,
this chapter focuses on results published in the paper that introduced the spy game [j-3],
which is joint work with N. Cohen, N. Martins, N. Nisse, S. Pérennes, and R. Sampaio,
and results published in [c-8, j-4], which are joint works with N. Cohen, N. Nisse, and
S. Pérennes. The spy game is a two-player game played on a graph G as follows. Let
k, d, s ∈ N be three integers such that k > 0 and s > 0. One player uses a set of k
guards occupying some vertices of G while the other player plays with one spy initially
standing at some node. Note that several guards and even the spy could occupy the
same vertex.

Initially, the spy is placed at some vertex of G. Then, the k guards are placed at
some vertices of G. Then, the game proceeds turn-by-turn. At each turn, first the spy
may move along at most s edges (s is the speed of the spy). Then, each guard may
move to its neighbour. If there is at least one guard at distance at most d from the spy
after the guards’ move, then the guards are said to control the spy. The spy wins if,
after a finite number of turns (after the guards’ move), it reaches a vertex at distance
greater than d from every guard. The guards win otherwise, in which case the guards
always control the spy.

Given a graph G and two integers d, s ∈ N, s > 0, let the guard number, denoted
by gns,d(G), be the minimum number of guards required to control a spy with speed s
at distance d for an infinite number of turns, against all the spy’s strategies. In what
follows, only the case where s ≥ 2 is considered since if s = 1, then the game is trivial
as one guard can just follow a shortest path to the spy at each turn. See Figure 3.1 for
an example of the spy winning against one guard when s = 2 and d = 1.

Recently, a new framework was proposed that considers a fractional variant of these
combinatorial games (roughly where agents may be split into arbitrarily small entities)
and uses Linear Programming to obtain new bounds and algorithms [69]. While this
approach seems not to be successful to handle cops and robber games, it has been
fruitful in designing approximation algorithms for other combinatorial games. Precisely,
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Figure 3.1: Ex: spy (red) wins in the spy game (s = 2, d = 1) against 1 guard (blue).
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it allowed to design polynomial-time approximation algorithms for various (NP-hard)
variants of the surveillance game [69]. In this chapter, we present a new successful
application of this approach. In particular, we show that the spy game can be solved in
polynomial time in trees using this approach. We emphasize that, as far as we know, it
is the first exact algorithm for such combinatorial games using a Linear Programming
approach and that we were not able to solve it without this technique. Indeed, we show
that the techniques used in Section 3.3 and for solving the eternal domination game in
trees [87] are not necessarily optimal in trees in general for the spy game. In Section 3.3,
for n-node paths, the strategy consists of partitioning the path into gns,d(Pn) subpaths
with one guard assigned to each one. We show that assigning disjoint subtrees to each
guard is not necessarily optimal in trees (see Section 3.5). For the eternal domination
game in trees T , γ∞all(T ) can be computed in linear time [87]. The key property in
this simple recursive algorithm is that an optimal strategy consists of partitioning a
tree into vertex-disjoint stars, each star being assigned to at most 2 guards. As already
mentioned, such a method does not extend to the spy game. We also show the first non-
trivial lower bound on the guard number of grids using the fractional variant. We hope
that our results will encourage people to use this framework to study combinatorial
games and we believe it will enable progress toward solutions of the difficult open
problems.

3.1.1 Fractional spy game

Formally, the fractional spy game proceeds as follows in a graph G = (V,E). Let s ≥ 2,
d ≥ 0 be two integers and let k ∈ R such that k > 0. First, the spy is placed at
a vertex. Then, each vertex v receives some amount gv ∈ R+ (a non-negative real)
of guards such that the total amount of guards is

∑
v∈V gv = k. Then, on its turn,

the spy may first move at distance at most s from its current position. Then, the
“fractional” guards move following a flow constrained as follows (see Figure 3.1.1 for an
example). For any v ∈ V and for any u ∈ N [v]†, there is a flow f(v, u) ∈ R+ of guards
going from v to u ∈ N [v] such that

∑
u∈N [v] f(v, u) = gv, i.e., the amount of guards

leaving v and staying at v is exactly what was at v. Finally, for any vertex v ∈ V , the
amount of guards occupying v at the end of the round is g′v =

∑
u∈N [v] f(u, v). We now

need to rephrase the fact that the guards control the spy at distance d at the end of
each round. This is the case if, after every guards’ turn,

∑
w∈Nd[x] g

′
w ≥ 1, where x is

the vertex occupied by the spy. Let fgns,d(G) denote the minimum total amount of
fractional guards needed to always control at distance d a spy with speed s in a graph
G. Note that, by definition, since the fractional game is a relaxation of the “integral”
spy game:

Claim 3.1.1. For any graph G and any s ≥ 2, d ≥ 0, fgns,d(G) ≤ gns,d(G).

†For any graph G, any integer ` and v ∈ V (G), let N`[v] be the set of vertices at distance at most ` from
v in G and let N [v] = N1[v].
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Figure 3.2: Example of the fractional spy game when s ≥ 2 and d = 1. (Left) Initial positions
of the spy and the guards, where there are 0.5 guards at each vertex in blue and the spy is
at the vertex in red. (Right) The spy moves to the vertex in red and the guards move as
illustrated, that is, sending 0.25 guards to each of their neighbours.

3.1.2 Our Results

In this chapter, we initiate the study of the spy game for s ≥ 2. In Section 3.2, we
study the computational complexity of the problem of deciding the guard number of a
graph. We prove that computing gns,d(G) is NP-hard for any s ≥ 2 and d ≥ 0 in the
class of graphs G with diameter at most O(d) (our result from [j-3]). Then, we consider
particular graph classes. In Section 3.3, we precisely characterize the cases of paths and
cycles (our results from [j-3]). Precisely, for any d ≥ 0, s ≥ 2, we prove that, for any
path Pn on n vertices:

gns,d(Pn) =

⌈
n

2d+ 2 +
⌊

2d
s−1

⌋⌉ ,
and, for any cycle Cn with n vertices:

• gns,d(Cn) =
⌈

n
2d+3

⌉
if 0 ≤ 2d < s− 1;

• If 2d ≥ s− 1, then⌈
n+ 2b 2d

s−1
c

2(d+ b 2d
s−1
c) + 3

⌉
≤ gns,d(Cn) ≤

⌈
n+ 2b 2d

s−1
c

2(d+ b 2d
s−1
c) + 1

⌉
.

In Sections 3.5 and 3.6, we study the spy game in the classes of trees and grids
respectively (our results from [c-8, j-4]). We prove that the guard number of any tree
can be computed in polynomial time and give non-trivial lower and upper bounds on
the fractional guard number of grids. More precisely, for every s ≥ 2 and d ≥ 0:

• We design a Linear Program that computes fgns,d(T ) and a corresponding strat-
egy in polynomial time for any tree T . Then, we show that any fractional strategy
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(winning for the guards) using k guards in a tree can be turned into a winning
(integral) strategy using bkc guards. The key argument is that we can restrict the
study to what we call Spy-positional strategies. Altogether, this shows that, in
any tree T , fgns,d(T ) = gns,d(T ), and that gns,d(T ) and a corresponding winning
strategy can be computed in polynomial time.

• Then, we show that there is a constant 0 < β∗ < 1 such that, for any n × n
grid Gn×n with n large enough, Ω(n1+β∗) = fgns,d(Gn×n) ≤ gns,d(Gn×n). This
gives the first non trivial lower bound for the guard number in the class of grids.
Finally, for α = log2(1 + 1

s
), we show that fgns,d(Gn×n) = O(n2−α). Note that

the best known upper bound for gns,d(Gn×n) is O(n2)†. A similar bound holds for
the n× n torus.

3.2 Complexity

In this section, we prove that the spy game with speed s and distance d is NP-hard for
any s ≥ 2 and d ≥ 0. Precisely, we prove the following theorem.

Theorem 3.2.1. Let s ≥ 2 and d ≥ 0 be two fixed integers. The problem that takes
an n-node graph G and an integer k ∈ N as inputs and aims at deciding whether
gns,d(G) ≤ k is NP-hard, W[2]-hard (see [52]) when parameterized by the number of
guards, and α lnn-inapproximable in polynomial time for some constant 0 < α < 1,
unless P = NP .

The proof follows from the five Lemmas below. The reduction is from the Set
Cover Problem and is divided into three cases: d + 1 < s < 2d + 2 (Lemma 3.2.3),
s ≥ 2d+2 (Lemma 3.2.4), and s ≤ d+1 (Lemmas 3.2.6 and 3.2.7 depending on whether
d (mod s − 1) is greater than s/2). The proofs of all the cases are similar but vary
slightly depending on the parameters. We present the proofs of all the cases separately
for better comprehensibility.

An instance of the Set Cover Problem is a family S = {S1, . . . , Sm} of sets and an
integer c, and the objective is to decide if there exists a subfamily C = {Si1 , . . . , Sic} ⊆ S
such that |C| ≤ c and Si1 ∪ . . .∪Sic = U , where U = S1∪ . . .∪Sm (we say that C is a set
cover of U). Given an instance (S, c) of Set Cover, we construct a graph G = Gs,d(S, c)
and an integer K = Ks,d(S, c) such that there exists a cover C ⊆ S of U with size
at most c if and only if gns,d(G) ≤ K. Note that the reductions presented below are
actually FPT-reductions and preserve approximation ratio. Therefore, since the Set
Cover Problem is W[2]-hard (when parameterized by the size c of the set cover) and
has no α′ ln(n) approximation algorithm for some constant 0 < α′ < 1 (unless P=NP)
[17], we not only prove the NP-hardness but also the fact that the problem is W[2]-
hard (when parameterized by the number of guards) and cannot be approximated in
polynomial time up to some logarithmic ratio (unless P = NP ).

†Indeed, O((n/d)2) vertices are sufficient to dominate every vertex at distance d in Gn×n (tiling the grid
with vertex-disjoint balls of radius d).
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Definition 3.2.2. Given integers s ≥ 2 and d ≥ 0, let p = p(s, d) = d +
⌈
d+1
s−1

⌉
and

q = q(s, d) be

q(s, d) =


0, if d+ 1 < s < 2d+ 2,

d+
⌈

d
s−1

⌉
, if s ≤ d+ 1,

d, otherwise.

Let (S, c) be an instance of Set Cover, where S = {S1, . . . , Sm}, and let U =
S1 ∪ . . . ∪ Sm = {u1, . . . , un}. Let K = Ks,d(S, c) be:

Ks,d(S, c) =


c, if d+ 1 < s < 2d+ 2,

c+ 2, if s ≤ d+ 1 and 1 ≤ d mod (s− 1) < s
2
− 1,

c+ 1, otherwise.

Let G = Gs,d(S, c) be the graph defined as follows: for every set Sj ∈ S, create a
new vertex Sj in G and, for every element ui ∈ U , create a path Ui with p vertices
ui,1, . . . , ui,p. Make {S1, . . . , Sm} a clique in G (add all possible edges). If ui ∈ Sj, add
the edge ui,1Sj in G. Create a new vertex z0 and add all possible edges between z0 and
{S1, . . . , Sm} in G. Finally, if q > 0, create a path Z with q vertices z1, . . . , zq, and add
the edge z0z1. Moreover, if s ≤ d + 1 and 1 ≤ d mod (s − 1) < s

2
− 1, then create a

path Z ′ with q vertices z′1, . . . , z
′
q and add the edge z0z

′
1.

See Figures 3.3-3.5 for examples.

s = 5

d = 2
p = 3

q = 0

K = 3

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

s = 5

d = 3
p = 4

q = 0

K = 3

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,4 u2,4 u3,4 u4,4 u5,4 u6,4 u7,4 u8,4 u9,4

Figure 3.3: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d = 2, 3. Illustration of the proof
of Lemma 3.2.3.

Lemma 3.2.3. Given a graph G and an integer K > 0, deciding if gns,d(G) ≤ K is
NP-hard for every s, d ≥ 0 such that d+ 1 < s < 2d+ 2.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall
Definition 3.2.2 and let p = p(s, d) = d + 1, q = q(s, d) = 0, G = Gs,d(S, c) and
K = Ks,d(S, c) = c.
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First, suppose that there is no cover C of U with at most c sets in S. We prove
that the spy wins against at most K = c guards. Precisely, the spy starts in z0 and
can win in one step. Indeed, since there are at most K guards and there is no cover
of U with c sets in S, then there exists some 1 ≤ i ≤ n such that there is no guard in
N [Ui]. Thus, the spy goes to ui,p in one step (note that the distance from z0 to ui,p is
p+ 1 = d+ 2 ≤ s). During the guards’ step, no guard can reach a vertex of Ui, and so
the spy remains at distance at least d from all guards. Therefore, the spy wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. For
ease of presentation, we prove that c = K guards win if they are placed first. This is
clearly sufficient to prove that gns,d(G) ≤ K since it is a disadvantage for the guards
to place themselves first. The strategy of the guards is as follows. Occupy initially the
vertices Sj1 , . . . , Sjc . Since C is a cover of U , we can define for any element ui ∈ U an
index c(i) such that ui ∈ Sc(i) ∈ C.

If the spy is not in {u1,p, . . . , un,p}, then the guards occupy the initial vertices and
then they control the spy. If the spy is in a vertex ui,p, then the guard occupying Sc(i)
goes to ui,1 and controls the spy. Since s < 2d+ 2, the spy cannot go from ui,p to other
vertex uj,p in one step (j 6= i). Thus, if the spy leaves ui,p, the guards reoccupy the
initial vertices. With this strategy, the guards win the game.

s = 5

d = 0
p = 1

q = 0

K = 4

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

s = 5

d = 1
p = 2

q = 1

K = 4

z0 z1

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,2 u2,2 u3,2 u4,2 u5,2 u6,2 u7,2 u8,2 u9,2

Figure 3.4: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d ∈ {0, 1}. Illustration of the
proof of Lemma 3.2.4.

Lemma 3.2.4. Given a graph G and an integer K, deciding if gns,d(G) ≤ K is NP-hard
for every s, d ≥ 0 such that s ≥ 2d+ 2.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall
Definition 3.2.2 and let p = p(s, d) = d + 1, q = q(s, d) = d, G = Gs,d(S, c) and
K = Ks,d(S, c) = c+ 1.

First, suppose that there is no cover C of U with at most c sets in S. We prove
that the spy wins against at most K = c + 1 guards. Precisely, the spy starts in zq
and can win in one step. Indeed, if initially no guard occupies a vertex in {z0, . . . , zq},
then the spy wins immediately. Therefore, let us assume that there is at least one
guard in {z0, . . . , zq}. Since there are c + 1 guards, then there are at most c guards
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outside {z0, . . . , zq}. Since there is no cover of U with c sets in S, then there exists
some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus, the spy goes to ui,p in one
step (note that the distance from zq to ui,p is p+ q+ 1 = 2d+ 2 ≤ s) and wins since no
guard can reach a vertex in Ui (i.e., no vertex at distance at most d from ui,p) during
the next step.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. For
ease of presentation, we prove that c+ 1 = K guards win if they are placed first. This
is clearly sufficient to prove that gns,d(G) ≤ K since it is a disadvantage for the guards
to place themselves first. The strategy of the guards is as follows. Occupy initially the
vertices z0, Sj1 , . . . , Sjc . Since C is a cover of U , we can define, for any element ui ∈ U ,
an index c(i) such that ui ∈ Sc(i) ∈ C.

If the spy occupies a vertex not in {u1,p, . . . , un,p}, then the guards keep their initial
positions and control the spy. If the spy occupies the vertex ui,p, then the guard
occupying Sc(i) goes to ui,1 (controlling the spy) and the guard occupying z0 goes to
Sc(i). If the spy leaves ui,p and occupies a vertex uj,p with c(i) = c(j), then the guard
in Sc(i) goes to uj,1 (controlling the spy) and the guard in ui,1 goes to Sc(i). If the spy
leaves ui,p and occupies a vertex uj,p with c(i) 6= c(j), then the guard occupying Sc(j)
goes to uj,1 (controlling the spy), the guard in Sc(i) goes to Sc(j), and the guard in ui,1
goes to Sc(i). If the spy leaves ui,p to go to some vertex not in {u1,p, . . . , un,p}, then the
guards reoccupy the initial vertices: the guard in Sc(i) goes to z0 and the guard in ui,1
goes to Sc(i). With this strategy, the guards win the game.

Now consider the case d+ 1 ≥ s ≥ 2. The next auxiliary lemma will be very useful.

Lemma 3.2.5. Let s, d ≥ 0 be two integers such that d + 1 ≥ s ≥ 2, let p = p(s, d) =
d+

⌈
d+1
s−1

⌉
, q = q(s, d) = d+

⌈
d
s−1

⌉
and r = d mod (s− 1). Note that p = q+ 1 if r = 0

and p = q otherwise.
Let ` ∈ {p, q}, let P = (x−1, x0, · · · , x`) be a path and let us consider one guard

playing the game in P against a spy with speed s and at distance d.

(a) There is a winning strategy for the guard ensuring that the guard is in x0 when
the spy occupies a vertex in {x−1, · · · , xr};

(b) If r > 0, there are no winning strategies for the guard ensuring that it is in x0

when the spy is in xj for j > r;

(c) If ` = q, there are no winning strategies for the guard ensuring that it is in x−1

when the spy is in x0.

(d) If ` = p, for every winning strategy for the guard, it must never occupy x−1.

Proof. (a). We first consider the case ` = q. The strategy is defined as follows. If the
spy occupies a vertex in {x−1, · · · , xr}, then the guard is at x0. For any 0 < j ≤

⌊
d
s−1

⌋
,

if the spy occupies a vertex in {xr+1+(j−1)s, · · · , xr+js}, then the guard is at xj. Note
first that the strategy is well-defined: for any move of the spy, the guard either stays
idle or moves to a neighbour. Moreover, for any 0 ≤ j ≤

⌊
d
s−1

⌋
, the distance between

them is r + j(s − 1). While j ≤
⌊

d
s−1

⌋
, this distance is at most r +

⌊
d
s−1

⌋
(s − 1) = d
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(by definition of r). It only remains to show that the strategy is defined for all possible
positions of the spy. Note that the strategy is well-defined when the spy occupies xh for
all h ≤ r+

⌊
d
s−1

⌋
s. If r = 0, then r+

⌊
d
s−1

⌋
s = d+

⌈
d
s−1

⌉
= q = ` and we are done (all

positions have been considered). If r > 0, then r+
⌊

d
s−1

⌋
s = d+

⌊
d
s−1

⌋
−1 = q−1 = `−1.

Therefore, it only remains to define the strategy when the spy is in x`, in which case,
the guard occupies x1+b d

s−1c.
Now, let us assume that ` = p. Note that, if r > 0, then p = q and therefore, this

case has already been treated. Hence, let us consider the case r = 0.
The strategy is defined as follows. If the spy is at x−1 or x0, then the guard is at

x0. For any 0 < j ≤
⌊

d
s−1

⌋
, if the spy occupies a vertex in {x(j−1)s+1, · · · , xjs}, then

the guard is at xj. Since r = 0, xb d
s−1cs = xq = xp−1 = x`−1. Therefore, all that

remains is to define the position of the guard when the spy occupies x`, in which case,
the guard is at xb d

s−1c+1. Moreover, the distance between the spy and the guard is at

most `− (
⌊

d
s−1

⌋
+ 1) ≤ d.

(b). If r > 0 and the spy starts at xr+1, then it goes at full speed toward x`. After
j =

⌊
d
s−1

⌋
steps, the spy occupies xh for h = 1 + r +

⌊
d
s−1

⌋
s = ` (as shown above

when r > 0), and the guard can only occupy a vertex in {x−1, · · · , xj}. Therefore, the
distance between them is at least 1 + r +

⌊
d
s−1

⌋
(s− 1) = 1 + d and the spy wins.

(c). If r > 0, the spy first goes to xr+1 while the guard can only go to x0 and
the result follows from the previous item. If r = 0, then the spy goes at full speed
toward x`. After j =

⌊
d
s−1

⌋
steps, the spy occupies xh for h =

⌊
d
s−1

⌋
s = ` (as shown in

item (a)), and the guard can only occupy a vertex in {x−1, · · · , xj−1}. Therefore, the
distance between them is at least 1 +

⌊
d
s−1

⌋
(s− 1) = 1 + d and the spy wins.

(d). Finally, assume that the spy starts in x−1 and goes at full speed to x`. After
j > 0 steps, the spy occupies xjs−1 and the guard occupies xj−1. Therefore, the distance
between them is j(s−1) which is at most d if and only if j ≤

⌊
d
s−1

⌋
. Let us set j0 =

⌊
d
s−1

⌋
and note that sj0 − 1 = s

⌊
d
s−1

⌋
− 1 = (s− 1)

⌊
d
s−1

⌋
+
⌊

d
s−1

⌋
− 1 = d− r +

⌊
d
s−1

⌋
− 1 =

d− r +
⌈
d+1
s−1

⌉
− 2 = p− 2− r. After step j0, the spy occupies xsj0−1 and is at distance

exactly d from the guard. During the step j0 + 1, the spy can progress by at least two
edges toward xp (because s ≥ 2 and sj0 − 1 ≤ p − 2) while the guard can progress of
at most one edge. Therefore, the distance between them is at least d + 1 and the spy
wins.

Now, let us consider the case when s ≤ d+ 1 and r = d mod (s− 1) ≥
⌈
s
2

⌉
− 1 or

r = 0.

Lemma 3.2.6. Given a graph G and an integer K, deciding if gns,d(G) ≤ K is NP-hard
for every s, d > 0 such that 2 ≤ s ≤ d+1 and r = d mod (s−1) ∈ {

⌈
s
2

⌉
−1, . . . , s−2, 0}.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall
Definition 3.2.2 and let p = p(s, d) = d +

⌈
d+1
s−1

⌉
, q = q(s, d) = d +

⌈
d
s−1

⌉
, r = d

mod (s− 1), G = Gs,d(S, c) and K = Ks,d(S, c) = c+ 1.
First, suppose that there is no cover C of U with at most c sets in S. We prove

that the spy wins against at most K = c + 1 guards. Precisely, the spy starts in z0
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s = 5

d = 4
p = 6

q = 5

K = 4

z0 z1 z5

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,6 u2,6 u3,6 u4,6 u5,6 u6,6 u7,6 u8,6 u9,6

s = 5

d = 5
p = 7

q = 7

K = 5

z0 z1 z7

z′1 z′7

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,7 u2,7 u3,7 u4,7 u5,7 u6,7 u7,7 u8,7 u9,7

Figure 3.5: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d ∈ {4, 5}. Illustration of the
proofs of Lemma 3.2.6 (left) and Lemma 3.2.7 (right).

and can win as follows. If no guards are occupying a vertex in {z0, . . . , zq}, then by
Lemma 3.2.5(c) the spy can move to zq and win. Therefore, there must be a guard in
{z0, . . . , zq} and so, at most c guards occupying vertices in V (G) \ {z0, . . . , zq}. Since
there is no cover of U with at most c sets in S, then there exists some 1 ≤ i ≤ n
such that there is no guard in N [Ui]. Thus, the spy goes at full speed s from z0 to
ui,p. The conditions are similar to the ones of Lemma 3.2.5(d) where the vertices in
X = N(u1,p) \ Ui (which are not occupied) play the role of x0, and the vertices of
N(X) \N [Ui] (containing z0) play the role of x−1. Therefore, the spy eventually wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. In
what follows, we describe a winning strategy for K = c + 1 guards. The strategy of
the guards will ensure that there is always a guard at every vertex of C. Recall that,
since C is a cover of U , we can define for any element ui ∈ U an index c(i) such that
ui ∈ Sc(i) ∈ C.

The strategy is defined as follows.

• If the spy occupies a vertex in {z0, S1, . . . , Sm}, then the guards occupy the vertices
in {z0, Sj1 , . . . , Sjc}.

• If the spy occupies a vertex in Ui for i ≤ n, let Pi be the path induced by Ui, Sc(i)
and z0. Let us apply Lemma 3.2.5(a) on Pi with ` = p, z0 plays the role of x−1 and
Sc(i) plays the role of x0. By Lemma 3.2.5(a), there exists a strategy allowing one
guard to control the spy and such that the guard occupies Sc(i) if the spy occupies
a vertex in {z0, Sc(i), ui,1, · · · , ui,r}.
In that case, one guard, called the follower, follows the strategy defined by
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Lemma 3.2.5(a). The other guards occupy the vertices in {Sj1 , . . . , Sjc} if the
follower does not occupy Sc(i), and they occupy {z0, Sj1 , . . . , Sjc} \ {Sc(i)} if the
follower is at Sc(i).

• If the spy occupies a vertex in Z, let Z ′ be the path induced by Z, z0 and any
vertex Sj. Let us apply Lemma 3.2.5(a) on Z ′ with ` = q, Sj plays the role
of x−1 and z0 plays the role of x0. By Lemma 3.2.5(a), there exists a strategy
allowing one guard to control the spy and such that the guard occupies z0 if the
spy occupies a vertex in {z0, ui,1, · · · , ui,r} or any vertex Sj.

In that case, one guard, called the follower, follows the strategy defined by
Lemma 3.2.5(a). The other guards occupy the vertices in {Sj1 , . . . , Sjc}.

For any position of the spy, the above strategy ensures that at least one guard
controls the spy (by Lemma 3.2.5(a)). Hence, all that remains to be proved is that the
strategy is valid, i.e., that, for any move of the spy, the guards can move accordingly.
There are several cases to be considered.

• If the spy goes from a vertex in some Ui to another vertex of the same Ui or to
a vertex in {z0, S1, . . . , Sm}, then, the follower moves according to the strategy
of Lemma 3.2.5(a). If this move leads the follower to Sc(i) (in particular, by the
property of the strategy of Lemma 3.2.5(a), it is the case if the spy reaches a vertex
in {z0, S1, . . . , Sm}), then the guard that was occupying Sc(i) goes to z0. Therefore,
all guards’ moves are valid (if they move, they go to one of their neighbours).

By symmetry of the strategy (which is positional), the strategy of the guards is
also valid if the spy moves from {z0, S1, . . . , Sm} to some Ui.

The case when the spy goes from a vertex of Z to Z, or from Z to {z0, S1, . . . , Sm}
is similar.

• If the spy goes from a vertex in Ui to a vertex in Uj for some i 6= j. Note that,
by the property of the strategy of Lemma 3.2.5(a), the follower has to be either
in ui,1 or in Sc(i) after the spy’s move (this is because, if the spy is able to go from
Ui to Uj, it could also have gone to z0, and the strategy ensures that, in that case,
the follower must be able to reach Sc(i)).

If the follower was in ui,1 (after the spy’s move), then the guard at Sc(j) becomes
the new follower (recall that all vertices in {Sj1 , . . . , Sjc} are always occupied).
If the strategy of the follower (in Pj) asks it to move, the new follower moves
(in which case, it goes to uj,1), then the guard at ui,1 goes to Sc(i). Finally, if
c(i) 6= c(j), the guard that was occupying Sc(i) goes to Sc(j). If the strategy of the
follower is to stay idle, then the guard at ui,1 goes to Sc(i) and the guard that was
at Sc(i) goes to z0.

Otherwise, the follower was at Sc(i), then the guards occupy {z0, Sj1 , . . . , Sjc}. In
that case, the guard at Sc(j) becomes the new follower. If it has to move (to uj,1),
then the guard at z0 replaces it at Sc(j).
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It is important to note that, in all cases, when the spy enters in Uj, the new
follower was occupying Sc(j) (which plays the role of x0 in Lemma 3.2.5(a)), and
therefore it can apply the strategy described in Lemma 3.2.5(a).

• The last case is when the spy goes from a vertex in Ui to a vertex in Z. If z0

was occupied by a guard, then it becomes the follower and apply the strategy
of Lemma 3.2.5(a)). If z0 was not occupied, then it means that the guards were
occupying the vertices in {u1,i, Sj1 , . . . , Sjc}. In particular, the follower was occu-
pying ui,1 (because, by the property of the strategy of Lemma 3.2.5(a), this guard
must be able to go to Sc(i) (i.e., x0) when the spy can reach z0 (playing the role
of x−1). Moreover, if the guard is occupying ui,1, it must be because the spy was
(before its last move) at ui,h for h > r (otherwise, by the property of the strategy,
the guard would be at Sc(i)).

There are two cases depending whether r = 0 or r ≥
⌈
s
2

⌉
− 1 (the moves are the

same, but the reason of their validity is different).

– If r = 0, note that p = q + 1. In that case, Lemma 3.2.5(a) can be
applied on the path (u1,i, Sc(i), z0, · · · , zq) (playing the role respectively of
(x−1, x0, x1, · · · , xp)). Therefore, the guard at Sc(i) becomes the follower. It
goes to z0 while the guard at u1,i goes to Sc(i).

– If r ≥
⌈
s
2

⌉
− 1, because the spy was at ui,h for h > r, this implies that, after

its move, the spy reaches a vertex zq ∈ Z for q ≤ r. In that case, the guard
at Sc(i) goes to z0 and becomes the follower (this satisfies the conditions of
the strategy of Lemma 3.2.5(a), because q ≤ r) and the guard at u1,i goes to
Sc(i).

Finally, let us consider the case s ≤ d + 1 and 1 ≤ r = d mod (s − 1) < s
2
− 1.

Recall that, in this case, we have added another path Z ′ to Gs,d(S, c).

Lemma 3.2.7. Given a graph G and an integer K, deciding if gns,d(G) ≤ K is NP-hard
for every s, d > 0 such that s ≤ d+ 1 and 1 ≤ r = d mod (s− 1) < s

2
− 1.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall
Definition 3.2.2 and let p = p(s, d) = d+

⌈
d+1
s−1

⌉
, q = q(s, d) = d+

⌈
d
s−1

⌉
, G = Gs,d(S, c)

and K = Ks,d(S, c) = c+ 2. Notice that, since r = d mod (s− 1) 6= 0, then p = q.
Firstly, suppose that there is no cover C of U with at most c sets in S. We prove

that the spy wins against at most K = c + 2 guards. Precisely, the spy starts in z′r+1

and proceeds as follows. If no guards are occupying a vertex in {z′1, . . . , z′q}, then, by
Lemma 3.2.5(b), the spy can move at full speed to z′q and win. Moreover, if no guards
are occupying a vertex in {z0, . . . , zq}, then, in one step, the spy goes to zr+1 (which is
at distance 2r + 2 < s by the assumption on r) and, by Lemma 3.2.5(b), the spy will
win by moving at full speed to zq. Therefore, there must be at most c guards at the
vertices in V (G) \ {z0, z1, z

′
1, . . . , zq, z

′
q}. Since there is no cover of U with c sets in S,

then there exists some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus, in one
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step, the spy can go to ui,r+1 (at distance 2r + 3 ≤ s by the assumption on r). From
Lemma 3.2.5(b), the spy can move to ui,p and wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. In what
follows, we describe a winning strategy for K = c+ 2 guards. Recall that, since C is a
cover of U , we can define for any element ui ∈ U an index c(i) such that ui ∈ Sc(i) ∈ C.
The strategy of the guards will ensure that there is always a guard at every vertex of
C ∪ {z0}. In addition, the last guard, called the follower, follows the strategy described
in Lemma 3.2.5(a) in one of the paths Ui, for 1 ≤ i ≤ n, Z or Z ′ depending on the
position of the spy.

More precisely, if the spy is occupying a vertex in {z0, S1, . . . , Sm}, the guards occupy
the vertices z0, z0, Sj1 , . . . , Sjc (two guards in z0). When the spy arrives at a vertex in
Ui for some i ≤ n (resp., in Z or Z ′), the guard at Sc(i) (resp., at z0) plays the role of
the follower in the corresponding path. The other c + 1 guards reorganize themselves
to occupy the vertices z0, Sj1 , . . . , Sjc .

In particular, when the spy goes from one path Ui (resp., Z, resp., Z ′) to another
path Uj or Z or Z ′, Lemma 3.2.5(a) ensures that the previous follower was either at ui,1
of Sc(i) (resp., z1 or z0, resp., z′1 or z0). Therefore, it is possible for the guards (which are
not the new follower) to reorganize themselves to occupy the vertices z0, Sj1 , . . . , Sjc .

The details are similar to the ones provided in the proof of Lemma 3.2.6 and are
omitted.

The question of the complexity of the spy game in undirected graphs is left open. Is it
PSPACE-hard, or more probably EXPTIME-complete as Cops and Robber games [85]?
The question of parameterized complexity is also open.

3.3 Simple Topologies: Paths and Cycles

In this section, we characterize optimal strategies in the case of paths.

Theorem 3.3.1. Let s > 1 and d ≥ 0. Let P = (v0, . . . , vn−1) be any n-node path.

gns,d(P ) =

⌈
n

2d+ 2 +
⌊

2d
s−1

⌋⌉
Proof. Let us set 2d = q(s − 1) + r where q =

⌊
2d
s−1

⌋
and r < s − 1 (note that, if

s > 2d+ 1, then q = 0 and r = 2d). Note also that 2d+ 2 + q = qs+ r + 2

Let us first show that the spy can win against at most

⌈
n

2d+2+b 2d
s−1c

⌉
−1 guards. The

spy starts in v0, so there must be a guard, called Guard 1, at some vertex in {v0, . . . , vd}
to control the spy. Then, in q steps, the spy goes to vqs while Guard 1 can only reach
a vertex in {v0, . . . , vd+q}. Note that the distance between the spy and Guard 1 is
then at least qs − (d + q) = d − r. During the next step q + 1, the spy reaches vertex
vqs+r+2 (note that it is possible since r + 2 ≤ s). Guard 1 can only go to vd+q+1 and
therefore it is at distance at least d+ 1 from the spy. Therefore, there must be another
guard, called Guard 2, occupying a vertex in {vqs+r+2−d, . . . , vqs+r+2+d} to control the
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spy. Going on this way, for 0 < j <

⌈
n

2d+2+b 2d
s−1c

⌉
− 1, after j(q + 1) turns, the spy

occupies vertex vj(qs+r+2) and there must be a guard, called Guard j+1, occupying some
vertex in {vj(qs+r+2)−d, . . . , vj(qs+r+2)+d}. Moreover, all the j previous guards (Guard 1
to Guard j) are occupying some vertices in {v0, . . . , vj(qs+r+2)−d−1}. In particular, just

after j0(q+ 1) turns, where j0 =

⌈
n

2d+2+b 2d
s−1c

⌉
− 2, all the

⌈
n

2d+2+b 2d
s−1c

⌉
− 1 guards are

occupying vertices in {v0, . . . , vj0(qs+r+2)+d} while the spy is at vj0(qs+r+2). Therefore,
during the next q + 1 turns, the spy goes to v(j0+1)(qs+r+2). Note that (j0 + 1)(qs +

r + 2) = (

⌈
n

2d+2+b 2d
s−1c

⌉
− 1)(qs + r + 2) = (

⌈
n

2d+2+q

⌉
− 1)(2d + 2 + q) < n, so the

move is possible. During these last q + 1 steps, all guards can only reach vertices in
{v0, . . . , vj0(qs+r+2)+d+q+1} and, therefore, are all at distance at least d+ 1 from the spy
(indeed, (j0 + 1)(qs+ r+ 2)− (j0(qs+ r+ 2) + d+ q+ 1) = d+ 1). Hence, the spy wins.

Finally, let us describe a winning strategy for

⌈
n

2d+2+b 2d
s−1c

⌉
guards. For 0 ≤

j <

⌈
n

2d+2+b 2d
s−1c

⌉
− 1, let Pj = (vj(qs+r+2), . . . , v(j+1)(qs+r+2)−1). Moreover, for j0 =⌈

n

2d+2+b 2d
s−1c

⌉
− 1, let Pj0 = (vj0(qs+r+2), . . . , vn−1) (note that n − 1 ≤ (j0 + 1)(qs +

r + 2)− 1). The strategy simply uses one guard, called Guard j, for each subpath Pj.

Precisely, for any 0 ≤ j ≤
⌈

n

2d+1+b 2d
s−1c

⌉
− 1,

• for any 0 ≤ h < q, if the spy occupies a vertex in {vj(qs+r+2)+hs+1, . . . ,
vj(qs+r+2)+(h+1)s}, then Guard j occupies vj(qs+r+2)+d+h+1;

• if the spy occupies a vertex in {vj(qs+r+2)+qs+1, . . . , vj(qs+r+2)+qs+r+1}, then Guard
j occupies vj(qs+r+2)+d+q+1;

• if the spy occupies vj(qs+r+2) or some subpath Pi, with i < j, then Guard j occupies
vj(qs+r+2)+d;

• finally, if the spy occupies some subpath Pi, with i > j, then Guard j occupies
vj(qs+r+2)+q+1+d.

It can be checked that, following this strategy, the guards always control the spy.
Moreover, for any move of the spy, the guards can move according to this strategy.

Now, we consider the case of cycles. Let us first start with the case 2d < s− 1.

Lemma 3.3.2. Let 0 ≤ 2d < s− 1. For any cycle Cn with n vertices,

gns,d(Cn) ≤
⌈

n

2d+ 3

⌉
.
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Proof. Since the number of guards cannot decrease when n increases, we may assume
that n

2d+3
= k ∈ N. Let Cn = (v0, . . . , vn−1). Let us describe a strategy using k guards.

Assume that the spy is initially in v0. The guards are placed at vertices vd+j(2d+3),
for any 0 ≤ j < k. Note that, in particular, the last guard is placed at vd+(k−1)(2d+3) =
vn−d−3 since n = (2d+ 3)k.

Now, the guards are at distance at most d from all vertices but the vertices
v2d+1+j(2d+3) and v2d+2+j(2d+3) for any 0 ≤ j < k. If the spy goes to v2d+1+j(2d+3)

for some 0 ≤ j < k, then all guards move clockwise. If the spy goes to v2d+2+j(2d+3) for
some 0 ≤ j < k, then all guards move counter-clockwise. Both cases are symmetric to
the initial one. In any other case, the guards do not move. Clearly, such a strategy can
perpetually ensure that at least one guard controls the spy at distance d.

Lemma 3.3.3. Let 2d ≥ s− 1 > 0. For any cycle Cn with n nodes,

gns,d(Cn) ≤

⌈
n+ 2b 2d

s−1
c

2(d+ b 2d
s−1
c) + 1

⌉
.

Proof. Let us set 2d = q(s − 1) + r where q = b 2d
s−1
c, and let X = 2(d + b 2d

s−1
c) + 1 =

q(s+ 1) + r + 1. Note that q > 0 since s ≤ 2d+ 1 and d > 0.
Since the number of guards cannot decrease when n increases, we may assume that

n+2b 2d
s−1
c

2(d+b 2d
s−1
c)+1

= n+2q
X

= k ∈ N. Let us describe a strategy using k guards.

Let v0 be the initial position of the spy, and the cycle is (v0, . . . , vn−1). The guards
are placed at vertices vd+jX , for any 0 ≤ j < k. Let us call the guard at vd+jX as the
Guard j, for any 0 ≤ j < k. Note that, in particular, the Guard k − 1 is placed at
vd+(k−1)X = vn−d−1 since n− 2d− 1 = (k − 1)X.

We first consider the case where the spy moves clockwise at the beginning. After, we
show that the spy moving counter-clockwise at the beginning results in a case symmetric
to the spy moving clockwise at the beginning.

• If the spy goes from v0 to any vertex in {v0, . . . , vbs/2c}, no guards move. Note
that Guard 0 still controls the spy since s ≤ 2d+ 1.

• If the spy goes from a vertex in {v0, . . . , vbs/2c} to a vertex in {vbs/2c+1, . . . , vbs/2c+s},
then Guard 0 also goes clockwise to vd+1. All other guards go counter-clockwise
to vd+jX−1, for every 0 < j < k. The spy is still controlled due to the following.

Guard 0, who is at vd+1, is within distance at most d of vbs/2c+1+y for 0 ≤ y <
2d−bs/2c+1 since bs/2c+1+y < 2d+2⇔ y < 2d−bs/2c+1 and bs/2c+1 ≥ 2
since s ≥ 2.

Guard 1, who is at v3d+2q, is not within distance at most d of bs/2c + 1 + y for
0 ≤ y < 2d+2q−1−bs/2c since bs/2c+1+y < 2d+2q ⇔ y < 2d+2q−1−bs/2c.
Note that bs/2c+ s > 4d+ 2q ⇔ s > 4d+ 2q − bs/2c, which is not possible since
s ≤ 2d + 1. Therefore, if 2q − 1 ≤ 1 ⇔ q ≤ 1 ⇔ q = 1 since q 6= 0, then the spy
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is always controlled when he goes from a vertex in {v0, . . . , vbs/2c} to a vertex in
{vbs/2c+1, . . . , vbs/2c+s}.
If q 6= 1, then v2d−bs/2c+1+1+bs/2c = v2d+2 is the first (closest to vbs/2c+1 in the
clockwise direction) vertex not controlled by Guard 0 or Guard 1. But v2d+2

is not in {vbs/2c+1, . . . , vbs/2c+s} since q > 1 ⇔ b 2d
s−1
c ≥ 2 ⇔ 2d + 2 ≥ 2s and

2s > bs/2c+ s. Therefore, all the vertices in {vbs/2c+1, . . . , vbs/2c+s} are controlled
by Guard 0 or Guard 1.

• For 0 < h < q, when the spy goes from a vertex in {vbs/2c+(h−1)s+1, . . . , vbs/2c+hs}
to a vertex in {vbs/2c+hs+1, . . . , vbs/2c+(h+1)s}, then Guard 0 also goes clockwise to
vd+h+1. All other guards go counter-clockwise to vd+jX−h−1, for every 0 < j < k.
The spy is still controlled due to the following.

Guard 0, who is at vd+h+1, is within distance at most d of vbs/2c+hs+1+y for 0 ≤ y <
2d+h−hs−bs/2c+2 since bs/2c+hs+1+y < 2d+h+2⇔ y < 2d+h−hs−bs/2c+2

and bs/2c + hs + 1 > h ⇔ h(1 − s) < bs/2c + 1 ⇔ h > bs/2c+1
1−s since bs/2c+1

1−s < 0
because s ≥ 2.

Guard 1, who is at v3d+2q−h, is not within distance at most d of bs/2c+hs+ 1 + y
for 0 ≤ y < 2d−h(1+s)+ 2q−1−bs/2c since bs/2c+hs+1 +y < 2d+2q−h⇔
y < 2d− h(1 + s) + 2q − 1− bs/2c.
Note that bs/2c + (h + 1)s > 4d + 2q − h ⇔ h(s + 1) > 4d + 2q − s − bs/2c.
Since h < q, (q − 1)(s+ 1) ≥ h(s+ 1) > 4d+ 2q − s− bs/2c and (q − 1)(s+ 1) >
4d+2q−s−bs/2c ⇔ qs−s−1 > 4d+q−s−bs/2c ⇔ q(s−1) > 4d−bs/2c+1⇔
2d − r > 4d + 1 − bs/2c ⇔ r < bs/2c − 2d − 1. But this is not possible since
bs/2c − 2d − 1 < 0 since s ≤ 2d + 1 ⇒ bs/2c ≤ d and r cannot be negative.
Therefore, if 2q−1−h(1+s) ≤ h(1−s)+2⇔ 2q ≤ 2h+3⇔ q ≤ h+3/2⇔ h ≥ q−2
since q is an integer, then the spy is always controlled when he goes from a vertex
in {vbs/2c+(h−1)s+1, . . . , vbs/2c+hs} to a vertex in {vbs/2c+hs+1, . . . , vbs/2c+(h+1)s}.
If h � q − 2, then v2d+h(1−s)−bs/2c+2+hs+1+bs/2c = v2d+h+3 is the first (closest to
vbs/2c+hs+1 in the clockwise direction) vertex not controlled by Guard 0 or Guard

1. But v2d+h+3 is not in {vbs/2c+hs+1, . . . , vbs/2c+(h+1)s} since q ≥ h+ 2⇔ b 2d
s−1
c ≥

h+ 2⇔ 2d ≥ hs+ 2s−h−2⇔ 2d+h+ 3 ≥ hs+ 2s+ 1 and clearly hs+ 2s+ 1 >
hs + s + bs/2c. Therefore, all the vertices in {vbs/2c+hs+1, . . . , vbs/2c+(h+1)s} are
controlled by Guard 0 or Guard 1.

• For 1 ≤ h ≤ q, when the spy goes from a vertex in {vbs/2c+(h−1)s+1, . . . , vbs/2c+hs}
to a vertex in {vbs/2c+(h−1)s+1, . . . , vbs/2c+hs}, no guards move. The proof that the
spy is still controlled in the previous case also proves that he is controlled here.

Now, we consider the case of the spy moving counter-clockwise at the start. If the
spy goes from v0 to any vertex in {v0, . . . , vn−bs/2c−1}, no guards move. Note that Guard
k − 1 controls the spy since s ≤ 2d+ 1 and the positions of the guards and the spy are
symmetrical to the case where the spy had gone clockwise at the start to a vertex in
{v0, . . . , vbs/2c}.
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If the spy moves from a vertex in {v0, . . . , vn−bs/2c−1} to a vertex in
{vn−bs/2c−2, . . . , vn−bs/2c−s−1}, then Guard k − 1 goes counter-clockwise to vn−d−2. All
other guards go clockwise to vd+jX+1. Note that if vn−1 is replaced by v0 and the cycle is
relabeled accordingly (one rotation counter-clockwise of the labels), then the positions
of the guards and the spy are symmetric to the case where the spy goes clockwise at
the start from a vertex in {v0, . . . , vbs/2c} to a vertex in {vbs/2c+1, . . . , vbs/2c+s}.

Seeing as the first move of the spy counter-clockwise results in a symmetric case to
the spy’s first move clockwise, we only have to consider when the spy moves clockwise.

The following remarks show that the rules above fully describe the strategy of k
guards. That is, the behaviour of the guards according to any spy’s move can be
derived from the rules above by symmetry.

First, all previous moves are reversible. For instance, if the spy goes from
{vbs/2c+1+hs, . . . , vbs/2c+(h+1)s} to {vbs/2c+1+(h−1)s, . . . , vbs/2c+hs} (for 1 ≤ h < q), then
Guard 0 goes back to vd+h, and all other guards go back to vd+jX−h, for every 0 < j < k.

Second, let us consider the configuration when the spy arrives in
{vqs+r, . . . , vbs/2c+qs+r}. At this step, for any 0 < j < k, Guard j is occupying
vd+jX−q = vd+(j−1)X+X−q. Since X − q = q(s + 1) + r + 1 − q = qs + r + 1, this
means that, for any 0 < j < k, Guard j is occupying vertex vqs+r+1+d+(j−1)X . More-
over, Guard 0 is occupying vertex vd+q = vqs+r−d. Therefore, the situation is symmetric
to the initial one up to a rotation and reversal of the labeling of the cycle (where vqs+r
replaces v0).

Lemma 3.3.4. Let s > 1 and d ≥ 0. Let Cn = (v0, . . . , vn−1) be any n-node cycle.

gns,d(Cn) ≥

⌈
n+ 2

⌊
2d
s−1

⌋
2(d+

⌊
2d
s−1

⌋
) + 3

⌉
Proof. Let us set 2d = q(s − 1) + r where q =

⌊
2d
s−1

⌋
and r < s − 1 (note that, if

s > 2d+ 1, then q = 0 and r = 2d). Note also that 2d+ 2 + q = qs+ r+ 2. All integers
below must be understood modulo n.

Let us show that the spy can win against a team of X <
⌈

n+2q
2(d+q)+3

⌉
guards.

If the spy starts in v0, there must be a guard, called Guard 1, at some vertex in
{vn−d, . . . , v0, . . . , vd} to control the spy. Since the spy’s speed is greater than the
guards’ speed, the spy can move clockwise so that he reaches a vertex that is distance
d + 2 from Guard 1 in a finite number of turns (before the guards’turn). Thus, after
the guard turn, we may set v0 (up to renaming the vertices) to be the new position of
the spy and so, Guard 1 is at a vertex in {vn−d−3, vn−d−2, vn−d−1}.

Since Guard 1 is at distance at least d+1 from the spy, there must be another guard,
called Guard 2, occupying a vertex in {vn−d, . . . , v0, . . . , vd} to control the spy. The spy
goes at full speed clockwise and Guard 1 may go at full speed counterclockwise.

Then, after step q, the spy occupies vqs while Guard 2 occupies a vertex in
{vqs−d, . . . , vd+q}. During the next step (Step q + 1) the spy goes to vqs+r+2 (note
that it is possible since r + 2 ≤ s). In this case, Guard 2 can only go to a vertex in
{vqs−d−1, . . . , vd+q+1} and therefore it is at distance at least d + 1 from the spy and
cannot control it anymore.
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Therefore, there must be another guard, called Guard 3, occupying a vertex in
{vqs+r+2−d, . . . , vqs+r+2+d} to control the spy. Going on this way after (X − 1)(q + 1)
steps, the spy is at v(X−1)(qs+r+2) = vα while there are X guards occupying vertices in
{vn−(d+3+(X−1)(q+1)), . . . , v(X−2)(qs+r+2)+d+q+1} = {vβ, . . . , vγ}.
Note that α− γ = qs+ r+ 2− d− q− 1 = 2d+ 2 + q− d− q− 1 = d+ 1. Therefore,

the distance between the spy and vγ is at least d+ 1 and the spy can only be controlled
from a guard in vβ. The distance between vβ and vα is:

n− (d+ 3 + (X − 1)(q + 1) + (X − 1)(qs+ r + 2)) = n+ d+ 2q −X(2q + 2d+ 3).
Moreover, n+ d+ 2q −X(2q + 2d+ 3) > d if and only if n+2q

2(d+q)+3
> X.

Therefore, the distance between vα and vβ is at least d+ 1 for X <
⌈

n+2q
2(d+q)+3

⌉
since

X is an integer and thus, no guard controls the spy which wins.

The above lemmas can be summarized with the following theorem.

Theorem 3.3.5. Let s > 1 and d ≥ 0 be two integers. For any cycle Cn with n nodes,

• gns,d(Cn) =
⌈

n
2d+3

⌉
if 0 ≤ 2d < s− 1;

• If 2d ≥ s− 1, then⌈
n+ 2b 2d

s−1
c

2(d+ b 2d
s−1
c) + 3

⌉
≤ gns,d(Cn) ≤

⌈
n+ 2b 2d

s−1
c

2(d+ b 2d
s−1
c) + 1

⌉
.

Before continuing with the study of the spy game in trees and grids, some particular
strategies must be defined, which is done in the following section.

3.4 Toward Fractional Games

A strategy for the guards is a function describing the moves of the guards in each
round. A strategy is winning if it allows the guards to perpetually control the spy.
Note that there is always an optimal winning strategy (using the minimum number of
guards) which is positional, i.e., such that the next move is only determined by the
current position of both the spy and the guards, and not by the history of the game.
This is because the spy game is a parity game (by considering the directed graph of
configurations) and parity games always admit positional strategies for the winning
player [91].

In other words, there is always an optimal winning strategy which is a function that
takes the current positions of the spy and of the guards and returns the new positions
of the guards (and so, their moves).

Representation of (fractional) guards’ strategies. Let G = (V,E) be an n-node
graph, s ≥ 2 and d ≥ 0 be two integers. Let V = {v1, . . . , vn}. A winning strategy σ
using k ∈ R+ guards is defined as a set σ = {Cv}v∈V of sets of configurations. That
is, for any v ∈ V (a possible position for the spy), Cv is a non-empty set of functions,
called configurations, that represent the possible positions of the guards when the spy
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is at v. More precisely, any ω ∈ Cv is a function ω : V → R+, where ω(u) ∈ R+

represents the amount of guards at vertex u ∈ V when the spy occupies v, that must
satisfy

∑
u∈V ω(u) = k and

∑
u∈Nd[v] ω(u) ≥ 1. Finally, for any v ∈ V , any ω ∈ Cv, and

any v′ ∈ Ns[v], there must exist ω′ ∈ Cv′ such that the guards can go from ω to ω′ in one
round. That is, for any possible move of the spy (from v to v′), there must exist a valid
flow from ω to ω′ (the guards must be able to reach a configuration controlling the spy
in v′). A strategy is integral if k ∈ N+, each of its configurations is a function V → N,
and every move is an integral flow. The size of a strategy is the number of different
configurations necessary to describe the strategy, i.e., the size of σ is

∑
v∈V |Cv|. Note

that, a single position for the spy may correspond to many different positions of the
guards. Therefore, the size of an integral strategy using k guards in an n-node graph
is nO(k). Moreover, the size of a fractional strategy is a priori unbounded.

Spy-positional strategies. In this chapter, we will also consider more constrained
strategies. A winning strategy is said to be spy-positional if it depends only on the
position of the spy. That is, in a spy-positional strategy σ = {Cv}v∈V , the positions of
the guards are only determined by the position of the spy. In particular, every time
the spy occupies some vertex v, the set of vertices occupied by the guards is defined
by a unique function σv : V (G) → N such that, for every u ∈ V , σv(u) is the number
of guards occupying u when the spy is occupying v. That is, Cv = {σv} and |Cv| = 1
for every v ∈ V . An important consequence for our purpose is that any (fractional or
integral) spy-positional strategy has size O(n).

Let us remark that, in a spy-positional strategy, it is not required that the same
guards occupy the same vertices when the spy is at some vertex. That is, assume that,
at the end of some round, the spy occupies some vertex v, some Guard A occupies a
vertex a and a guard B occupies a vertex b. It may happen that, after some rounds
and at the end of such a round, the spy goes back to v and now Guard A is at b and
Guard B is at a (however, the set of vertices occupied by the guards is the same).

Second, there does not always exist an optimal strategy (using the minimum number
of guards) that is spy-positional. As an example, consider the cycle C5 with 5 vertices
{a, b, c, d, e}. It is easy to show that gn2,1(C5) = 1. However, consider the following
execution. It is easy to see that we may assume that, initially, the guard occupies a
neighbour of the spy. W.l.o.g., the spy starts at b while the guard is at a. Then, the
spy goes to c and the guard has to go to b. The spy goes to d and the guard has to go
to c. Finally, the spy goes back to b and the guard either stays at c or goes to b. Hence,
every spy-positional strategy in C5 needs 2 guards. One of our main results is to show
that, in trees, there always exists an optimal strategy which is spy-positional.

Let fgn∗s,d(G) be the minimum total amount of fractional guards needed to always
control at distance d a spy with speed s in a graph G, when the guards are constrained
to play spy-positional strategies. By definition, for any graph G and any s ≥ 2, d ≥ 0,

fgns,d(G) ≤ min{fgn∗s,d(G), gns,d(G)}.

Now that fractional spy-positional strategies have been defined, we present a polynomial-
time algorithm that computes optimal spy-positional fractional strategies in general
graphs. Here, optimal means using the minimum total amount of guards with the
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extra constraint that guards are restricted to play spy-positional strategies. In other
words, we prove that, for any graph G, s ≥ 2, and d ≥ 0, fgn∗s,d(G) and a correspond-
ing strategy can be computed in polynomial time. We prove this result by describing a
Linear Program with polynomial size that computes such strategies.

In Section 3.5, we will show that in any tree T , gns,d(T ) = fgn∗s,d(T ). More precisely,
we will show that in trees, the Linear Program below can be used to compute optimal
(integral) strategies in polynomial time.

We describe a Linear Program for computing an optimal fractional spy-positional
strategy.

Variables. Let G = (V,E) be a connected n-node graph. Recall that a spy-positional
strategy is defined by, for each position of the spy, the amount of guards that must
occupy each vertex. Therefore, for any two vertices u, v ∈ V , let σv(u) ∈ R+ be the
non-negative real variable representing the amount of guards occupying vertex u when
the spy is at v.

Moreover, for any x ∈ V , y ∈ Ns[x] and for any u ∈ V and v ∈ N [u], let fx,y,u,v ∈ R+

be the non-negative real variable representing the amount of guards going from vertex
u to v ∈ N [u] when the spy goes from x to y ∈ Ns[x]. Finally, a variable k will represent
the total amount of guards. Overall, there are O((|E|+n+1)n2) = O(n4) real variables.

These variables fully describe a strategy since σ encodes a distribution of guards for
every position of the spy and f describes a feasible transition between two successive
distributions.

Objective function. We aim at minimizing the total amount of guards.

Minimize k. (3.1)

Constraints.
The first family of constraints states that, for every position v ∈ V of the spy, the

total amount of guards is at most k.

∀v ∈ V,
∑
u∈V

σv(u) ≤ k. (3.2)

The second family of constraints states that, for every position v ∈ V of the spy, the
amount of guards at distance at most d from the spy is at least 1, i.e., the guards always
control the spy at distance d.

∀v ∈ V,
∑

u∈Nd[v]

σv(u) ≥ 1. (3.3)

The third family of constraints states that, for any move of the spy (from x to
y ∈ Ns[x]), the corresponding moves of the guards ensure that the amount of guards
leaving a vertex v ∈ V plus what remains at v equals the amount of guards that was
at v before the move.

∀x ∈ V , y ∈ Ns[x], v ∈ V ,
∑

w∈N [v]

fx,y,v,w = σx(v). (3.4)

The fourth family of constraints states that, for any move of the spy (from x to
y ∈ Ns[x]), the corresponding moves of the guards ensure that the amount of guards
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that are at a vertex w ∈ V after the moves equals the amount of guards arriving in w
plus what remains at w.

∀x ∈ V , y ∈ Ns[x], w ∈ V ,
∑

v∈N [w]

fx,y,v,w = σy(w). (3.5)

Finally, the last family of constraints expresses the definition domain of the variables:

k ≥ 0 (3.6)

∀u, v ∈ V , σu(v) ≥ 0 (3.7)

∀x ∈ V , y ∈ Ns[x], v ∈ V , w ∈ N [v], fx,y,v,w ≥ 0 (3.8)

There are O(n4) constraints and the above Linear Program has polynomial size and
clearly computes an optimal spy-positional fractional strategy. Hence:

Theorem 3.4.1. For any connected graph G, and any two integers s ≥ 2 and d ≥ 0, the
above Linear Program computes fgn∗s,d(G) and a corresponding spy-positional strategy
in polynomial time.

3.5 Spy game is Polynomial in Trees

This section is devoted to the study of the spy game in trees (Theorem 3.5.11). Before
going into the details, we would like to emphasize one difficulty when dealing with
guards’ strategies.

A natural idea would be to partition the tree into smaller subtrees (with bounded
diameter) with a constant number of guards assigned to each of them. That is, each
guard would be assigned (possibly with other guards) a subtree S and would move only
when the spy is in S (in particular, the guard would only occupy some vertices of S).
As already mentioned, there exist such strategies that are optimal in paths or in trees
when d = 0 and s is large (Eternal Domination) [87]. We show that we cannot expect
such strategies for the spy game (for any s ≥ 2 and d > 0) in trees and hence, optimal
guards’ strategies seem difficult to be described in trees. We present an example in the
case s = 2 and d = 1 but it can be generalized to any s ≥ 2 and d > 0 (by increasing
the branches of the star S defined below).

Lemma 3.5.1. Let s = 2 and d = 1. There exists a family of trees with unbounded
guard number such that, for each of these trees, there is a strategy of the spy that forces
every guard to occupy each non-leaf vertex infinitely often, whatever be the optimal
strategy followed by the guards.

Proof. Let S be the tree obtained from a star with three leaves by subdividing each
edge exactly twice (i.e., S has 10 vertices). Let (Si)i≤k be k disjoint copies of S and let
ci be the unique vertex of degree 3 of Si. Finally, let T be the tree obtained by adding
one vertex c and making it adjacent to every ci, i ≤ k. Note that |V (T )| = 10k+1 = n.

First, let us show that gn2,1(T ) = k + 1 = Θ(n) and that, when the spy is in c, the
guards have to occupy the vertices c, c1, . . . , ck. We label the vertices as follows where
1 ≤ j ≤ 3k: let v3j be a leaf, let v3j−1 be the vertex adjacent to the leaf v3j, and let
v3j−2 be the vertex adjacent to v3j−1 and ci for i = d j

3
e (see Figure 3.6).
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v1

v2

v3

v4

v5

v6

v7

v8

v9

c1

v3j−2

v3j−1

v3j

v3j′−2

v3j′−1

v3j′

v3j′′−2

v3j′′−1

v3j′′

ci

c

v9k−8

v9k−7

v9k−6

v9k−5

v9k−4

v9k−3

v9k−2

v9k−1

v9k

ck

Figure 3.6: Scheme of the tree T (in the proof of Lemma 3.5.1) where only the subtrees
S1, Si and Sk have been depicted (for some i such that 2 ≤ i < k). In the subtree Si,
{j, j′, j′′} = {3i− 2, 3i− 1, 3i}, i.e., i = d z3e for every z ∈ {j, j′, j′′}.

• A strategy using k + 1 guards proceeds as follows. In any round, the vertices
c1, . . . , ck are occupied (not necessarily by the same guards). Then, if the spy
occupies c or one of the ci’s, one guard occupies c. If the spy occupies v3j−1 or
v3j−2 for some j ≤ 3k, then v3j−2 must be occupied by a guard. Finally, if the
spy occupies v3j, then v3j−1 must be occupied by a guard. It is easy to see that,
whatever be the strategy of the spy, the guards may move (at most 2 guards per
round) as to ensure the desired positions.

• Now we prove the lower bound. We now suppose the game is being played with at
most k guards. The spy starts at a leaf v3j for some 1 ≤ j ≤ 3k and moves at full
speed to another leaf v3l for some 1 ≤ l ≤ 3k such that l 6= j. Then, there must
be a guard at either v3j or v3j−1 initially and when the spy reaches v3j−2, there
must be at least one other guard at a vertex in the same subtree Si for i = d j

3
e

as otherwise, the spy could move to one of {v3(j+1), v3(j+2)} and win. Since there
are two guards in the same subtree as the spy, then the spy moves to c. Neither
of the two previous guards can reach any of the other k − 1 vertices ci in this
round. There must be at least one guard in each of the other k− 1 subtrees Si as
otherwise, the spy moves to a leaf in one of these subtrees and wins since it would
take him two rounds but a guard at c could only be at distance at least 2 from
the spy after two rounds. It also follows that, when the spy is at c, the guards
must occupy the vertices c, c1, . . . , ck. Therefore, the spy wins against k guards.

Now, we can prove the main statement of the lemma. For any i ≤ k and any vertex
v ∈ V (T ) of degree two, there is a strategy of the spy that brings the guard initially
at ci to v and thus, to any non-leaf vertex. For this purpose, let j 6= i be such that
v ∈ V (Sj). The spy first goes (at full speed) to a leaf of Si, then to another leaf of
Si, then it goes to a leaf of Sj that is not the neighbour of v and finally the spy goes
to the leaf neighbour of v. It can be verified that the guard that was initially at ci
must occupy v. Repeating infinitely this strategy (for any v and i) gives the strategy
announced in the statement.
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To overcome this difficulty, we use the power of Linear Programming. Precisely, we
prove that, in any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgn∗s,d(T ). Therefore,
using the Linear Program of Section 3.4, it follows that computing gns,d(T ) can be
done in polynomial time in trees. The proof is twofold. First, we prove that gns,d(T ) =
fgns,d(T ) for any s ≥ 2 and d ≥ 0 (i.e., the integrality gap is null in trees), and then
that fgns,d(T ) = fgn∗s,d(T ).

Theorem 3.5.2. For any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgns,d(T ). More
precisely, any fractional winning strategy using a total amount of k ∈ R+ guards can
be transformed into an integral winning strategy using bkc guards. Moreover, such a
transformation can be done in polynomial time in the size of the fractional strategy.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of
k ∈ R+ guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node
tree T = (V,E).

We build a winning integral strategy σr using bkc guards by “rounding” all config-
urations of σ. For any configuration ω of σ, we will define an integral configuration ωr

(which we call a rounding of ω) using bkc guards (Claim 3.5.3), such that if the spy
is controlled in ω then it is also controlled in ωr (Claim 3.5.4). Moreover, for any two
configurations ω1 and ω2 such that there is a feasible flow from ω1 to ω2, we show that
there is feasible integral flow from ωr1 to ωr2 (Claim 3.5.5). Altogether, this shows that
σr is a winning integral strategy using bkc guards, which proves the theorem.

From now on, let us consider T to be rooted at some vertex r ∈ V .

Notations. For any u ∈ V , let Tu be the subtree of T rooted in u (i.e., the subtree
that consists of u and all its descendants) and let Children(u) be the set of children of
u. For any configuration ω : V → R+, let ω(Tu) =

∑
v∈V (Tu) ω(v) and let ω(T ) = ω(Tr).

By definition, ω(Tu) ≥ ω(u) for every u ∈ V . Finally, let cont(T, ω) = {u ∈ V :∑
v∈Nd[u] ω(v) ≥ 1} (i.e., cont(T, ω) is the set of vertices u such that the spy on u is

controlled at distance d by the guards in the configuration ω).

Let us define the rounded configuration ωr : V 7→ N as, for every u ∈ V ,

ωr(u) =
⌊
ω(u) +

∑
v∈Children(u)

(ω(Tv)− bω(Tv)c)
⌋

Intuitively, the fractional part of guards that are in each of the subtrees rooted in
the children of u is “pushed” to u. Then, u “keeps” only the integral part of the sum
of what it had plus what it received from its children.

We first prove that rounding a configuration using k guards provides an integral
configuration using bkc guards.

Claim 3.5.3. For any configuration ω : V (T )→ R+, ωr(T ) = bω(T )c.

Proof of the claim. The proof is by induction on |V |. It clearly holds if |V | = 1. Let
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T1, . . . , Th be the subtrees of T\r rooted in the children of r. By definition,

ωr(T ) = ωr(r) +
∑

1≤i≤h

ωr(Ti)

= bω(r) +
∑

1≤i≤h

(ω(Ti)− bω(Ti)c)c+
∑

1≤i≤h

ωr(Ti)

By induction, wr(Ti) = bω(Ti)c for every 1 ≤ i ≤ h, and so:

ωr(T ) = bω(r) +
∑

1≤i≤h

(ω(Ti)− bω(Ti)c)c+
∑

1≤i≤h

bω(Ti)c

= bω(r) +
∑

1≤i≤h

ω(Ti)c

= bω(T )c

�
Then, Claim 3.5.4 proves that every position of the spy that is controlled by the

guards in a configuration ω is also controlled by the guards in the configuration ωr.

Claim 3.5.4. For any configuration ω : V (T )→ R+, cont(T, ω) ⊆ cont(T, ωr).

Proof of the claim. Let u ∈ cont(T, ω). By definition,
∑

v∈Nd[u] ω(v) ≥ 1. Let r′ be the

vertex in Nd[u] that is closest to the root r, and let T ′ be the subtree of T rooted in r′.
Finally, let T ′1, . . . , T

′
h be the subtrees of T ′ \ Nd[u]. By Claim 3.5.3, ωr(T ′) = bω(T ′)c

and ωr(T ′i ) = bω(T ′i )c for any 1 ≤ i ≤ h. Hence,

ωr(T ′) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

ωr(T ′i ) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

bω(T ′i )c

and,

ωr(T ′) = bω(T ′)c =

 ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )


Since

∑
v∈Nd[u] ω(v) ≥ 1, it follows that ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )

 ≥ 1 +

⌊ ∑
1≤i≤h

ω(T ′i )

⌋
≥ 1 +

∑
1≤i≤h

bω(T ′i )c

Altogether, 1+
∑

1≤i≤hbω(T ′i )c ≤ ωr(T ′) =
∑

v∈Nd[u] ω
r(v)+

∑
1≤i≤hbω(T ′i )c. There-

fore,
∑

v∈Nd[u] ω
r(v) ≥ 1 and u ∈ cont(T, ωr). �

Finally, Claim 3.5.5 shows that the moves that were valid in σ still hold in the
“rounded” strategy.
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Claim 3.5.5. Let ω1, ω2 : V (T ) 7→ R+ be two configurations such that the guards can
go from ω1 to ω2 in one round (there is feasible flow from ω1 to ω2). Then, the guards
can go from ωr1 to ωr2 in one round (there is feasible integral flow from ωr1 to ωr2).

Proof of the claim. The proof is by induction on k, the result being trivial when k = 0
(note that k = ωr1(T ) = ωr2(T )). Let f be the flow representing the move of the guards
from ω1 to ω2. Clearly, we may assume that, ∀u, v ∈ V , at most one of f(u, v) and
f(v, u) is non-null.

Among all vertices v ∈ V such that ω1(Tv) ≥ 1 or ω2(Tv) ≥ 1, let x be a lowest one
(such a vertex furthest from the root). By symmetry (there is a feasible flow from ω1 to
ω2 if and only if there is a feasible flow from ω2 to ω1), up to exchanging ω1 and ω2, we
may assume that ω1(Tx) ≥ 1. Note that, by the minimality of x, for every descendant
u ∈ V (Tx) \ {x} of x, ω1(Tu) < 1 and ω2(Tu) < 1.

Now, let γ1 be the function defined by γ1(x) = ω1(Tx) − 1, γ1(u) = 0 for every
descendant u of x, and γ1(v) = ω1(v) for every v ∈ V \V (Tx). Note that γr1(v) = ωr1(v)
for every v ∈ V \{x} and γr1(x) = ωr1(x)−1. Now, there are two cases to be considered.

• First, assume that ω2(Tx) ≥ 1. In this case, let γ2 be the function defined by
γ2(x) = ω2(Tx)− 1, γ2(u) = 0 for every descendant u of x, and γ2(v) = ω2(v) for
every v ∈ V \ V (Tx). Note that there is a feasible flow f ′ from γ1 to γ2: for any
u, v ∈ V (Tx), f

′(u, v) = 0 and for any u ∈ V , v ∈ V \ V (Tx), f
′(u, v) = f(u, v).

Note also that γr2(v) = ωr2(v) for every v ∈ V \ {x} and γr2(x) = ωr2(x)− 1.

By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow
f ∗ from γr1 to γr2. Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1
guard in x, this flow f ∗ is also a feasible integral flow from ωr1 to ωr2.

• Second, ω2(Tx) < 1. Let p be the parent of x (x cannot be the root since ωr2(T ) ≥
1). Note that, because there is flow from ω1 to ω2, then ω2(p)+ω2(Tx) ≥ ω1(Tx) ≥
1.

In this case, let γ2 be the function defined by γ2(u) = 0 for every u ∈ V (Tx),
γ2(v) = ω2(v) for every v ∈ V \ (V (Tx)∪{p}) and γ2(p) = ω2(p) +ω2(Tx)− 1 ≥ 0.

Note that there is a feasible flow f ′ from γ1 to γ2: for any u, v ∈ V (Tx), f
′(u, v) = 0,

for any u, v ∈ V \ V (Tx), f
′(u, v) = f(u, v), and f ′(x, p) = γ1(x). Note also that

γr2(v) = ωr2(v) for every v ∈ V \ {p} and γr2(p) = ωr2(p)− 1.

By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow
f ∗ from γr1 to γr2. Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1
guard in x (resp., in p), there is a feasible integral flow from ωr1 to ωr2 that can be
obtained from f ∗ by adding to it one unit of flow from x to p.

�

This concludes the proof of Theorem 3.5.2.

The second step in this section is to show that there is always an optimal fractional
strategy which is spy-positional. For this purpose, we prove the following theorem.
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Theorem 3.5.6. For any tree T and for any s ≥ 2, d ≥ 0, fgn∗s,d(T ) = fgns,d(T ).
More precisely, any fractional winning strategy using a total amount of k ∈ R+ guards
can be transformed into a spy-positional winning strategy using k guards.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of
k ∈ R+ guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-
node tree T = (V,E). Recall that, for any vertex v ∈ V , Cv is the set of possible
configurations ω : V → R+ for the guards when the spy is at v.

The proof consists of defining a spy-positional strategy σmin that is a winning strat-
egy using k guards. For any v ∈ V , we will define the function ωminv : V → R+ to be the
(unique) configuration of σmin when the spy is at v, i.e., σmin = {ωminv }v∈V . We first
prove that σmin is a strategy using k guards (Claims 3.5.7-3.5.8), then that the spy at
v ∈ V is controlled at distance d by the guards in the configuration ωminv (Claim 3.5.9).
Finally, we prove that, for any move of the spy from v to v′ ∈ V , the guards can move
from ωminv to ωminv′ (Claim 3.5.10).

From now on, T is rooted in an arbitrary vertex r ∈ V .

Notations. For any weight function ω : V → R+, let ω+ : V → R+ be the cumulative
function of ω, defined by, for every u ∈ V , ω+(u) =

∑
v∈V (Tu) ω(v) = ω(Tu). Let v ∈ V

and Cv = {ω1, . . . , ωh} ∈ σ be the set of configurations of the guards, when the spy is
in v. Let αv : V → R+ be such that, for every u ∈ V , αv(u) = min1≤i≤h ω

+
i (u). Now,

ωminv is defined as the (unique) function such that αv is its cumulative function, i.e.,
αv = (ωminv )+. Formally, for every u ∈ V : ωminv (u) = αv(u)−

∑
x∈Children(u) αv(x).

Claim 3.5.7 proves that, for every v ∈ V , ωminv : V → R+ is a configuration.

Claim 3.5.7. For every u ∈ V , ωminv (u) ≥ 0.

Proof of the claim. Let 1 ≤ i ≤ h be an integer such that αv(u) = min1≤j≤h ω
+
j (u) =

ω+
i (u). By definition of αv, for every x ∈ Children(u), αv(x) = min1≤j≤h ω

+
j (x) ≤

ω+
i (x). Hence, ωminv (u) ≥ ω+

i (u)−
∑

x∈Children(u) ω
+
i (x) = ωi(u) ≥ 0. �

Claim 3.5.8 proves that, for every v ∈ V , the configuration ωminv uses k guards.

Claim 3.5.8. For every v ∈ V ,
∑

u∈V ω
min
v (u) = k.

Proof of the claim. For every 1 ≤ i ≤ h, ω+
i (r) = k. Hence, αv(r) = min1≤i≤h ω

+
i (r) =

k.
∑

u∈V ω
min
v (u) = (ωminv )+(r) = αv(r) = k (since αv is the cumulative function of

ωminv ). �
Claim 3.5.9 proves that the guards in the configuration ωminv control a spy located

at v.

Claim 3.5.9. For every v ∈ V ,
∑

u∈Nd[v] ω
min
v (u) ≥ 1.

Proof of the claim. Let v∗ be the vertex of Nd[v] that is closest to the root r. Let
v1, . . . , vp be the descendants of v∗ that are at distance exactly d + 1 from v. Since
αv is the cumulative function of ωminv , we have that

∑
u∈Nd[v] ω

min
v (u) = αv(v

∗) −∑
1≤j≤p αv(vj). Let 1 ≤ i ≤ h be an integer such that αv(v

∗) = min1≤j≤h ω
+
j (v∗) =

ω+
i (v∗). Since the guards in configuration ωi control the spy in v at distance d, we have

48



that
∑

u∈Nd[v] ωi(u) = ω+
i (v∗)−

∑
1≤j≤p ω

+
i (vj) ≥ 1. Hence,

∑
u∈Nd[v] ω

min
v (u) = αv(v

∗)−∑
1≤j≤p αv(vj) = ω+

i (v∗)−
∑

1≤j≤p min1≤j′≤h ω
+
j′ (vj) ≥ ω+

i (v∗)−
∑

1≤j≤p ω
+
i (vj) ≥ 1. �

Finally, Claim 3.5.10 shows that the moves that were valid in σ still hold for σmin.

Claim 3.5.10. For every v ∈ V and v′ ∈ Ns[v], there is a feasible flow from ωminv to
ωminv′ .

Proof of the claim. Let Cv = {ω1, . . . , ωh} ∈ σ (the configurations of σ when the spy is
at v) and Cv′ = {ω′1, . . . , ω′h′} ∈ σ (the configurations of σ when the spy is at v′). Since
σ is a winning strategy, it means that, for every 1 ≤ i ≤ h, there is 1 ≤ δ(i) ≤ h′, such
that there is a feasible flow from ωi ∈ Cv to ω′δ(i) ∈ Cv′ . That is, there is a function f i :

V ×V → R+ such that, for every u ∈ V , ω′δ(i)(u) = ωi(u)+
∑

w∈N(u)(f
i(w, u)−f i(u,w))

and
∑

w∈N(u) f
i(u,w) ≤ ωi(u). Note that, such a function f i can be defined as, for

every u ∈ V and p ∈ V , the parent of u in T rooted in r (if u 6= r), f i(u, p) =
max{ω+

i (u)− (ω′δ(i))
+(u), 0} and f i(p, u) = max{(ω′δ(i))+(u)− ω+

i (u), 0}.
Let u ∈ V , X ⊆ Children(u) be any subset of the children of u, and 1 ≤ i ≤ h.

Because of the existence of the flow f i,
∑

w∈X(ω′δ(i))
+(w) ≤ ωi(u)+

∑
w∈X ω

+
i (w), hence:

ω+
i (u) = ωi(u) +

∑
w∈X

ω+
i (w) +

∑
w∈Children(u)\X

ω+
i (w)

≥
∑
w∈X

(ω′δ(i))
+(w) +

∑
w∈Children(u)\X

ω+
i (w).

So, since for every w ∈ V , αv′(w) = min1≤j≤h′(ω
′
j)

+(w) and αv(w) = min1≤j≤h ω
+
j (w):

ω+
i (u) ≥

∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

The above inequality holds for every 1 ≤ i ≤ h. Since αv(u) = min1≤i≤h ω
+
i (u), it

follows that:

αv(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

By similar arguments (because, by symmetry, there is a flow from ω′j to some ωj′
for every 1 ≤ j ≤ h′), we get

αv′(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

We need to prove that there exists a function f : V × V → R+ such that, for
every u ∈ V , ωminv′ (u) = ωminv (u) +

∑
w∈N(u)(f(w, u)− f(u,w)) and

∑
w∈N(u) f(u,w) ≤

ωminv (u).
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For every u ∈ V , let p ∈ V be the parent of u in T rooted in r (if u 6= r). Let
fmin(u, p) = max{αv(u)− αv′(u), 0} and let fmin(p, u) = max{αv′(u)− αv(u), 0}.

By definition, f preserves the amount of guards in every subtree. Consequently,
it also preserves it at every node and so for every u ∈ V , ωminv′ (u) = ωminv (u) +∑

w∈N(u)(f
min(w, u)− fmin(u,w)).

Therefore, we only need to prove that
∑

w∈N(u) f
min(u,w) ≤ ωminv (u).

Let u ∈ V , p its parent (if u 6= r), and let X ⊆ Children(u) be the set of vertices
such that, for every w ∈ X, fmin(u,w) = αv′(w) − αv(w) > 0. There are two cases to
be considered.

• First, let us assume that fmin(u, p) = 0.

ωminv (u) = αv(u)−
∑

w∈Children(u)

αv(w)

= (αv(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)

• Second, assume that fmin(u, p) = δ > 0.

ωminv (u) = αv(u)−
∑

w∈Children(u)

αv(w)

= αv′(u) + δ −
∑

w∈Children(u)

αv(w)

= δ + (αv′(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥ δ +
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)

�
This concludes the proof of Theorem 3.5.6.

We can now prove the main theorem of this section.

Theorem 3.5.11. Let s ≥ 2 and d ≥ 0 be two integers. There is a polynomial-time
algorithm that computes an integral winning strategy using gns,d(T ) guards to control a
spy with speed s at distance d in any tree T .

Proof. By Theorem 3.5.6, there exists an optimal (fractional) winning strategy that is
spy-positional for T . By Theorem 3.4.1, such a strategy can be computed in polynomial
time. From that strategy, Theorem 3.5.2 can compute in polynomial time an optimal
integral winning strategy for T .
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3.6 Spy game in Grid and Torus

It is clear that, for any n× n grid G, gns,d(G) ≤ |V (G)| = O(n2). However, the exact
order of magnitude of gns,d(G) is not known. In this section, we prove that there exists
β∗ > 0, such that Ω(n1+β∗) guards are necessary to win against one spy in an n×n-grid.
Our lower bound actually holds for the fractional relaxation of the game. Precisely, we
prove that fgns,d(G) is super-linear and sub-quadratic (in the side n).

Let n,m ≥ 2 be two integers. We consider the n×m toroidal grid Tn×m = (V,E), i.e.,
the graph with vertices vi,j = (i, j) and edges {(i, j), (i+1 mod n, j)} and {(i, j), (i, j+1
mod m)}, for all 0 ≤ i < n and 0 ≤ j < m. The n×m grid Gn×m is obtained from Tn×m
by removing the edges {{(i,m− 1), (i, 0)}; {(n− 1, j), (0, j)} | ∀0 ≤ i < n, 0 ≤ j < m}.

First, we show that the number of fractional (resp., integral) guards required in the
grid and in the torus have the same order of magnitude. Precisely:

Lemma 3.6.1. For all n,m ≥ 2, s ≥ 2, d ≥ 0, and for all f ∈ {gns,d, fgns,d, fgn∗s,d}:

f(Tn×m)/4 ≤ f(Gn×m) ≤ 4 · f(Tn×m).

Proof. Let us present the proof in the integral case, i.e., when f = gns,d, the other two
cases are similar.

Let σ be a winning strategy using k guards in Tn×m. We define a winning strategy
using 4k guards in Gn×m. For this purpose, let us label the guards used by σ as
G1, . . . , Gk. In Gn×m, the behavior of Guard Gi (1 ≤ i ≤ k) is “simulated” by four
guards as follows. The guard Gi being at (x, y) ∈ V (Tn×m) is simulated by one guard at
each of the four vertices: (x, y), (n−1−x, y), (x,m−1−y) and (n−1−x,m−1−y). That
is, one of the four guards occupies (x, y) while the other three guards occupy its images
with respect to the horizontal, vertical, and diagonal axes. Hence, gns,d(Gn×m) ≤
4 · gns,d(Tn×m).

Let σ be a winning strategy using k guards in Gn×m. We define a winning strategy
using 4k guards in Tn×m. Our strategy actually allows to control four spies whose moves
are correlated. Precisely, assume that when one spy occupies vertex (x, y), the three
other spies occupy respectively (n− 1−x, y), (x,m− 1− y), and (n− 1−x,m− 1− y).
We divide the 4k guards into four teams, each of which uses the strategy σ (i.e., they
all act as if they were in the grid) to control one of the four spies. When some spies
cross an edge of E(Tn×m) \ E(Gn×m), some teams will exchange their target. Hence,
gns,d(Tn×m) ≤ 4 · gns,d(Gn×m).

The first of the two main results of this section is:

Theorem 3.6.2. There exists β∗ > 0 such that, for every s ≥ 2, d ≥ 0,

fgns,d(Gn×n) = Ω(n1+β∗).

Corollary 3.6.3. There exists β∗ > 0 such that, for every s ≥ 2, d ≥ 0, gns,d(Gn×n) =
Ω(n1+β∗).
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Section 3.6.1 is devoted to prove Theorem 3.6.2, and Section 3.6.2 will be devoted to
prove the second main result of this section which is that fgns,d(Gn×n) and fgns,d(Tn×n)
are sub-quadratic (in the side n) when s is a constant.

3.6.1 Lower bound in Grids

The goal of this section is to prove that there exists β∗ > 0 such that fgns,d(Gn×n) =
Ω(n1+β∗), i.e., the number of guards required in any n × n-grid is super-linear in the
side n of the grid. We first make the following observation, which we will need for the
proof of Theorem 3.6.13:

Observation 3.6.4. In the class of n×n grids, gns,d and fgns,d are increasing functions
of n.

Proof. For every n′ ≥ n, any strategy played by the guards on the n′ × n′ grid can be
transformed into a strategy on the n × n grid. Indeed, it is sufficient to project any
quantity of guards located on a vertex v ∈ Gn′×n′ onto the vertex of Gn×n that is the
closest to it, with respect to the Hamming distance (i.e., L1 distance). Note that this
vertex is unique, and that this transformation is compatible with moves between two
consecutive positions.

To prove this section’s lower bound on grids, let us define (yet) another parameter.
For any s ≥ 2, d ≥ 0, t ≥ 0, q ≥ 1, and any graph G (note that t may be a function of
|V (G)|), let gnq,ts,d(G) be the minimum number k of guards such that there is an integral
strategy using k guards that ensures that at least q guards are at distance at most d
from a spy with speed s during at least the first t rounds. Note that, by definition,
supt gn

1,t
s,d(G) ≤ gns,d(G).

The first step of the proof is that gnq,2ns,d (Gn×n) = Ω(q ·n log n) in any n×n-grid and
then we “extend” this result to the fractional strategies. The latter result will then be
used as a “bootstrap” in the induction proof for the main result. Let H : R+ → R+,
H(x) =

∑
1≤i≤x 1/i for every x ∈ R+.

Lemma 3.6.5. ∃β ≥ 1/48 such that for any n ∈ N, s ≥ 2, d ≥ 0 (possibly d depends
on n), q > 0,

gnq,2ns,d (Gn×n) ≥ β · q · n

d+ 1
H(

n

d+ 1
).

Proof. The proof is for s = 2 since gnq,2ns,d (Gn×n) ≥ gnq,2n2,d (Gn×n).
In order to prove the result, we will consider a family of strategies for the spy. For

every 0 ≤ r < n, the spy starts at position (0, 0) and runs at full speed toward (r, 0).
Once there, it continues at full speed toward (r, n−1). We name Pr the strategy defined
by that path (which is completed in d1

2
(r+n−1)e rounds) and sometimes use the same

notation to denote the path itself. Note that the guards may be aware of the family of
strategies played by the spy but do not know r in advance.

Let us assume that there exists a strategy using an amount k of guards that main-
tains at least q guards at distance at most d from the spy during at least 2n rounds.
Moreover, the spy only plays the strategies described above.
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Assuming that the guards are labeled with integers in {1, . . . , k}, we can name at
any time of strategy Pr the labels of q guards that are at distance at most d from the
spy. In this way, let c(i, j) denote this set of q guards that are at distance at most
d from the spy, when the spy is at position (i, j). Observe that this definition does
not depend on the choice of r, since all strategies of our family that eventually reach
position (i, j) are indistinguishable up to that round. Precisely, for any i ≤ n, when the
spy reaches vertex (i, 0), it must be playing some strategy Pr, for r ≥ i, but the guards
do not know which one, and so c(i, 0) is independent of r ≥ i. Moreover, for any j > 0
and r ≤ n, the spy reaches vertex (r, j) only when it is playing the strategy Pr. Hence,
there is no ambiguity.

Claim 3.6.6. Let j1, j2 ∈ N∗ such that 2j1 < n and 2j2 < n. If |j2 − j1| > 2d, then
c(r, 2j1) and c(r, 2j2) are disjoint.

Proof of the claim. Assuming j1 < j2, it takes j2 − j1 rounds for the spy in strategy
Pr to go from (r, 2j1) to (r, 2j2). A guard cannot be at distance at most d from (r, 2j1)
and, j2− j1 rounds later, at distance at most d from (r, 2j2). Indeed, to do so its speed
must be at least 2(j2 − j1 − d)/(j2 − j1) > 1, a contradiction. �

Claim 3.6.7. Let j1, j2, r1, r2 ∈ N∗ such that 2z < n for every z ∈ {j1, j2, r1, r2}. If
|r2 − r1| > 2d+ 2 min(j1, j2), then c(2r1, 2j1) and c(2r2, 2j2) are disjoint.

Proof of the claim. Assuming r1 < r2, note that strategies P2r1 and P2r2 are identical
for the first r1 rounds. The spy is at position (2r1, 0) when they split. If c(2r1, 2j1)
intersects c(2r2, 2j2) on a given guard, it means that at this instant (i.e., at round r1)
that guard is simultaneously at distance at most d+ j1 from (2r1, 2j1)† and at distance
at most d+ |r2− r1|+ j2 from (2r2, 2j2)‡ since the guard belongs to both sets. As those
two points are at distance 2|r2 − r1|+ 2|j2 − j1| from each other, we have:

2|r2 − r1|+ 2|j2 − j1| ≤ (d+ j1) + (d+ |r2 − r1|+ j2)

|r2 − r1|+ 2|j2 − j1| ≤ 2d+ j1 + j2

|r2 − r1| ≤ 2d+ 2 min(j1, j2)
�

We can now proceed to prove that the number of guards is sufficiently large. To
do so, we define a graph H on a subset of V (Gn×n) and relate the distribution of the
guards (as described by c) with the independent sets of H by treating every guard as
a colour. Intuitively, an independent set I in H will consist of a set of sets c(i, j) of
guards that must be pairwise disjoint. It is defined over V (H) = {(2r, 4dj) : 0 ≤ 2r <
n, 0 ≤ 4dj < n}, where:

• (2r, 4dj1) is adjacent to (2r, 4dj2) for j1 6= j2 (see Claim 3.6.6).

• (2r1, 4dj1) is adjacent to (2r2, 4dj2) if |r2 − r1| > 4d(1 + min(j1, j2)) (see Claim
3.6.7).

†In strategy P2r1 , that guard must be at distance ≤ d from (2r1, 2j1) when the spy visits it.
‡Similarly, for strategy P2r2 .
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By definition, c gives q colours (represented by the q guards) to each vertex of H and
any set of vertices of H receiving a common colour is an independent set of H. If we
denote by #c−1(x) the number of vertices which received colour x, and by α(2r,4dj)(H)
the maximum size of an independent set of H containing (2r, 4dj), we have:

k =
∑

x∈{1,...,k}

1 =
∑

x∈{1,...,k}

#c−1(x)

#c−1(x)
=

∑
v∈V (H)

∑
x∈c(v)

1

#c−1(x)

=
∑

(2r,4dj)∈V (H)

∑
x∈c(2r,4dj)

1

#c−1(x)

≥
∑

(2r,4dj)∈V (H)

q

α(2r,4dj)(H)

It is easy, however, to approximate this lower bound.

Claim 3.6.8. α(2r,4dj)(H) ≤ 4d(j + 1) + 1

Proof of the claim. An independent set S ⊆ V (H) containing (2r, 4dj) cannot contain
two vertices with the same first coordinate. Furthermore, (2r, 4dj) is adjacent with any
vertex (2r′, 4dj′) if |r′ − r| > 4d(1 + j). �

We can now finish the proof:

k ≥
∑

(2r,4dj)∈V (H)

q

α(2r,4dj)(H)

≥
∑

(2r,4dj)∈V (H)

q

4d(j + 1) + 1

≥ n

2

∑
j∈{0,...,b n

4d+1
c−1}

q

4d(j + 1) + 1

=
n

2

∑
j∈{1,...,b n

4d+1
c}

q

4dj + 1

≥ n

2

∑
j∈{1,...,b n

4d+1
c}

q

4(d+ 1)j

=
qn

8(d+ 1)

∑
j∈{1,...,b n

4d+1
c}

1

j

≥ qn

48(d+ 1)
(

∑
j∈{1,...,b n

4d+1
c}

1

j
+

∑
j∈{b n

4d+1
c+1,...,b n

d+1
c}

1

j
)

(since
∑

j∈{b n
4d+1

c+1,...,b n
d+1
c}

1

j
≤ (

n(4d+ 1)− n(d+ 1)

(4d+ 1)(d+ 1)
)(

4d+ 1

n
) =

3d

d+ 1
≤ 3)

=
qn

48(d+ 1)
H(

n

d+ 1
)

54



where H is the harmonic function.

Next, we aim at transposing Lemma 3.6.5 in the case of fractional strategies.

Lemma 3.6.9. Let n ∈ N∗ and d ∈ N (possibly depending on n). There exists β >
0 (the one of Lemma 3.6.5) such that fgns,d(Gn×n) ≥ β n

d+1
H( n

d+1
), where H is the

harmonic function. Moreover, against a smaller amount of guards, the spy wins after
at most 2n rounds starting from a corner of Gn×n.

Proof. Let us start by the following claim.

Claim 3.6.10. Let G be any graph with n vertices and d, s, t, q ∈ N. Then,

gnq,ts,d(G) ≤ q · fgns,d(G) + (t+ 1)n2

Proof of the claim. From a fractional strategy using a total amount c of guards, let us
define an integral strategy keeping at least q guards at distance at most d from the spy
during at least t rounds. Initially, each vertex v which has an amount xv of guards in the
fractional strategy receives bxvqc+(t+1)n guards in the integral strategy. That is, our
integral strategy uses at most

∑
v∈V (G)((bxvqc+ (t+ 1)n) ≤ (t+ 1)n2 +

∑
v∈V (G) xvq ≤

(t+ 1)n2 + cq guards.
We then ensure that, in each round t′ ∈ {1, ..., t}, a vertex v occupied by an amount

of xv guards in the fractional strategy is occupied by at least bxvqc + (t − t′)n guards
in the integral strategy. To this aim, whenever an amount xuv of guards is to be moved
from u to v in the fractional strategy, we move bxuvqc+ 1 in the integral strategy.

Precisely, let xv (resp., x′v) be the amount of guards at v in round t′ (resp., at t′+1).
Let A ⊆ N(v) be the set of neighbours of v sending it a positive amount of flow and
let B ⊆ N(v) be the set of neighbours of v that receive a positive amount of flow from
v. We have xv +

∑
u∈A xuv −

∑
u∈B xvu = x′v.

In the integral strategy, by induction on t′, we get that, after round t′ + 1, the
number of guards at v is at least

bxvqc+ (t− t′)n+
∑
u∈A

(bxuvqc+ 1)−
∑
u∈B

(bxvuqc+ 1)

≥ xvq − 1 + (t− t′)n+
∑
u∈A

(xuvq + 1− 1)−
∑
u∈B

(xvuq + 1)

≥ q(xv +
∑
u∈A

xuv −
∑
u∈B

xvu) + (t− t′)n− 1− |B|

= qx′v + (t− t′)n− 1− |B|.

Since B ⊆ N(v), |B| < n and so, the number of guards at v in round t′ + 1 is at least
qx′v + (t− t′ − 1)n.

As our invariant is preserved throughout the t rounds, the spy which had an amount
of at least 1 guard within distance d in the fractional strategy now has at least q guards
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around it, which proves the result. Indeed, the number of guards at distance at most d
from the spy (occupying vertex y in round t′ ≤ t) is at least∑

v∈Nd(y)

(bxvqc+ (t− t′ + 1)n)

≥
∑

v∈Nd(y)

(xvq − 1 + (t− t′ + 1)n)

≥ q
∑

v∈Nd(y)

xv

≥ q.

�

The previous claim holds for every q ∈ N. Therefore, lim supq→∞
gnq,ts,d(G)

q
≤ fgns,d(G).

Finally, by Lemma 3.6.5, there exists β > 0 such that gnq,2ns,d (Gn×n) ≥ β · q ·
n
d+1

H( n
d+1

).
Altogether, fgns,d(Gn×n) ≥ β n

d+1
H( n

d+1
).

Moreover, Lemma 3.6.5 shows that against strictly less than β ·q · n
d+1

H( n
d+1

) integral
guards, the spy will win in 2n rounds, starting from the corner. By the claim, this result
implies that the spy will win in 2n rounds, starting from the corner, against less than
β n
d+1

H( n
d+1

) fractional guards.

The next lemma is a key argument for our purpose. While it holds for any graph
and its proof is very simple, we have not been able to prove a similar lemma in the
classical (i.e., non-fractional) case. Note that this is the only part in this section where
we really need to consider the fractional variant of the spy game.

Lemma 3.6.11. Let G = (V,E) be any graph and s ≥ 2, d ≥ 0 be two integers with
fgns,d(G) > c ∈ Q∗ where the spy wins in at most t rounds against c guards starting
from v ∈ V (G).

For any fractional strategy using a total amount k > 0 of guards, there exists a
strategy for the spy (with speed s) starting from v such that after at most t rounds, the
amount of guards at distance at most d from the spy is less than k/c.

Proof. For purpose of contradiction, assume that there is a strategy S using k > 0
guards that contradicts the lemma. Then, consider the strategy S ′ obtained from S by
multiplying the number of guards by c/k. That is, if w ∈ V is initially occupied by
q > 0 guards in S, then S ′ places qc/k guards at w initially (note that S ′ uses a total
amount of kc/k = c guards). Then, when S moves an amount q of guards along an edge
e ∈ E, S ′ moves qc/k guards along e. Since S contradicts the lemma, in any round
≤ t, at least an amount k/c of guards is at distance at most d from the spy, whatever
be the strategy of the spy. Therefore, S ′ ensures that an amount of at least 1 guard is
at distance at most d from the spy during at least t rounds. This contradicts that the
spy wins after at most t rounds against a total amount of c guards.
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From Lemmas 3.6.9 and 3.6.11, we get

Corollary 3.6.12. Let n ∈ N∗ and d ∈ N (possibly depending on n). There exists
β > 0 (the one of Lemma 3.6.5) such that for any strategy using a total amount of
k > 0 guards in Gn×n, there exists a strategy for the spy (with speed s, starting from a
corner of Gn×n) such that after at most 2n rounds, the amount of guards at distance at
most d from the spy is less than k

β n
d+1

H( n
d+1

)
.

The next Theorem is the main result of this section. Before going into the details,
we aim at providing informal guidelines of its proof.

In a few words, we use Corollary 3.6.12 recursively to show that if Gn×n requires
Θ(n log(n)) guards, then a spy traveling in a larger Gan×an grid (for a large integer a)
must have, at all times, at least Θ(n log(n)) guards in any Gn×n grid that contains the
spy. This provides a new lower bound, on which we recurse until the claimed lower
bound is obtained.

Theorem 3.6.13. Let s ≥ 2 and d ∈ N∗. There exist β∗ > 0 and n0 ∈ N such that,
for every n ≥ n0, fgns,d(Gn×n) = Ω(n1+β∗).

Proof. Let a ≥ 2 be an integer and let β > 0 be the constant defined in Lemma 3.6.5.
Note that, as fgns,d is monotone by Observation 3.6.4, we only need to prove the
theorem for grids of side n ∈ {ac | c ∈ N}. Let us then define n = ac for some c ≥ 1
and dp = 4n

ap
for every p ∈ N∗, where 4n/ap ≥ d. The following claim is a recursive

application of Corollary 3.6.12:

Claim 3.6.14. Let p ∈ N∗ such that dp = 4n/ap ≥ 1. For any k > 0, there is
a spy-strategy (against an amount of k fractional guards) in Gn×n such that, after∑p

i=1
2n
ai−1 rounds, the amount of guards at distance at most dp from the spy is less than

kp = k

Πpi=1(β
n/ai−1

di+1
H(

n/ai−1

di+1
))

.

Proof of the claim. The proof is by induction on p ≥ 1.
By Corollary 3.6.12 applied for d1, there is a spy-strategy (against fractional guards)

such that, after 2n rounds, the amount of guards at distance at most d1 from the spy
is less than k

β n
d1+1

H( n
d1+1

)
. Therefore, the induction hypothesis holds for p = 1. Let us

assume by induction that it holds for p − 1 ≥ 1. That is, there is a spy-strategy Sp−1

such that, after tp−1 =
∑p−1

i=1
2n
ai−1 rounds, the amount of guards at distance at most

dp−1 from the spy is less than kp−1 = k

Πp−1
i=1 (β

n/ai−1

di+1
H(

n/ai−1

di+1
))

.

Let vp−1 be the vertex reached by the spy after the (tp−1)th round of the spy-strategy
Sp−1. Let Fp−1 be the set of vertices at distances at most dp−1 = 4n

ap−1 from vp−1 and
let Hp be any subgrid of Gn×n with vp−1 as corner and side n

ap−1 . Note that any vertex

in V (Gn×n) \ Fp−1 is at distance at least 2n
ap−1 from any vertex of Hp (since a ≥ 2).

Therefore, after following the spy-strategy Sp−1 during tp−1 rounds, whatever the spy
does during the next 2n

ap−1 rounds, there can be at most kp−1 = k

Πp−1
i=1 (β

n/ai−1

di+1
H(

n/ai−1

di+1
))

guards in Hp.
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Starting from the configuration reached after the (tp−1)th round of the spy-strategy
Sp−1, and applying Corollary 3.6.12 in Hp (of side n/ap−1) and for dp, there is a spy-
strategy S ′ (against fractional guards) such that, after the next 2n

ap−1 rounds, the amount

of guards at distance at most dp from the spy is less than kp = kp−1

β
n/ap−1

dp+1
H(

n/ap−1

dp+1
)
. Hence,

concatenating Sp−1 and S ′, we get a spy-strategy Sp (against fractional guards) such
that, after

∑p
i=1

2n
ai−1 rounds, the amount of guards at distance at most dp from the spy

is less than kp = k

Πpi=1(β
n/ai−1

di+1
H(

n/ai−1

di+1
))

. �

Let us now simplify the bound provided in the above claim. We have:

X := Πp
i=1

[
β
n/ai−1

di + 1
H
(n/ai−1

di + 1

)]
= Πp

i=1

[
β
n/ai−1

4n
ai

+ 1
H
(n/ai−1

4n
ai

+ 1

)]
≥ Πp

i=1

[
β
n/ai−1

5n
ai

H
(n/ai−1

5n
ai

)]
= Πp

i=1β
a

5
H(

a

5
)

=
(
β
a

5
H(

a

5
)
)p

Hence, the above claim implies that, for any k > 0, there is a spy-strategy (against
an amount of k fractional guards) in Gn×n such that, after

∑p
i=1

2n
ai−1 rounds, the amount

of guards at distance at most dp from the spy is less than kp ≤ k
(β a

5
H(a

5
))p

.

Note that, for the guards’ strategy to be winning, it must be ensured that kp ≥ 1
whenever dp ≥ d.

Let us now define a∗ to be any integer such that β a
∗

5
H(a

∗

5
) > a∗: it exists since this

holds whenever H(a
∗

5
) > 5

β
, which is asymptotically true for a∗ (since β is a constant).

Applying the previous claim with a = a∗, n = (a∗)c, and with p ≤ c = loga∗ n such
that dp ≥ d, we get that kp ≥ 1 implies:

k ≥
(
β
a∗

5
H(

a∗

5
)
)p

= (a∗ + ε)p (for some ε > 0)

≥ (a∗ + ε)loga∗ ( 4n
d

) (Since dp =
4n

(a∗)p
≥ d⇔ loga∗(

4n

d
) ≥ p)

= ((a∗)loga∗ (a∗+ε))loga∗ ( 4n
d

) = (a∗)loga∗ ( 4n
d

)·loga∗ (a∗+ε)

= (
4n

d
)loga∗ (a∗+ε)

= c′nloga∗ (a∗+ε) (for the constant c′ = (
4

d
)loga∗ (a∗+ε))

= Ω(n1+β∗) (for β∗ = loga∗(1 +
ε

a∗
) > 0)
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The above theorem proves Theorem 3.6.2 and Corollary 3.6.3.

3.6.2 Upper bound in Torus

The second of the two main results of this section is:

Theorem 3.6.15. Let α = log2(1 + 1
s
). Then, for every d ≥ 0 and every constant

s ≥ 2,

fgn∗s,d(Tn×n) = O(n2−α).

To prove Theorem 3.6.15, we make use of the Linear Program (LP) of Section 3.4.
Recall that, in a spy-positional strategy, the positions of the guards (configuration)
only depend on the position of the spy. Also, note that Tn×n is a vertex-transitive
graph, that is, given any two vertices u, v ∈ Tn×n, there exists an automorphism f :
V (Tn×n) → V (Tn×n) such that f(u) = v. Roughly, every vertex in a vertex-transitive
graph is the same. Then, in any vertex-transitive graph (so in Tn×n), there is actually
a unique configuration to be considered (where the spy is occupying the vertex (0, 0)).
Therefore, the LP of Section 3.4 can be reformulated as follows.

Throughout subsection 3.6.2, all coordinates are assumed to be taken modulo n
whenever appropriate. We are looking for a function ω : {0, . . . , n−1}2 → R+ such that
ω(i, j) is the amount of guards occupying the vertex (i, j) when the spy is occupying the
vertex (0, 0). This function must be defined such as to minimize the number of guards,
i.e.,

∑
0≤i,j<n ω(i, j) must be minimum, subject to the following constraints. The spy

must be controlled, i.e.,
∑

(i,j)∈Nd[(0,0)] ω(i, j) ≥ 1. Moreover, for any move of the spy

from (0, 0) to (x, y) ∈ Ns[(0, 0)], there must be a feasible flow from the configuration
(ω(i, j))(i,j)∈V (Tn×n) to (ω(i− x, j − y))(i,j)∈V (Tn×n). Before going further, let us simplify
the latter constraint. Indeed, instead of considering every possible move of the spy
in Ns[(0, 0)], we only consider the extremal moves from (0, 0) to one of the vertices
in {(0, s), (s, 0), (−s, 0), (0,−s)}, i.e., we weaken the spy by allowing it to move only
“horizontally” or “vertically” at full speed. We prove in Lemma 3.6.16 that it does not
change the order of magnitude of an optimal solution.

Lemma 3.6.16. Let n, s ≥ 2, and d ≥ 0 be integers. Assume that there exists a
(fractional or integral) winning strategy using k guards to control a spy, with speed s
and restricted moves, at distance d in the n×n-torus. Then, there exists a (fractional or
integral) winning strategy using O(s2k) guards to control a spy, with speed s, at distance
d in the n× n-torus.

Proof. The proof is written in the integral case. The fractional case is similar.
For any strategy of a (non-restricted) spy, we will define a strategy for a restricted

spy, called the spy’s shadow, that ensures that the shadow is always at distance at most
2s from the non-restricted spy. To control the non-restricted spy, the strategy consists
of applying the strategy σ against its shadow (i.e., using k guards) and replacing each
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guard γ of σ by O(s2) guards, one at every vertex at distance at most 2s from the
position of γ.

The shadow starts at the same vertex as the spy and “follows” it but only using
restricted moves. The shadow can easily stay at distance < 2s from the spy if the spy
moves from a vertex at distance < 2s from the shadow to a vertex at distance at least
2s (but < 3s since the spy has speed s) from the shadow. This means, then, that the
shadow is at a position such that one of its coordinates differs by at least s from one
of the spy’s coordinates. So it can decrease its distance to the spy by exactly s using a
restricted move. This means that after the shadow moves, the distance is still < 2s.

The above LP, restricted to vertex-transitive graphs, is more efficient than the one
presented in Section 3.4 since there is only one configuration to be considered and
fewer flow constraints (and so, fewer variables and constraints). In particular, it gives
interesting experimental results as presented in the conclusion. In what follows, we
present and analyze a function using a sub-quadratic (in n) number of guards that
satisfies the above LP.

Precisely, let 0 < α < 1 and let d(v) (resp., d(i, j)) denote the distance (length of a
shortest path) between vertex v (resp., (i, j)) and vertex (0, 0) in Tn×n.

Definition 3.6.17 (Strategies ωα). Let us consider the spy-positional strategy ωα of
the form ωα(i, j) = B

(d(i,j)+1)α
for every (i, j) ∈ V (Tn×n) and for some constant B defined

later.

Note that ωα is symmetric, i.e., ωα(i, j) = ωα(n−i, j) = ωα(i, n−j) = ωα(n−i, n−j).
Therefore, by symmetry, we only need to check that there is a feasible flow from the
configuration (ωα(i, j))(i,j)∈V (Tn×n) to the one (ωα(i − s, j))(i,j)∈V (Tn×n), i.e., when the
spy goes from (0, 0) to (s, 0).

Equivalently, the flow constraints can be defined as a flow problem in a transportation
bipartite auxiliary network H defined as follows (i.e., the constraints are satisfied if and
only if there is feasible flow in H). Let H = (V1 ∪ V2, E(H)) be the graph such
that V1 and V2 are two copies of V (Tn×n). There is an arc from u ∈ V1 to v ∈ V2

if {u, v} ∈ E(Tn×n). Each vertex (i, j) ∈ V1 has a supply ωα(i, j) and every vertex
(i′, j′) ∈ V2 has a demand ωα(i′− s, j′). By Hall’s Theorem [29], there is a feasible flow
in H if and only if, for every A ⊆ V1, the total supply in N [A] is at least the demand
in A ⊆ V2, i.e., at least

∑
(i,j)∈A ωα(i− s, j).

To summarize, the flow constraints can be stated as:

∀A ⊆ V (Tn×n),
∑

(i,j)∈N [A]

ωα(i, j) ≥
∑

(i,j)∈A

ωα(i− s, j). (3.9)

We aim at deciding the range of α such that the function ωα satisfies constraint 3.9.
For this purpose, we first aim at finding a set Hs ⊆ V (Tn×n) such that κα(Hs) =∑

(i,j)∈N [Hs] ωα(i, j)−
∑

(i,j)∈Hs ωα(i−s, j) is minimum. For such a setHs, if κα(Hs) ≥ 0,
it implies that ωα satisfies constraint 3.9.

Let Hs be the set of vertices (i, j) ∈ V (Tn×n) defined by:

Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2, 0 ≤ j < n}.
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Lemma 3.6.18. Let α > 0 and s ≥ 2 be a constant. For every A ⊆ V (Tn×n), κα(A) ≥
κα(Hs).

Proof. For simplicity of calculations, let us assume that both s and n are even. For any
0 ≤ j < n, the column Cj equals {(i, j) | 0 ≤ i < n}.

For any integer 0 ≤ ` < n and some constant B defined later, let f` : V → R+ be
the function such that, for any (i, j) ∈ V (Tn×n),

f`(i, j) =
B

(d((i, j), (`, 0)) + 1)α

where d(x, y) denotes the distance between x and y in Tn×n.
Note that

Claim 3.6.19. For any i, j, fs(i, j) = f0(i− s, j).

For any A ⊆ V (Tn×n), let us define the border δ(A) of A as δ(A) = {w /∈ A | ∃v ∈
A, {v, w} ∈ E}, i.e., the set of vertices not in A that have a neighbour in A.

Note that:

κα(A) =
∑

v∈N [A]

f0(v)−
∑
v∈A

fs(v) =
∑
v∈A

(f0(v)− fs(v)) +
∑
v∈δ(A)

f0(v).

To find a vertex-set minimizing the above function, we actually define another func-
tion lower bounding the previous one. We identify a set Amin minimizing this second
function such that both functions achieve the same value for Amin. Therefore, Amin
also minimizes the first function.

The vertical border µ(A) equals {(i, j) /∈ A | (i + 1, j) ∈ A or (i − 1, j) ∈ A}, i.e.,
the set of vertices not in A that have a neighbour in A and in the same column. Note
that µ(A) ⊆ δ(A) for any A ⊆ V .

Let us set

γ(A) =
∑
v∈A

(f0(v)− fs(v)) +
∑
v∈µ(A)

f0(v).

Since f0 is positive and µ(A) ⊆ δ(A),

Claim 3.6.20. κα(A) ≥ γ(A) for any A ⊆ V .

A useful property of γ is that:

Claim 3.6.21. γ(A) =
∑

0≤j<n γ(A ∩ Cj).

Note that Hs = {(i, j) | s/2 ≤ i ≤ (n + s)/2, 0 ≤ j < n} is the set of vertices v
such that f0(v) − fs(v) ≤ 0. Moreover, note that µ(Hs) = δ(Hs) (since Hs consists of
“full” rows) and so:

Claim 3.6.22. γ(Hs) = κα(Hs).

Another useful property is that, by the first claim (and telescopical sum),
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Claim 3.6.23. For any 0 ≤ j < n,

γ(Hs ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(n/2 + i, j)−
∑

−s/2≤i≤s/2−2

f0(i, j).

Proof of the claim.

γ(Hs ∩ Cj) =

(n+s)/2∑
i=s/2

f0(i, j)− fs(i, j)

+ f0(s/2− 1, j) + f0((n+ s)/2 + 1, j)

=

(n+s)/2∑
i=s/2

f0(i, j)− f0(i− s, j)

+ f0(s/2− 1, j) + f0((n+ s)/2 + 1, j)

=

(n+s)/2+1∑
i=(n−s)/2+1

f0(i, j)−
s/2−2∑
i=−s/2

f0(i, j)

�
The above proof actually extends to the following. Let

H(a, b) ∩ Cj = {(i, j) | a ≤ i ≤ b}

Claim 3.6.24. For any |a− b| > 1,

γ(H(a, b) ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(b− s/2 + i, j)−
∑

−s/2≤i≤s/2−2

f0(a− s/2 + i, j).

The remaining part of this section is devoted to prove that Hs minimizes κα. Pre-
cisely, let us prove that γ(Hs) = minA⊆V γ(A). This follows from the two following
claims and previous claims.

Claim 3.6.25. Let X be such that γ(X) = minA⊆V γ(A). Then, for any 0 ≤ j < n,
X ∩ Cj is connected.

Proof of the claim. First, assume that there exists a vertex v ∈ Cj \ X such that its
two neighbours in Cj are in X. Then, γ(X ∪ {v}) = γ(X)− fs(v) < γ(X). Therefore,
by minimality of γ(X), there are no such vertices.

Suppose there is (n+s)/2 < i < n+s/2 such that u = (i, j) ∈ X, w = (i+1, j) /∈ X,
and (i − 1, j) ∈ X. Note that, by the previous paragraph, (i + 2, j) /∈ X. Therefore,
γ(X \ u) = γ(X)− f0(w) + fs(u) < γ(X). The last inequality is because f0(w) > fs(u)
because of the choice of i. This contradicts the minimality of γ(X). If on the other
hand, (i − 1, j) /∈ X, then γ(X \ u) = γ(X) − f0(w) − f0(u) + fs(u) < γ(X) which
contradicts the minimality of γ(X).

“Symmetrically”, suppose there is s/2 ≤ i ≤ (n + s)/2 such that u = (i, j) /∈ X,
w = (i−1, j) ∈ X, and (i+ 2, j) /∈ X. Note that, by the first paragraph, (i+ 1, j) /∈ X.
Therefore, γ(X ∪ {u}) = γ(X) − fs(u) + f0(i + 1, j) < γ(X). The last inequality is
because f0(i+ 1, j) < fs(u) because of the choice of i. This contradicts the minimality
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of γ(X). If on the other hand, (i+ 2, j) ∈ X, then γ(X ∪ {u}) = γ(X)− fs(u) < γ(X)
which contradicts the minimality of γ(X).

If X ∩ Cj would not be connected, one of the cases of the two previous paragraphs
should occur. Therefore, X ∩ Cj is connected. �

Claim 3.6.26. Let 0 ≤ j < m. For any X ⊆ V such that X ∩ Cj is connected,
γ(Hs ∩ Cj) ≤ γ(X ∩ Cj).

Proof of the claim. Since X ∩ Cj is connected, it has the form H(a, b) ∩ Cj for some a
and b. We assume that |a− b| > 1 (the other case can be done similarly). Therefore, by
previous claims, it remains to prove that, for any a and b, γ(Hs∩Cj) ≤ γ(H(a, b)∩Cj).

γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) =

∑
−s/2+1≤i≤s/2+1

(f0(b−s/2+i, j)−f0(n/2+i, j))−
∑

−s/2≤i≤s/2−2

(f0(a−s/2+i, j)−f0(i, j)).

Since the function f0 is maximum around i = 0 and minimum around i = n/2, it is
easy to check that, for any a and b:∑

−s/2+1≤i≤s/2+1

(f0(b− s/2 + i, j)− f0(n/2 + i, j)) ≥ 0

and ∑
−s/2≤i≤s/2−2

(f0(a− s/2 + i, j)− f0(i, j)) ≤ 0.

Hence, γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) ≥ 0. �

By previous claims, κα(Hs) = γ(Hs) = minA⊆V γ(A) ≤ minA⊆V κα(A).
Hence, κα(Hs) = minA⊆V κα(A).

Finally, we are ready to present a winning strategy in the n× n torus which proves
Theorem 3.6.15.

Lemma 3.6.27. Let n, s ≥ 2 where s is a constant, d ≥ 0 and, α = log2(1 + 1
s
). There

exists a constant B > 0 (independent of n) such that the function ωα : V (Tn×n)→ R+

where ωα(v) = B
(d(v)+1)α

for every v ∈ V (Tn×n) is a spy-positional winning fractional

strategy that uses O(n2−α) guards to control a spy with speed s at distance d in Tn×n.

Proof. To verify that ωα is a winning strategy, we need to prove that it satisfies con-
straints 3.3 and 3.9. Let Bd be the set of vertices at distance at most d from (0, 0) and
let B = 1/

∑
v∈Bd

1
(d(v)+1)α

.
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The total amount of guards used by the strategy is:

∑
v∈V (Tn×n)

B

(d(v) + 1)α
≤ B

(
1 +

∑
1≤i<n

4i

(i+ 1)α

)
(At most 4i vertices distance i > 0 from (0, 0))

≤ 4B
∑

0≤i<n

i+ 1

(i+ 1)α

= 4B
∑

0≤i<n

(i+ 1)1−α = 4B
∑

1≤i≤n

i1−α

≤ 4B · n · n1−α (since i1−α ≤ n1−α)

= 4Bn2−α

= O(n2−α)

Constraint 3.3 states that
∑

v∈Bd ωα(v) ≥ 1 which is satisfied by the choice of B
since

∑
v∈Bd

ωα(v) =
∑
v∈Bd

B

(d(v) + 1)α

= B
∑
v∈Bd

1

(d(v) + 1)α

=
1∑

v∈Bd
1

(d(v)+1)α

∑
v∈Bd

1

(d(v) + 1)α

= 1.

Constraint 3.9 states that, ∀A ⊆ V (Tn×n),
∑

(i,j)∈N [A] ωα(i, j) ≥
∑

(i,j)∈A ωα(i−s, j).
By Lemma 3.6.18, we know that κα(A) =

∑
(i,j)∈N [A] ωα(i, j)−

∑
(i,j)∈A ωα(i− s, j)

is minimum for A = Hs, where Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2, 0 ≤ j < n}. Hence,
it is sufficient to show that κα(Hs) ≥ 0.

Again, for ease of presentation, let us assume that s and n are even.

κα(Hs) =
∑

s/2−1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
s/2≤i≤(n+s)/2,0≤j<n

B

(d(i− s, j) + 1)α

Because s is a constant, this can be simplified to:
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κα(Hs) =
∑

(n−s)/2+1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
−s/2≤i≤s/2−2,0≤j<n

B

(d(i, j) + 1)α

≥ (s+ 1)
∑

0≤j<n

B

(d(n/2, j) + 1)α
− (s− 1)

∑
0≤j<n

B

(d(0, j) + 1)α

= 2(s+ 1)
∑

0≤j≤n/2

B

(d(n/2, j) + 1)α
− (s+ 1) ·B

(d(n/2, 0) + 1)α
− (s+ 1) ·B

(d(n/2, n/2) + 1)α

− 2(s− 1)
∑

0≤j≤n/2

B

(d(0, j) + 1)α
+

(s− 1)B

(d(0, 0) + 1)α
+

(s− 1)B

(d(0, n/2) + 1)α

= 2(s+ 1)
∑

1≤j≤n/2+1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2+1

B

jα

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

= 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα

− 2(s+ 1) ·B
(n/2)α

+
2(s+ 1) ·B

nα
+

2(s+ 1) ·B
(n+ 1)α

− 2(s− 1) ·B
(n/2 + 1)α

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)

And so:

κα(Hs) ≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)

Since 0 < α, then p(x) = 1
xα

is decreasing, and
b+1∫
a

p(t) dt ≤
∑b

x=a p(x) ≤
b∫

a−1

p(t) dt.

Hence,

κα(Hs)/(2B) ≥ (s+ 1)

n/2∫
0

1

(n/2 + t)α
dt− (s− 1)

n/2∫
0

1

tα
dt+O(1/nα)

=
1

1− α
[(s+ 1)((n)1−α − (n/2)1−α)− (s− 1)(n/2)1−α] +O(1/nα)

=
n1−α

1− α
[(s+ 1)(1− (1/2)1−α)− (s− 1)(1/2)1−α] +O(1/nα)
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Hence, κα(Hs) ≥ 0 if 0 ≤ (s + 1)(1 − (1/2)1−α) − (s − 1)(1/2)1−α. In other words,
κα(Hs) ≥ 0 if 2α ≤ s+1

s
, that is, if 0 < α ≤ log2(1 + 1

s
), which is the case since

α = log2(1 + 1
s
).

density of guards on a plane 
representation of the 150*150  torus

Figure 3.7: Experimental results, s = 2 and d = 1. (Left) Density of guards on a plane
representation of the 150× 150 torus in an optimal symmetrical Spy-positional configuration.
(Right) Minimum total amount of guards for symmetrical (red) and distance-invariant (blue)
Spy-Positional strategies.

3.7 Further Work

Many open questions remain such as the characterization of the guard number in other
graph classes, e.g., in planar graphs or proper interval graphs since the eternal domi-
nation game was solved for the latter. As the eternal domination game is studied in
strong grids in Chapter 4, it would be interesting to study the spy game in this class
of graphs as well. The exact complexity of the associated decision problem is also still
open.

Determining the exact value of gns,d(Gn×n) in any n × n grid Gn×n (or torus) is
a very interesting problem. A first step towards such a result would be to prove that
gns,d(Gn×n) = O(gns′,d′(Gn×n)) for any s, s′ ≥ 2 and d, d′ ≥ 0. To get more intuition on
optimal strategies for guards, we used Cplex to solve the LP described in Section 3.4
with additional constraints of symmetry. The left drawing in Fig. 3.7 represents the
density of guards in the torus of side 150 (where the central vertex is the position of
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the spy) for s = 2 and d = 1. It shows that optimal symmetric Spy-positional (SSP)
strategies may be much more intricate than the strategy ωα we studied. For instance,
it is not monotone when the distance to the spy’s position increases. On the right, we
plotted the number of guards used by optimal SSP (in red) which is much less than
n2−log2(3/2) for n ≤ 250 (it is difficult to extrapolate further intuition from such small
values of n)†. Even the optimal distance-invariant strategies (i.e., the density of guards
is only a function of the distance to the spy’s position) computed using the LP (plotted
in blue) use much less guards than n2−log2(3/2) (we did not plot the function n2−log2(3/2)

for more readability, indeed, 502−log2(3/2) > 500 and 2502−log2(3/2) > 6600).
In trees, it would be interesting to design a combinatorial algorithm (i.e., not relying

on the solution of a Linear Program) that computes optimal strategies for controlling
a spy with speed s at distance d.

More importantly, using the fractional framework to obtain new results in two-player
combinatorial games in graphs seems promising.

†Solving the LP for n ≥ 150 takes more than one hour on a basic laptop.
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Chapter 4

Eternal Domination

4.1 Introduction

In this chapter, the all-guards move model of the eternal domination game is considered.
Recall that this is a 2-player game on graphs introduced in [70] and defined as follows.
Initially, k guards are placed on some vertices of a graph G = (V,E). Turn-by-turn,
an attacker first chooses a vertex v ∈ V to attack. Then, if no guard is occupying v or
a vertex adjacent to v, then the attacker wins. Otherwise, every guard may move to
a neighbour of its position and at least one guard must move to v if it is not already
occupied, and the next turn starts. If the attacker never wins whatever be its sequence
of attacks, then the guards win. So, clearly, there is no point in the attacker attacking
an occupied vertex. The aim in eternal domination is to minimize the number of guards
that must be used in order to win. Hence, let γ∞all(G) be the minimum integer k such
that there exists a strategy allowing k guards to win, regardless of what the attacker
does [70].

Variants of the eternal domination game also differ in the fact that one or more
guards may simultaneously occupy the same vertex. In the case of the all-guards move
model of the eternal domination game, there are some graphs where this constraint
increases the number of guards [89]. Let γ∗∞all (G) be the minimum number of guards to
win in G, moving several guards per turn, and in such a way that a vertex cannot be
occupied by several guards.

Deciding whether γ∞all(G) ≤ k is NP-hard when G and k are part of the input and
this holds for split graphs [21]. Particular graph classes have been studied such as paths
and cycles [70], trees [87], and proper interval graphs [33]. In particular, the class of
grids and graph products has been widely studied [22, 48, 57, 72, 89, 92, 117]. The
best known upper bound for γ∞all(Pn�Pm) was determined recently in [92], where it was
shown that γ∞all(Pn�Pm) = γ(Pn�Pm) + O(n + m). The study of this game in grids
is the motivation for our work on this game in strong grids and “grid-like” graphs.
Specifically, this chapter focuses on results published in the paper [c-9], which is joint
work with N. Nisse and S. Pérennes.

In this chapter, we focus on the class of strong grids SG (Pn � Pm) and provide an
almost tight asymptotical value for γ∞all(SG). Our result also holds for γ∗∞all (SG). Our

69



main result is a new technique to prove upper bounds that we believe can be generalized
to many other “grid-like” graphs.

4.1.1 Our Results

The main result of this chapter is that, for all n,m ∈ N∗ such that m ≥ n,⌊n
3

⌋ ⌊m
3

⌋
+ Ω(n+m) = γ∞all(Pn � Pm) =

⌈n
3

⌉ ⌈m
3

⌉
+O(m

√
n).

We prove that this result also holds in the case when at most one guard may occupy
each vertex (see Section 4.5).

Note that, in toroidal strong grids Cn � Cm, the problem becomes trivial and
γ∞all(Cn � Cm) = dn

3
edm

3
e for any n and m. However, in strong grids, border-effects

make the problem much harder. The upper bound is proven by defining a set of spe-
cific configurations that each dominate the grid and are “invariant” to the movements
required by the defined strategy to defend against attacks. That is, the attacks are
separated into three types of attacks: horizontal, vertical, and diagonal, and the strat-
egy defined gives the movement of the guards based on the type of attack. It is shown
that in each of the three cases of attacks, the guards are able to move from their cur-
rent configuration to another configuration in the set of configurations (so, it does not
matter which configuration was the initial one and which new configuration the guards
reach after their moves) and hence, the guards can defend against an infinite sequence
of attacks.

The lower bound is proven by showing that, in any winning configuration in eternal
domination, there are some vertices that are dominated by more than one guard, and/or
some guards dominate at most 6 vertices. By double counting, this leads to the necessity
of having Ω(n + m) extra guards compared to the classical domination (when n ≡
0 (mod 3) and m ≡ 0 (mod 3)).

4.2 Preliminaries

Let n,m ∈ N∗ be such that m ≥ n and let the n×m strong grid, denoted by SGn×m,
be the strong product Pn � Pm of an n-node path with an m-node path. Precisely,
SGn×m is the graph with the set of vertices {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and two
vertices (i1, j1) and (i2, j2) are adjacent if and only if max{|i2− i1|, |j2− j1|} = 1. That
is, the vertices are identified by their Cartesian coordinates, i.e., the vertex (i, j) is the
vertex in row i and column j. The vertex (1, 1) is in the bottom-left corner and the
vertex (n,m) is in the top-right corner.

Definition 4.2.1. The set of border vertices of SGn×m is the set

B =
⋃

1≤i≤n,1≤j≤m

{(1, j), (n, j), (i, 1), (i,m)} of vertices of degree ≤ 5.

The set of pre-border vertices of SGn×m is the set PB = N(B).
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Equivalently, PB is the set of border vertices of the strong grid induced by
V (SGn×m) \B.

We consider the all-guards move model of the eternal domination game. Each turn,
each vertex of a graph G = (V,E) may be occupied by one or more guards. Let k ∈ N∗
be the total number of guards. The positions of the guards are formally defined by
a multi-set C of vertices, called a configuration, where the number of occurrences of
a vertex v ∈ C corresponds to the number of guards at v ∈ V and k = |C|. Each
turn, given a current configuration C = {vi | 1 ≤ i ≤ k} of k guards, Player 1, the
attacker, attacks a vertex v ∈ V . Then, Player 2 (the defender) may move each of its
guards to a neighbour of their current position, thereby, achieving a new configuration
C ′ = {wi | 1 ≤ i ≤ k} such that wi ∈ N [vi] for every 1 ≤ i ≤ k (we then say that C ′ is
compatible with C, which is clearly a symmetric relation). If v /∈ C ′, then the attacker
wins, otherwise, the game goes on with a next turn (given the new configuration C ′).

A strategy for k guards is defined by an initial configuration of size k and by a
function that, for every current configuration C and every attacked vertex v ∈ V ,
specifies a new configuration C ′ compatible with C. A strategy S for the guards is
winning if, for every sequence of attacked vertices, the attacker never wins when the
defender plays according to S.

Our main contribution is a winning strategy for γ(SGn×m) + o(γ(SGn×m)) guards
in SGn×m, where γ(SGn×m) = dn

3
edm

3
e is the domination number of SGn×m. The next

lemma is key for this winning strategy.
In our strategy, it will often be useful to move a guard from a node u ∈ PB of the

pre-border to another node v ∈ PB such that u and v are not necessarily adjacent. For
this purpose, the idea is to place a sufficient number of guards on the vertices of the
border such that a “flow” of the guards on the border vertices will simulate the move
of the guard from u to v in one turn.

Precisely, given a configuration C and u, v ∈ V (SGn×m) with u ∈ C, a guard is said
to jump from u to v if the configuration (C \ {u}) ∪ {v} is compatible with C, i.e.,
the guards, in one turn, can move to achieve the same configuration as C except that
there is one guard less on u and one guard more on v. More generally, given U ⊂ C
and W ⊂ V (SGn×m), a set of guards is said to jump from U to W if the configuration
(C \ U) ∪W is compatible with the configuration C.

Lemma 4.2.2. Let α, β ∈ N∗ such that β ≤ α. Let U,W ⊆ PB be two subsets of
pre-border vertices such that |U | = |W | = β. In any configuration C such that U ⊆ C
and C contains at least α occurrences of each vertex in B (i.e., each border vertex is
occupied by at least α guards), then β guards may “jump” from U to W in one turn.
Moreover, only guards in U ∪B move.

Proof. The proof is by induction on β. The inductive hypothesis is that if each vertex
in B contains α guards, then β ≤ α guards may “jump” from U to W in one turn such
that at most β guards move off of each vertex w ∈ B in this turn. For the base case,
let us assume that U = {u} and W = {w}. Let us show how 1 guard can “jump” from
u to w in one turn. If u = w, the result trivially holds, so let u 6= w. Let u′ ∈ B
(resp., w′) be a neighbour of u (of w) that shares one coordinate with u (with w). Let
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Q = (u′ = v0, v1, . . . , v` = w′) be a path from u′ to w′ induced by the border vertices.
In one turn, a guard at u moves to u′, for every 0 ≤ i < `, a guard at vi moves to vi+1,
and a guard at v` moves to w.

Now, assume the inductive hypothesis holds for β ≥ 1. If β = α, we are done, so
assume β < α. Let |U | = |W | = β+ 1 ≤ α and let u ∈ U and w ∈ W . By the inductive
hypothesis, β guards may jump from U \ {u} to W \ {w} in one turn in such a way
that, for every vertex b ∈ B, at most β guards move off of b during this turn. Since
every vertex of B is occupied by α > β guards, at least one guard is unused on every
vertex of B. Thus, it possible to use the same strategy as in the base case to make one
guard jump from u to w on this same turn.

4.3 Upper Bound Strategy

This section is devoted to proving that for all n,m ∈ N∗ such thatm ≥ n, γ∞all(SGn×m) =
dn

3
edm

3
e+O(m

√
n).

Before considering the general case, let us first assume that n− 2 ≡ 0 (mod 3) and
that there exists k ∈ N∗ such that k − 2 ≡ 0 (mod 3), and m ≡ 0 (mod k). The
n×m strong grid will be partitioned into blocks which are subgrids of size n× k. More
precisely, for all 1 ≤ q ≤ m

k
, the qth block contains columns (q − 1)k + 1 through qk of

SGn×m.

4.3.1 Horizontal Attacks

In this section, we only consider one block of SGn×m. W.l.o.g., let us consider the
block SGn×k induced by {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Let us first define a family of
parameterized configurations for this block.

Let X = {(b, a1, . . . , an−2
3

) | b ∈ {1, 2, 3}, ai ∈ {1, 2, 3} for i = 1, . . . , n−2
3
}.

Given X = (b, a1, . . . , an−2
3

) ∈ X , let xi(X) = 3(i− 1) + b + 1, and yj,i(X) = 3(j −
1) +ai + 1 for every 1 ≤ i ≤ n−2

3
and 1 ≤ j ≤ k−2

3
. We set xi = xi(X) and yj,i = yj,i(X)

when there is no ambiguity. Intuitively, b will represent the vertical shift of the positions
of the guards in configuration X. Similarly, for every 1 ≤ i ≤ n−2

3
, ai represents the

horizontal shift of the positions of the guards in row xi(X) in configuration X (see
Figure 4.1).

Horizontal Configurations. Let us define the set CH of configurations as follows.
For every X ∈ X , let CH(X) = B ∪ {(xi(X), yj,i(X)) | 1 ≤ i ≤ n−2

3
, 1 ≤ j ≤ k−2

3
} be

the configuration where there is one guard at every vertex of B and one guard at each
vertex (xi(X), yj,i(X)) = (3(i− 1) + b+ 1, 3(j − 1) + ai + 1) for every 1 ≤ i ≤ n−2

3
and

1 ≤ j ≤ k−2
3

. See an example in Figure 4.1. Then,

CH = {CH(X) | X ∈ X}.

Note that |CH(X)| = (n−2)(k−2)
9

+ 2(n+ k)− 4 = κH for every X ∈ X . That is, any
horizontal configuration uses κH guards.
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x1 = 3(1− 1) + 2 + 1 = 3

x2 = 3(2− 1) + 2 + 1 = 6

xi = 3(i− 1) + b+ 1

b

a1

a2

a3

y2,3 = 3(2− 1) + 3 + 1 = 7

yj,i = 3(j − 1) + ai + 1

Figure 4.1: P11 � P11 where the squares are vertices and two squares sharing a side and/or
a corner are adjacent. Example of a configuration CH(X) where X = (b = 2, a1 = 2, a2 =
1, a3 = an−2

3
= 3), there is one guard at each square in gray, and the white squares contain

no guards.

Lemma 4.3.1. Every configuration CH(X) ∈ CH is a dominating set of the block
SGn×k.

Proof. The pre-border and border vertices are dominated by the guards on the border
vertices. For all i, j ∈ N∗ such that 1 ≤ i ≤ n−2

3
and 1 ≤ j ≤ k−2

3
, the guards on the

vertices (xi, yj,i) dominate the vertices {(xi + 1, yj,i), (xi− 1, yj,i), (xi, yj,i− 1), (xi, yj,i +
1), (xi + 1, yj,i + 1), (xi + 1, yj,i − 1), (xi − 1, yj,i − 1), (xi − 1, yj,i + 1)}.

In this subsection, we limit the power of the attacker by allowing it to attack only
some predefined vertices (this kind of attack will be referred to as a horizontal attack).
For every configuration CH(X) ∈ CH and for any such attack, we show that the guards
may be moved (in one turn) in such a way to defend the attacked vertex and reach a
new configuration in CH .

Horizontal Attacks. Let X = (b, a1, . . . , an−2
3

) ∈ X and CH(X) ∈ CH . Let

AH(X) = {(xi, y) | 1 ≤ i ≤ n− 2

3
, 1 ≤ y ≤ k}.

A horizontal attack with respect to X is an attack at any vertex in AH(X), i.e., an
attack at any vertex of a row where some non-border vertex is occupied by a guard.
Note that, for every vertex v ∈ AH(X), either v is occupied by a guard or there is a
guard on the vertex to the left or to the right of v. In Figure 4.2, red squares represent
the vertices of AH(X) \ CH(X).

The next lemma proves that, from any horizontal configuration and against any
horizontal attack (with respect to this current configuration), there is a possible strat-
egy for the guards that defends against this attack and leads to a (new) horizontal
configuration. Therefore, starting from any horizontal configuration, there is a strategy
of the guards that wins against any sequence of horizontal attacks.
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Figure 4.2: P11 �P11 where the squares are vertices. Example of the non-occupied attackable
vertices in red when only horizontal attacks are considered. The guards occupy a configuration
CH(X) where X = (b = 2, a1 = 2, a2 = 1, a3 = an−2

3
= 3), there is one guard at each square

in gray, and the white squares contain no guards.

Lemma 4.3.2. For any X ∈ X and any v ∈ AH(X), there exists X ′ ∈ X such that
v ∈ CH(X ′) and configurations CH(X) and CH(X ′) are compatible. That is, in one
turn, the guards may move from CH(X) to CH(X ′) and defend against an attack at v.

Proof. Initially, κH guards are in a configuration CH(X) (see Figure 4.1). Consider an
attack at some vertex v ∈ AH(X). If v ∈ CH(X), all guards may remain idle. Hence,
let us assume that v ∈ AH(X) \ CH(X).

Let us assume that v = (x`(X), yw,`(X) − 1) = (x`, yw,` − 1) for some integers
1 ≤ ` ≤ n−2

3
and 1 ≤ w ≤ k−2

3
(note that if a` = 1 then w > 1 since v is not a border

vertex), that is v is to the left of the vertex (x`, yw,`) that is occupied by a guard. The
cases of attacks at (x`(X), yw,`(X) + 1) (v is to the right of an occupied vertex) or
(x`(X), 2), or (x`(X), k − 1) (the attacked vertex v is adjacent to a border vertex), are
similar, by symmetry, to at least one of the two cases below.

The guards will move from the configuration CH(X) to a configuration CH(X ′) that
defends against the attack at v, i.e., v ∈ CH(X ′), where X ′ = {b′, a′1, . . . , a′n−2

3

} as

defined below.
Intuitively, for the guards to move from the configuration CH(X) to a configuration

CH(X ′) that defends against this attack at v, all the guards in row x` will shift left
except for perhaps the guards on the border vertices (it depends on the value of a`).
Hence, the only difference between X and X ′ will be the value of the horizontal shift
related to row x`.

Precisely, by the definition of CH(X), there is a guard at (x`, yw,`). There are two
cases of how the guards will move in response to the attack, depending on the three
possible values of a` ∈ {1, 2, 3}.

Case i) a` ∈ {2, 3}. To defend against the attack, all the guards in row x` except those
that occupy border vertices, shift one vertex to the left. That is, the guard at
(x`, yj,`) moves to (x`, yj,` − 1) for all j ∈ N∗ such that 1 ≤ j ≤ k−2

3
. Since the

74



positions of the other guards did not change, the guards occupy a configuration
CH(X ′) where b′ = b, a′i = ai for all 1 ≤ i ≤ n−2

3
such that i 6= `, but a′` = a` − 1.

Case ii) a` = 1. To defend against the attack, all the guards in row x` except the one
at (x`, 1), shift one vertex to the left. That is, the guard at (x`, yj,`) moves to
(x`, yj,`− 1) for all j ∈ N∗ such that 1 < j ≤ k−2

3
. Also, the guard at (x`, 2) jumps

to (x`, k−1) which is possible by Lemma 4.2.2 and since none of the border guards
have to move for any other purpose. Since the positions of the other guards did
not change, the guards occupy a configuration CH(X ′) where b′ = b, a′i = ai for
all 1 ≤ i ≤ n−2

3
such that i 6= `, but a′` = 3. See Figure 4.3.

Figure 4.3: P11 � P11 where the squares are vertices. Example of an attack in Case ii) at
the red square. The guards occupy a configuration CH(X) where X = (b = 2, a1 = 2, a2 =
1, a3 = an−2

3
= 3), there is one guard at each square in gray, and the white squares contain

no guards. The arrows (in blue) show the movements of the guards in response to the attack.

4.3.2 Vertical Attacks

In this section, we consider the entire strong grid SGn×m partitioned into m
k

blocks
SGn×k with block q, for 1 ≤ q ≤ m

k
, being induced by {(i, j + (q− 1)k) | 1 ≤ i ≤ n, 1 ≤

j ≤ k}. Let us first define a family of parameterized configurations for this graph.
A configuration for the whole grid will be defined as the union of some configurations

for each of the q blocks. Formally, for every 1 ≤ q ≤ m
k

, let us first define:

X q = {(bq, aq1, . . . , a
q
n−2

3

) | bq, aqi ∈ {1, 2, 3} for i = 1, . . . ,
n− 2

3
and q = 1, . . . ,

m

k
}.

Given Xq = (bq, aq1, . . . , a
q
n−2

3

) ∈ X q, let xqi (X
q) = 3(i − 1) + bq + 1, and yqj,i(X

q) =

(q − 1)k + 3(j − 1) + aqi + 1 for every 1 ≤ i ≤ n−2
3

, 1 ≤ j ≤ k−2
3

, and 1 ≤ q ≤ m
k

. We
set xqi = xqi (X

q) and yqj,i = yqj,i(X
q) when there is no ambiguity.

That is, intuitively, bq will represent the vertical shift of the positions of the guards
in configuration Xq in the qth block. Similarly, for every 1 ≤ i ≤ n−2

3
, aqi represents the

horizontal shift of the positions of the guards in row xi(X) in configuration Xq in the
qth block.
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Finally, let Y = {(X1, . . . , X
m
k ) | Xq ∈ X q for q = 1, . . . , m

k
}.

Vertical Configurations. In order to properly define the following set of configura-
tions, we require the following notation. For a set S of vertices in a configuration C
and an integer x > 0, let S[x] be the multi-set of vertices that consists of x copies of
each vertex in S. Intuitively, S[x] will be used to define a configuration where x guards
occupy each vertex of S. Let us now define the set CV of configurations as follows.

For every Y = (X1, . . . , X
m
k ) ∈ Y , let CV (Y ) = B[ k−2

3
] ∪

m
k⋃
q=1

CH(Xq) be the configu-

ration obtained as follows. First, for any 1 ≤ q ≤ m
k

, guards are placed in configuration

CH(Xq) in the qth block. Then, k−2
3

guards are added to every border vertex. Note

that overall, there are k−2
3

+1 guards at each vertex of B. See an example in Figure 4.4.
Then,

CV = {CV (Y ) | Y ∈ Y}.
Note that |CV (Y )| = m

k
κH + 2(k−2

3
)(n+m− 2) = κV for every Y ∈ Y . That is, any

vertical configuration uses κV guards.

Lemma 4.3.3. Every configuration CV (Y ) ∈ CV is a dominating set of SGn×m.

Proof. Since CV (Y ) ∈ CV , by definition, for all 1 ≤ q ≤ m
k

, there exists Xq ∈ X q such
that the vertices of CH(Xq) are occupied by guards. Therefore, each of the m

k
blocks

SGn×k is dominated by the guards within it by Lemma 4.3.1.

In this subsection, we limit the power of the attacker by allowing it to attack only
some predefined vertices (this kind of attack will be referred to as a vertical attack).
For every configuration CV (X) ∈ CV and for any such attack, we show that the guards
may be moved (in one turn) in such a way to defend the attacked vertex and reach a
new configuration in CV .

Vertical Attacks. Let Y = (X1, . . . , X
m
k ) ∈ Y and CV (Y ) ∈ CV . Let

AV (Y ) ={(xqi − 1, yqj,i), (x
q
i + 1, yqj,i) | 1 ≤ i ≤ n− 2

3
, 1 ≤ j ≤ k − 2

3
, 1 ≤ q ≤ m

k
}

∪ {(2, yqj,n−1) | 1 ≤ j ≤ k − 2

3
, 1 ≤ q ≤ m

k
and bq = 3}

∪ {(n− 1, yqj,2) | 1 ≤ j ≤ k − 2

3
, 1 ≤ q ≤ m

k
and bq = 1}

A vertical attack with respect to Y is an attack at any vertex in AV (Y ), i.e., an attack
at any non-border vertex above or below a guard not on a border vertex. Moreover, if
the vertical shift bq of the qth block equals 3, then some vertices of the second row of
the qth block may also be attacked (depending on the horizontal shift aqn−1). Finally, if
the vertical shift bq of the qth block equals 1, then some vertices of the (n− 1)th row of
the qth block may also be attacked (depending on the horizontal shift aq2).

Note that AV (Y )∩CV (Y ) = ∅, and AV (Y )∩AH(Xq) = ∅ for any Xq ∈ Y , i.e., any
vertical attack with respect to Y is not a horizontal attack with respect to Xq ∈ Y and
vice versa. In Figure 4.5, red squares represent the vertices of AV (Y ).
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The next lemma proves that, from any vertical configuration and against any vertical
attack (with respect to this current configuration), there is a possible strategy for the
guards that defends against this attack and leads to a (new) vertical configuration.
Therefore, starting from any vertical configuration, there is a strategy of the guards
that wins against any sequence of vertical attacks.

b1
b2 b3

a1
1

a2
3 a3

2

q = 1 q = 2 q = 3

Figure 4.4: P11 � P33 where the squares are vertices. Example of a configuration CV (Y )
where k = 11, Y = (X1, X2, X3), X1 = (2, 2, 1, 3), X2 = (1, 1, 1, 2), X3 = (3, 3, 3, 1), there
are k−2

3 + 1 = 4 guards at each square in dark gray, 1 guard at each square in light gray, and
the white squares contain no guards.

Figure 4.5: P11 �P33 where the squares are vertices. Example of the non-occupied attackable
vertices in red when only vertical attacks are considered. The guards occupy a configuration
CV (Y ) where k = 11, Y = (X1, X2, X3), X1 = (2, 2, 1, 3), X2 = (1, 1, 1, 2), X3 = (3, 3, 3, 1),
there are k−2

3 + 1 = 4 guards at each square in dark gray, 1 guard at each square in light gray,
and the white squares contain no guards.

Lemma 4.3.4. For any Y ∈ Y and any v ∈ AV (Y ), there exists Y ′ ∈ Y such that
v ∈ CV (Y ′) and configurations CV (Y ) and CV (Y ′) are compatible. That is, in one
turn, the guards may move from CV (Y ) to CV (Y ′) and defend against an attack at v.

Proof. Let Y = (X1, . . . , X
m
k ). Initially, κV guards are in a configuration CV (Y ) (see

Figure 4.4).
Consider an attack at some vertex v ∈ AV (Y ). Let us assume that v = (xz`(X

z) −
1, yzw,`(X

z)) for some 1 ≤ z ≤ m
k

, 1 ≤ ` ≤ n−2
3

, and 1 ≤ w ≤ k−2
3

(note that if bz = 1,
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then ` > 1 since v is not a border vertex). That is, v is a vertex of the zth block that
is below the vertex (xz`(X

z), yzw,`(X
z)) which is occupied by a guard.

The cases of attacks at (xz`(X
z) + 1, yzw,`(X

z)) (v is above an occupied vertex),
(2, yzw,n−1(Xz)) (v is above a border vertex), and (n− 1, yzw,2(Xz)) (v is below a border
vertex), are similar, by symmetry, to at least one of the two cases below.

The guards will move from the configuration CV (Y ) to a configuration CV (Y ′) that
defends against the attack at v, i.e., v ∈ CV (Y ′), where Y ′ = {X ′1, . . . , X ′mk } as defined
below.

Intuitively, for the guards to move from the configuration CV (Y ) to a configuration
CV (Y ′) that defends against this attack at v, all the guards in the block z will shift
down except for perhaps the guards on the border vertices (it depends on the value of
bz).

Precisely, by the definition of CV (Y ), there is a guard at (xz` , y
z
w,`). There are two

cases of how the guards will move in response to the attack, depending on the three
possible values of bz ∈ {1, 2, 3}.

Case i) bz ∈ {2, 3}. To defend against the attack, all the guards in the block z that
contains the attacked vertex except those that occupy border vertices of the block
z, shift one vertex downwards. That is, for all i, j ∈ N such that 1 ≤ i ≤ n−2

3
and

1 ≤ j ≤ k−2
3

, the guard at (xzi , y
z
j,i) moves to (xzi − 1, yzj,i).

Since the positions of the other guards did not change, the guards occupy a con-
figuration CV (Y ′) where Xp = X ′p for all 1 ≤ p ≤ m

k
such that p 6= z, and

X ′z = (b′z, a′z1 , . . . , a
′z
n−2

3

) with a′zi = azi for all 1 ≤ i ≤ n−2
3

, but b′z = bz − 1.

Case ii) bz = 1. To defend against the attack, all the guards in the block z shift one
vertex downwards, except those that occupy the vertices of the border of the block
z and the guards just above the bottom border of the block. Using the guards on
the border of the (whole) grid, the guards just above the bottom border of the
block jump to the row just below the top border of the block z.

That is, for all i, j ∈ N such that 1 < i ≤ n−2
3

and 1 ≤ j ≤ k−2
3

, the guard at
(xzi , y

z
j,i) moves to (xzi − 1, yzj,i). Also, the guard at (2, yzj,i) jumps to (n − 1, yzj,i)

which is possible by Lemma 4.2.2 since a total of k−2
3

guards jump, k−2
3

+1 guards
occupy each vertex of the border of the grid, and since none of the border guards
have to move for any other purpose. Since the positions of the other guards did
not change, the guards occupy a configuration CV (Y ′) where Xp = X ′p for all
1 ≤ p ≤ m

k
such that p 6= z, and X ′z = (b′z, a′z1 , . . . , a

′z
n−2

3

) with a′zi = azi for all

1 ≤ i ≤ n−2
3

, but b′z = 3. See Figure 4.6.

4.3.3 Diagonal Attacks

The same n×m strong grid SGn×m, notations, and configurations for the guards used
in subsection 4.3.2 will be used here.
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Figure 4.6: P11 � P33 where the squares are vertices. Example of an attack in Case iii) at
the red square. The guards occupy a configuration CV (Y ) where k = 11, Y = (X1, X2, X3),
X1 = (2, 2, 1, 3), X2 = (1, 1, 1, 2), X3 = (3, 3, 3, 1), there are k−2

3 + 1 = 4 guards at each
square in dark gray, 1 guard at each square in light gray, and the white squares contain no
guards. The arrows (in blue) show the movements of the guards in response to the attack.

In this subsection, we limit the power of the attacker by allowing it to attack only
some diagonal vertices. For every configuration CV (X) ∈ CV and for any such attack,
we show that the guards may be moved (in one turn) in such a way to defend the
attacked vertex and reach a new configuration in CV .

Diagonal Attacks. Let Y = (X1, . . . , X
m
k ) ∈ Y and CV (Y ) ∈ CV . Let AD(Y ) =

V (SGn×m) \ (B ∪AH(Y )∪AV (Y )). That is, AD(Y ) covers all possible attacks that are
neither horizontal nor vertical.

A diagonal attack with respect to Y is an attack at any vertex in AD(Y ). Note that,
for every vertex v ∈ AD(Y ), there is a guard on a vertex adjacent to v and neither in
the same column nor in the same row as v. In Figure 4.7, red squares represent the
vertices of AD(Y ).

Figure 4.7: P11 �P33 where the squares are vertices. Example of the non-occupied attackable
vertices in red when only diagonal attacks are considered. The guards occupy a configuration
CV (Y ) where k = 11, Y = (X1, X2, X3), X1 = (2, 2, 1, 3), X2 = (1, 1, 1, 2), X3 = (3, 3, 3, 1),
there are k−2

3 + 1 = 4 guards at each square in dark gray, 1 guard at each square in light gray,
and the white squares contain no guards.

The next lemma proves that, from any vertical configuration and against any diag-
onal attack (with respect to this current configuration), there is a possible strategy for
the guards that defends against this attack and leads to a (new) vertical configuration.
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Therefore, starting from any vertical configuration, there is a strategy of the guards
that wins against any sequence of diagonal attacks.

Lemma 4.3.5. For any Y ∈ Y and any v ∈ AD(Y ), there exists Y ′ ∈ Y such that
v ∈ CV (Y ′) and configurations CV (Y ) and CV (Y ′) are compatible. That is, in one turn,
the guards may move from CV (Y ) to CV (Y ′) and defend against an attack at v.

Proof. Let Y = (X1, . . . , X
m
k ). Initially, κV guards are in a configuration CV (Y ) (see

Figure 4.4).
Consider an attack at some vertex v ∈ AD(Y ). Let us assume that v = (xz`(X

z) −
1, yzw,`(X

z) + 1) for some 1 ≤ ` ≤ n−2
3

, 1 ≤ w ≤ k−2
3

, and 1 ≤ z ≤ m
k

(Note that, if

bz = 1, then ` > 1 and if az` = 3, then w < k−2
3

since v is not a border vertex). All
other cases are similar by symmetry (see Figures 4.9 and 4.10).

The guards will move from a configuration CV (Y ) to a configuration CV (Y ′) that
defends against the attack at v, i.e., v ∈ CV (Y ′), where Y ′ = {X ′1, . . . , X ′mk } as defined
below.

Intuitively, for the guards to move from a configuration CV (Y ) to a configuration
CV (Y ′) that defends against this attack at v, in the block z that contains the attacked
vertex, the guards in row xz` will move as they would in response to a horizontal attack
and a vertical attack but simultaneously, so moving diagonally down and to the right,
and the remainder of the guards in the block z will move as they would in response to
a vertical attack, so moving down.

In particular, if bz = 1 (there are guards in the row above the bottom border of the
block q), the guards in row 2 in the block z will jump to the row below the top border
of the block z using the border of the grid (as specified in Lemma 4.3.4). Moreover, if
az` = 3, the guard on vertex (xz` , zq− 1) jumps to vertex (xz` − 1, z(q− 1) + 2) using the
border of the block z. So, a total of at most k−2

3
+ 1 guards jump which is possible (by

Lemma 4.2.2) since enough guards are present on each vertex of the border of the grid.
Precisely, after their moves, the guards occupy a configuration CV (Y ′) where Xp =

X ′p for all 1 ≤ p ≤ m
k

such that p 6= z, and X ′z = (b′z, a′z1 , . . . , a
′z
n−2

3

) with a′zi = azi for

all 1 ≤ i ≤ n−2
3

such that i 6= `, but

Case bz ∈ {2, 3} and az` ∈ {1, 2}. a′z` = az` + 1 and b′z = bz − 1.

Case bz ∈ {2, 3} and az` = 3. a′z` = 1 and b′z = bz − 1.

Case bz = 1 and az` ∈ {1, 2}. a′z` = az` + 1 and b′z = 3. See Figure 4.8.

Case bz = 1 and az` = 3. a′z` = 1 and b′z = 3.

4.3.4 Upper Bound in Strong Grids

Note that, for any Y = (X1, . . . , X
m
k ) ∈ Y , AD(Y ) ∪ AV (Y ) ∪

m
k⋃
q=1

AH(Xq) ∪ B =

V (SGn×m). That is, any attack by the attacker in SGn×m is either an attack at an
occupied vertex or a horizontal, vertical or diagonal attack.
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Figure 4.8: P11 � P33 where the squares are vertices. Example of a diagonal attack at the
red square. The guards occupy a configuration CV (Y ) where k = 11, Y = (X1, X2, X3),
X1 = (2, 2, 1, 3), X2 = (1, 1, 3, 2), X3 = (3, 3, 3, 1), there are k−2

3 + 1 = 4 guards at each
square in dark gray, 1 guard at each square in light gray, and the white squares contain no
guards. The arrows (in blue) show the movements of the guards in response to the attack.

Figure 4.9: P11 � P33 where the squares are vertices. Example of a diagonal attack at the
red square. The guards occupy a configuration CV (Y ) where k = 11, Y = (X1, X2, X3),
X1 = (2, 2, 1, 3), X2 = (1, 1, 3, 2), X3 = (3, 3, 3, 1), there are k−2

3 + 1 = 4 guards at each
square in dark gray, 1 guard at each square in light gray, and the white squares contain no
guards. The arrows (in blue) show the movements of the guards in response to the attack. To
be consistent with the strategy described, the guards in the second row of the middle block
move diagonally down and to the left when entering and leaving the border but they may
clearly just move vertically down in both instances if they move far enough along the border.

Hence, lemmas 4.3.2, 4.3.4, and 4.3.5 hold for any possible attack, which leads to
our main theorem.

Theorem 4.3.6. For all n,m ∈ N∗ such that m ≥ n,

γ∞all(SGn×m) =
⌈n

3

⌉ ⌈m
3

⌉
+O(m

√
n) = (1 + o(1))γ(SGn×m).

Proof. Let k be the integer closest to
√
n such that k − 2 ≡ 0 (mod 3).

First, we prove that we can restrict our study to the case when n,m, and k satisfy
the hypothesis of the previous lemmas, i.e., n − 2 ≡ 0 (mod 3) and m ≡ 0 (mod k).
For this purpose, some guards are placed at each of the vertices of a few columns and
rows (and these guards will never move) such that what remains to be protected is an
a× b subgrid H such that a− 2 ≡ 0 (mod 3) and b ≡ 0 (mod k).
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Figure 4.10: P11 � P33 where the squares are vertices. Example of a diagonal attack at the
red square. The guards occupy a configuration CV (Y ) where k = 11, Y = (X1, X2, X3),
X1 = (2, 2, 1, 3), X2 = (1, 1, 3, 2), X3 = (3, 3, 3, 1), there are k−2

3 + 1 = 4 guards at each
square in dark gray, 1 guard at each square in light gray, and the white squares contain no
guards. The arrows (in blue) show the movements of the guards in response to the attack.
The arrow in black is to differentiate between the different guards jumping.

If n−2 ≡ 0 (mod 3), then a = n. Otherwise, if n−2 ≡ 1 (mod 3) (resp., 2) then, place
one guard at every vertex of the first (resp., the first two) row(s) of SGn×m and a = n−1
(resp., a = n− 2). Then, place one guard at every vertex of the x < k first columns of
SGn×m, such that b = m− x and b ≡ 0 (mod k). Overall, O(m + kn) = O(m + n

√
n)

guards have been placed, so proving that γ∞all(H) = da
3
ed b

3
e+O(b

√
a) will be sufficient

to prove the theorem.

Hence, from now on, let us assume that n and m satisfy n − 2 ≡ 0 (mod 3) and
m ≡ 0 (mod k).

Let Y ∈ Y be any configuration. The guards initially occupy the configuration
CV (Y ). By Lemma 4.3.3, the guards occupy a dominating set. We show that, for an
attack at any vertex v, there is Y ′ ∈ Y such that v ∈ CV (Y ′) and CV (Y ′) is compatible
with CV (Y ).

Let the attacker attack some unoccupied vertex v ∈ V (SGn×m). As mentioned in
subsection 4.3.3, the vertex v is in AH(Y ) or AV (Y ) or AD(Y ) (or already contains a
guard since every border vertex contains at least one guard). If v ∈ CV (Y ), all guards
remain idle. Hence, let us assume that v /∈ CV (Y ). If v ∈ AH(Xq) for some Xq ∈ Y ,
then the guards in the block q that contains v will respond as in Lemma 4.3.2 (only
the guards in the same block and in the same row as v will move, plus some guards
on the border of this block if some jump is needed). If v ∈ AV (Y ), then the guards in
the block q that contains v will respond as in Lemma 4.3.4. If v ∈ AD(Y ), then the
guards in the block q that contains v will respond as in Lemma 4.3.5. By Lemma 4.3.2,
Lemma 4.3.4, and Lemma 4.3.5, after the attack, the guards occupy a configuration
CV (Y ′) for some Y ′ ∈ Y and thus, can defend against an infinite sequence of attacks.

The above strategy uses κV = m
k

(κH) + 2(k−2
3

)(m + n − 2) guards (see Subsec-

tion 4.3.2). Since κH = (n−2)(k−2)
9

+ 2(n+ k)− 4 (see Subsection 4.3.1) and k = Θ(
√
n),

the strategy uses κV = dn
3
edm

3
e + O(m

√
n) guards, which concludes the proof of the

theorem.
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4.4 Lower Bound in Strong Grids

So far, the best lower bound for γ∞all(SGn×m) was the trivial lower bound γ(SGn×m).
In this section, we slightly increase this lower bound, reducing the gap with the new
upper bound of the previous section.

Theorem 4.4.1. For all n,m ∈ N∗, γ∞all(SGn×m) = bn
3
cbm

3
c+ Ω(n+m).

Proof. γ∞all(SGn×m) is clearly increasing with n and m, thus, it is sufficient to prove the
theorem for n ≡ 0 (mod 3) and m ≡ 0 (mod 3). Hence, let us assume that n ≡ 0 (mod 3)
and m ≡ 0 (mod 3).

Note that, if n and m are divisible by 3, there is a unique minimum dominating set
of SGn×m and, in this dominating set, each vertex is dominated by exactly one guard.
The idea of the proof is that, in any winning configuration in eternal domination, there
are some vertices that are dominated by more than one guard, and/or some guards
dominate at most 6 vertices. By double counting, this leads to the necessity of having
Ω(n+m) extra guards compared to the classical domination.

The following claim shows that, whatever be the guards’ strategy, at every step,
every 4× 5 subgrid that includes 5 border vertices must have at least two guards in it
or else the attacker wins.

Claim 4.4.2. Consider any configuration of the guards in SGn×m. If there is a 4 × 5
subgrid that includes 5 border vertices with only one guard in it, the attacker can win
in at most two turns.

Proof of the claim. W.l.o.g. let the 4× 5 subgrid include border vertices from the left
column of SGn×m. Also, for some integer 1 ≤ x ≤ n− 4, let {(x, 1), . . . , (x + 4, 1)} be
the 5 border vertices. If there is only one guard in this subgrid, then the guard must
be at (x+ 2, 2) in order to prevent the attacker from winning in one turn as otherwise,
it is not possible to dominate all the vertices of the subgrid. Then, the attacker attacks
(x + 2, 3) which forces the guard at (x + 2, 2) to move to (x + 2, 3) as he is the only
guard adjacent to that vertex since, initially, there was only one guard in the 4 × 5
subgrid. Now the attacker attacks (x + 2, 1) and wins since every guard is at distance
at least 2 from this vertex after the previous moves of the guards since, initially, there
was only one guard in the 4× 5 subgrid. �

In any configuration C, let x = x(C) be the number of 4× 5 subgrids with at least
one vertex dominated by two guards and y = y(C) be the number of 4 × 5 subgrids
where one guard dominates exactly 6 vertices.

Using the previous claim, it can be proved that:

Claim 4.4.3. There is δ > 0 such that, for any configuration C of the guards in SGn×m
in any winning strategy for the guards, x+ y = δ(n+m) where x = x(C) and y = y(C)
are defined as above.

Proof of the claim. Consider the subgraph induced by rows 1 through 4 and columns 6
through m− 5 of SGn×m.
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Considering columns 6 through 13, there must exist a 4× 5 subgrid that includes 5
border vertices and has a guard in its center column as otherwise, there are no guards
in the four center columns of the 8 considered (columns 9 through 12 in this case) which
means that SGn×m is not dominated and hence, this configuration is not part of any
winning strategy for the guards. Therefore, by considering the columns eight by eight
from the first to the last column in rows 1 through 4 of the subgraph described above,
there are at least bm−10

8
c 4×5 subgrids that fit the profile of the subgrid in Claim 4.4.2.

Hence, there are at least two guards in each of these subgrids as otherwise, the attacker
wins by Claim 4.4.2. Moreover, since there is a guard in the center column of each of
these subgrids, there is at least one vertex in each of these subgrids that is dominated
by two guards, unless there is a guard on the border in the center column and the
other guard(s) are in row 4. However, in the latter case, the guard on the border
in the center column only dominates 6 vertices. By symmetry, this is true for the
first and last 4 columns and the topmost 4 rows as well. Therefore, there are at least
2bm−10

8
c+ 2bn−10

8
c subgrids in SGn×m that fit the profile of the subgrid in Claim 4.4.2.

Then, 2bm−10
8
c+ 2bn−10

8
c ≤ x+ y. �

Let us consider any winning strategy using k guards. Let x and y be the same as
in Claim 4.4.3. At every step, these k guards dominate at most 9k − 3y vertices (with
multiplicity, i.e., a vertex is counted once for each guard that dominates it). By the
definition of x, at least nm+ x vertices (with multiplicity) must be dominated. Hence,
9k − 3y ≥ nm+ x. It follows that k ≥ nm

9
+ x

9
+ y

3
. By Claim 4.4.3, x

9
+ y

3
= δ′(n+m)

for some δ′ > 0 and so k = nm
9

+ Ω(n+m).

4.5 At Most One Guard at each Vertex

This section is devoted to proving that the two main results presented thus far are
also true for the variant of the eternal domination game where at most one guard may
occupy a vertex. The corresponding eternal domination number for this variant will be
denoted by γ∗∞all . This variant is also considered in, e.g., [33, 87, 92].

A generalization of Lemma 4.2.2 will be the key to generalizing Theorem 4.3.6 to
this variant of the game. The following definitions are required to properly state this
new lemma.

For t ∈ N∗, the set of vertices of the t-thick border of SGn×m is the set

TBt =
⋃

1≤i≤n,1≤j≤m,1≤`≤t

{(`, j), (n+ 1− `, j), (i, `), (i,m+ 1− `)}

and TB0 = ∅. In other words, TB1 = B(SGn×m) is the border of SGn×m, and TBt =
TBt−1 ∪ B(SGn×m \ TBt−1) for any t ≥ 1. Essentially, the t-thick border vertices are
the vertices of the t leftmost and rightmost columns and the t top and bottom rows of
SGn×m.

Recall that PB = TB2 \ TB1 is the set of pre-border vertices. Two vertex-disjoint
sets U,W ⊆ PB are said to be non-overlapping, if there is a path Q induced only by
vertices of PB such that U ⊆ V (Q) and V (Q) ∩W = ∅.

Let PBα = TBα+1 \ TBα be the pre-border vertices of SGn×m \ (TBα−1).
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Lemma 4.5.1. Let α, β ∈ N∗ such that β ≤ α. Let U,W ⊆ PBα be two non-overlapping
subsets of pre-border vertices of SGn×m \ (TBα−1) such that |U | = |W | = β. In any
configuration C such that U ⊆ C, if the α-thick border of SGn×m contains one guard
at each of its vertices, then β guards may “jump” from U to W in one turn.

Proof. Let U = {u1, . . . , uβ} and W = {w1, . . . , wβ} where the vertices of U and W
are ordered according to the order in which they appear when going clockwise along
the cycle induced by PBα. Because α ≥ β, and U and W are non-overlapping, there
exist vertex-disjoint paths P1, . . . , Pβ such that, for any 1 ≤ i ≤ β, Pi is a path from
ui to wβ−i+1 whose internal vertices are in TBα (see Figure 4.11 for an example with
α = β = 4). Since each vertex in TBα contains one guard, there is a guard at each
vertex of the paths P1, . . . , Pβ except for at the end vertices w1, . . . , wβ. For the guards
to jump from U to W , in one turn, for all 1 ≤ i ≤ β, each guard on each of the vertices
of the path Pi moves to its neighbour in the direction of wβ−i+1.

u4 u3 u2

u1

w1

w2 w3 w4

Figure 4.11: P17 � P17 where the squares are vertices. Example of how the guards jump
in Lemma 4.5.1. The vertices of U = {u1, u2, u3, u4} are in blue and the vertices of W =
{w1, w2, w3, w4} are in red. Note that when |U | = |W | = β = α. The arrows (in blue) show
the vertex-disjoint paths P1, . . . , Pβ that allow the guards to jump from U to W . There is
1 guard at each square in light gray and each vertex of U (in blue), and the white squares
contain no guards.

Theorem 4.5.2. For all n,m ∈ N∗ such that m ≥ n,

γ(SGn×m) + Ω(n+m) = γ∗∞all (SGn×m) = γ(SGn×m) +O(m
√
n).

Proof. The lower bound simply follows from Theorem 4.4.1 and the fact that γ∗∞all (G) ≥
γ∞all(G) for any graph G.
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Let us prove the upper bound. The strategy that we propose follows the same
principles as the one of Theorem 4.3.6 but the border vertices occupied by several
guards are replaced by several layers of vertices, each one occupied by a single guard.

Let k be the integer closest to
√
n such that k − 2 ≡ 0 (mod 3). Let SGn∗×m∗ be

the remaining subgrid that excludes the first and last (topmost and bottommost resp.)
k−2

3
columns (rows resp.). As in Theorem 4.3.6, we may assume that n = n∗ + 2(k−2

3
)

and m = m∗ + 2(k−2
3

) are such that n∗ − 2 ≡ 0 (mod 3) and m∗ ≡ 0 (mod k). Indeed,
otherwise, it is sufficient to “fill” (place one guard at every vertex) at most two rows and
at most k = O(

√
n) columns with one guard per vertex (see proof of Theorem 4.3.6).

Hence, from now on, let us assume that n and m satisfy n− 2(k−2
3

)− 2 ≡ 0 (mod 3)

and m− 2(k−2
3

) ≡ 0 (mod k).

Instead of there being k−2
3

+ 1 guards occupying each of the border vertices of the

grid like in Theorem 4.3.6, there is one guard at each vertex of the first k−2
3

+ 1 and

last k−2
3

+ 1 columns and rows.

The strategy for the guards remains the same as the strategy used in Theorem 4.3.6
except for in the case when a guard or guards have to jump from one vertex to another
in which case they move as in Lemma 4.5.1 with a small exception. The exception is
that one of the paths between a vertex being jumped from and a vertex being jumped
to in a block z, may consist of vertices in one of the columns that forms a border of
block z. Figure 4.12 shows an example of a response to a diagonal attack that forces
guards to jump and shows that this exception is trivial to deal with.

Figure 4.12: P17�P28 where the squares are vertices. Example of a diagonal attack at the red
square when at most one guard may occupy a vertex. There is 1 guard at each square in light
gray, and the white squares contain no guards. The arrows (in blue) show the movements of
the guards in response to the attack.
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4.6 Further Work

Our results in the strong grid leave the open problem of tightening the bounds. Also,
for which other grid graphs can our techniques used in obtaining the upper bound be
applied? The technique of considering subgrids where only certain attacks are permitted
and packing the borders of these subgrids as well as the entire grid with guards should
allow to prove that γ∞all(G) = γ(G)+o(nm) for many types of n×m grids. This should be
true since, for all Cayley graphs H obtainable from abelian groups, γ∞all(H) = γ(H) [70],
and many grid graphs can be represented as Cayley graphs obtained from abelian groups
which are truncated. This truncation may increase the number of guards needed but our
technique should permit the additional o(nm) guards to suffice. Lastly, as mentioned
in the introduction, it is known that given a graph G and an integer k as inputs and
asking whether γ∞all(G) ≤ k is NP-hard in general [21] but the exact complexity of the
decision problem is open.
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Part III

Identification Games
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Chapter 5

Localization Game

5.1 Introduction

In this chapter, the games that generalize the metric and centroidal dimensions of
graphs are studied. Recall that Localization (or Identification) problems consist of
distinguishing the vertices of a graph G = (V,E) using a smallest subset R ⊆ V of
its vertices. For resolving sets, one aims at distinguishing the vertices of a graph by
their distances to such a set. Given a graph G, the main problem is to compute a
resolving set with minimum size, this minimum being called the metric dimension of
G [75, 114]. The corresponding decision problem (first shown to be NP-complete in [66])
is NP-complete in planar graphs [49] and in graphs of diameter 2 [62], and W[2]-hard
(parameterized by the solution’s size) [76]. On the positive side, the problem is FPT
in the class of graphs with bounded treelength [23]. Bounds on the metric dimension
have also been determined for various graph classes [61].

In this chapter, we address a sequential variant of this problem (introduced by
Seager in [112] and generalized by us in [c-5], which is joint work with J. Bensmail,
D. Mazauric, N. Nisse, and S. Pérennes), which we deal with through the following
terminology. Let us consider a graph G = (V,E) where an unknown vertex t ∈ V
hosts a hidden (invisible) and immobile target. Probing one vertex v ∈ V results in the
knowledge of the distance between t and v, denoted by distG(v, t), which is the length
of a shortest path from t to v. Probing a set R ⊆ V of vertices results in the distance
vector (distG(v, t))v∈R and R is resolving if no two vertices of G get the same distance
vector (by R). The metric dimension of G, denoted by MD(G), is then the minimum
number of vertices that must be probed simultaneously to immediately (in one step)
determine the location t of the target (wherever it is). For instance, in the case of a
path, probing one of its ends is sufficient to locate the target, i.e., MD(P ) = 1 for
every path P . Another example is the case of a star (tree with a universal node) with
n leaves, denoted by Sn, for which it is necessary and sufficient to probe every leaf but
one, i.e., MD(Sn) = n− 1.

If less than MD(G) vertices can be probed at once, then it is impossible to locate
a target in one step, in which case it is natural to allow more than one probing step.
Obviously, if at most 1 ≤ k < MD(G) vertices can be probed at once, then it is always
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feasible to locate an immobile target in dMD(G)/ke steps, simply by considering a
smallest resolving set R of G, and probing all vertices of R through successive steps
(probing at most k vertices each step). However, there are graphs for which the target
can be located much faster (see Section 5.2 or Lemma 5.4.1). In [112], Seager initiated
the study of the following sequential locating game: an invisible and immobile target
is hidden at some vertex t, and, at every step, one vertex can be probed to retrieve
its distance to t, and the objective is to locate t using the minimum number of steps.
Seager gave bounds and exact values on this minimum number of steps in particular
subclasses of trees (e.g., subdivisions of caterpillars) [112] but left the problem open in
trees in general. In this chapter, we study the generalization of this game where k ≥ 1
vertices can be probed at every step and notably solve the problem for trees.

Precisely, let k ≥ 1 be an integer and let G = (V,E) be a graph hosting an invisible
and immobile target hidden at t ∈ V . A k-strategy is a sequence of probing steps,
where, at each step, at most k vertices are probed, and at the end of which t is uniquely
determined. Note that, in a k-strategy, the choice of the vertices to be probed at
some step obviously depends on the result of the previous steps. Let λk(G) denote the
minimum integer h such that there exists a k-strategy for locating the target in G in
at most h steps, whatever be the location of the target. Given G and k, ` ≥ 1, the
Localization problem asks whether λk(G) ≤ `. We also consider the dual parameter
κ`(G) defined as the minimum integer h such that there exists an h-strategy for locating
the target in G in at most ` steps. Note that, for every graph G, the parameter κ1(G)
is exactly the metric dimension MD(G) of G, and λk(G) ≤ ` if and only if κ`(G) ≤ k.
We are interested in the complexity of the Localization problem in general graphs
and particularly in trees.

Relative distances and centroidal dimension Foucaud et al. defined a variant of re-
solving sets, called centroidal bases, where the vertices of a graph must be distinguished
by their relative distances to the probed vertices [60]. In this setting, given an integer
k ≥ 2, probing a set B = {v1, . . . , vk} of vertices results in the relative-distance vector
(δi,j(t))1≤i<j≤k where, for every 1 ≤ i < j ≤ k, δi,j(t) = 0 if distG(t, vi) = distG(t, vj),
δi,j(t) = 1 if distG(t, vi) > distG(t, vj), and δi,j(t) = −1 otherwise. Intuitively speaking,
the relative-distance vector of t indicates which vertices of B are the closest to t, which
vertices are the second closest, etc., without indicating the exact distances between v
and these vertices. The set B is a centroidal basis of G if the relative-distance vectors
are distinct for every two vertices of G. The centroidal dimension of G, denoted by
CD(G), is the minimum size of a centroidal basis of G [60]. Note that CD(G) ≥ 2
unless G has only one vertex, and that CD(G) is well defined since, clearly, V is a
centroidal basis of G. The decision problem associated to the centroidal dimension
was shown to be NP-complete, and almost tight bounds on the centroidal dimension of
paths have been computed (see [60]). Note that this problem, even for paths, is much
more complicated.

Again, sequential variants of the centroidal basis can naturally be defined. The
variant where the target is allowed to move was considered in [30]. In this chapter, we
also initiate the study of the variant where the target is immobile (introduced by us
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in [c-5], which is joint work with J. Bensmail, D. Mazauric, N. Nisse, and S. Pérennes),
which, to the best of our knowledge, has not been considered yet. Let k ≥ 2 be an
integer and G be a graph. Let λrelk (G) denote the minimum integer h such that there
exists a k-strategy for locating, through the relative-distance vectors, a hidden immobile
target in G in at most h steps, whatever be its location. Given G, k, `, the Relative-
Localization problem asks whether λrelk (G) ≤ `. The dual parameter κrel` (G) is
defined as the minimum integer h such that there exists an h-strategy for locating,
through the relative-distance vectors, the target in G in at most ` steps. Note that, for
every graph G, the parameter κrel1 (G) is exactly the centroidal dimension CD(G) of G,
and λrelk (G) ≤ ` if and only if κrel` (G) ≤ k.

5.1.1 Our Results

All results of this chapter feature in [c-5], which is joint work with J. Bensmail, D.
Mazauric, N. Nisse, and S. Pérennes. This chapter is dedicated to the computational
complexity of the Localization problem, where one aims at locating an invisible and
immobile target in a graph through successive probing steps where the distance vectors
are retrieved. To give a first intuition for this problem, we start, in Section 5.2, by
providing first, some observations. In Section 5.3, we then show that the Localization
problem is polynomial-time solvable when both k and ` are fixed parameters but that,
in general, the Localization problem is NP-complete when only one of k and ` is a
fixed parameter. Precisely:

• Let k ≥ 1 and ` ≥ 1 be two fixed integers. Given a graph G as an input, the
problem of deciding whether λk(G) ≤ ` is polynomial-time solvable (in time nO(k`))
(Theorem 5.3.1).

• Let k ≥ 1 be a fixed integer. Given a graph G with a universal vertex and an
integer ` ≥ 1 as inputs, the problem of deciding whether λk(G) ≤ ` is NP-complete
(Theorem 5.3.3).

• Let ` ≥ 1 be a fixed integer. Given a graph G with a universal vertex and an
integer k ≥ 1 as inputs, the problem of deciding whether κ`(G) ≤ k is NP-complete
(Theorem 5.3.7).

The proof of Theorem 5.3.1 also yields that the Relative-Localization problem is
polynomial-time solvable when k ≥ 2 and ` ≥ 1 are fixed integers. Through modifica-
tions, our proofs also yield that the Relative-Localization problem is NP-complete
for any fixed k ≥ 2 (Theorem 5.3.6) or any fixed ` ≥ 1 (Theorem 5.3.9).

In Section 5.4, we then focus on the Localization problem in the class of trees.
Although we prove that the problem remains NP-complete in the class of trees, surpris-
ingly we show that this hardness only comes from the first probing step. More precisely,
we show that, in a tree, the Localization problem becomes polynomial-time solvable
after the first step. As a consequence, we design a polynomial-time (+1)-approximation
algorithm for the problem. To summarize:
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• deciding whether λk(T ) ≤ ` is NP-complete for a tree T when both k and ` are
part of the input (Theorem 5.4.2);

• there exists an algorithm that computes, in time O(n log n) (independent of k),
a k-strategy for locating a target in at most λk(T ) + 1 steps in any (possibly
edge-weighted) n-node tree T (Theorem 5.4.12);

• deciding whether λk(T ) ≤ ` for any (possibly edge-weighted) n-node tree T can
be solved in time O(nk+2 log n) (independent of `) (Theorem 5.4.13).

5.2 Preliminaries

Assuming a vertex of G hosts an invisible and immobile target, recall that a k-strategy
Φ is a sequence of steps where at most k vertices are probed per step, resulting in the
exact localization of the target. As we mainly focus on the Localization problem in
this chapter, unless stated otherwise, such a strategy will always deal with the exact
distances between the target and the probed vertices. After the sth step of Φ, we denote
by Hs ⊆ V the set of vertices that remain as possible locations for the target, i.e., that
have not been eliminated at step s. Unless stated otherwise, we thus have H0 = V .

Let us precisely describe the (already mentioned) case of stars because the simple
arguments occurring in this case will be used as basic tools for several of the proofs in
this chapter. Given a star Sn with n leaves, λk(Sn) = dn−1

k
e and any optimal strategy

to locate the target consists of probing every leaf but one. Indeed, if the target is at
distance 1 of a leaf, then it is located at the center of the star. Otherwise, if the target is
at distance 2 from each of the probed leaves, it must be located in the single unprobed
leaf. On the other hand, if at least two leaves have not been probed, there is no way to
decide in which unprobed leaf the target is located.

The Relative-Localization problem slightly differs since, in this variant, all
leaves must be probed. Indeed, after having probed all leaves but one, a last probe is
necessary to decide whether the target occupies the last (unprobed) leaf or the center
of the star.

To conclude this section, let us observe the following properties. They will not be
used further in this chapter, however, we believe that they are interesting by themselves
and give some hints on the difficulty of designing a strategy for locating a target.

First, let us notice that the metric dimension is not closed under isometric subgraphs.
That is, there exists a graph G having an isometric subgraph H such that MD(H) >
MD(G). Let H be the star S4 and let G be obtained from H by adding two adjacent
vertices u and v each adjacent to a different leaf of H and a vertex w adjacent to one
of the two remaining leaves of H. In this case, MD(H) = 3 and MD(G) = 2 (by
probing u and the only leaf in G that is not w). This kind of result is also true for our
parameters.

Observation 5.2.1. There are graphs G having an isometric subgraph H such that
λk(H) > λk(G).
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w x

y z

Figure 5.1: A graph G (left) and an isometric subgraph H of G (right).

Proof. Let k ≥ 1 and q ≥ 2 and let Hk,q be the star S(k+1)q with center c and (k + 1)q
leaves v1, . . . , v(k+1)q. Let Gk,q be the graph obtained from Hk,q by adding q vertices
s1, . . . , sq such that si is adjacent to v(i−1)(k+1)+1, . . . , vi(k+1) for every 1 ≤ i ≤ q. The
graphs G4,4 and H4,4 are depicted in Fig. 5.1. Clearly, Hk,q is an isometric subgraph of
Gk,q, (i.e., distances of Gk,q are preserved in Hk,q).

By the paragraph above, λk(Hk,q) = d q(k+1)−1
k
e. On the other hand, λk(Gk,q) ≤ d qke+

1 as proved by the following strategy. Probe sequentially every vertex in s1, . . . , sq−1.
If, during the first step, the target is at distance 2 from the probed vertices, then the
target is in c. Otherwise, if, at some step t ≤ d q

k
e, the target is at distance 0 from some

sj, the target is at sj. Finally, if, at step t ≤ d q
k
e, the target is at distance 1 from some

sj, then probe the vertices v(j−1)(k+1)+1, . . . , vj(k+1)−1 to locate the target. �

As stated in the introduction, there is a strong connection between the metric di-
mension and our sequential game. For instance, one k-strategy for locating a target
in a graph G consists of considering a minimum resolving set R of G, and probing all
vertices of R in dMD(G)/ke steps. In general though, this strategy can be arbitrarily
far from being optimal. As an illustration, note that for the graphs Gk,q constructed in
the proof of Observation 5.2.1, we have MD(Gk,q) = (k + 1)q − 1 (all vertices that are
leaves in Hk,q must be probed but one), while λk(Gk,q) ≤ d qke+ 1.

5.3 Complexity of Localization and Relative-Localization

In this section, we prove that the (Relative) Localization problem is polynomial-
time solvable when both k and ` are fixed but NP-complete when only one of k and
` is fixed. The proof when ` is fixed is an almost straightforward reduction from the
Metric Dimension problem. In the case when k is fixed, the proof is a much more
involved reduction from the 3-Dimensional Matching problem. Our proofs, through
several modifications, also apply to the Relative-Localization problem. The proof
that the (Relative) Localization problem is in NP is given as a separate claim
(Claim 5.3.2) as it is used in all of the NP-completeness proofs.

Theorem 5.3.1. Let k ≥ 1 (k ≥ 2 for the Relative Localization problem) and
` ≥ 1 be two fixed integers. The (Relative) Localization problem is polynomial-
time solvable (in time nO(k`)).
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Proof. Let G be any n-node graph. Let us consider the following tree T that will be
used to represent all possible strategies that probe exactly k vertices per step and last
at most ` steps in G.

The tree T is rooted in r and all leaves are at distance 2` from the root. The
two types of vertices of T are labelled by subsets of vertices of V (G). For any vertex
v ∈ V (T ) at even distance from r, its label L(v) ⊆ V (G) represents the set of possible
locations of the target at this moment. For any vertex v ∈ V (T ) at odd distance from
r, its label L(v) ⊆ V (G), of size k, represents the set of vertices that are probed at this
moment.

Precisely, T is defined as follows. Its root r is labelled with L(r) = V (G) (initially,
the target may be anywhere). Then, given a vertex v ∈ V (T ) at even distance from r
and such that L(v) = S ⊆ V (G), the node v has exactly

(
n
k

)
children labelled by each of

the subsets of size k of V (G). Then, for every Q ∈ V (G)k, let w be the child of v such
that L(w) = Q. The at most n children of w are defined as follows. Let (S1, · · · , Sq)
be the partition of S such that, for any x, y ∈ S, the vertices x and y belong to the
same Si if and only if probing the vertices of Q knowing that the target is in S gives the
same answer (distance vector) for x and y. Then, w has exactly q children s1, . . . , sq
such that L(si) = Si for every 1 ≤ i ≤ q. Intuitively, each child of w corresponds to the
possible locations of the target in response to the probing of the vertices of Q.

First, note that |V (T )| is polynomial in n when k and ` are fixed. Precisely, since
T has at most (

(
n
k

)
n)` leaves (due to the degree of the nodes and the height of T ) and

all leaves are at distance 2` from r, |V (T )| is upper bounded by O(2`(
(
n
k

)
n)`) = nO(k`).

Secondly, every strategy (of length ` and probing k vertices per turn) is “contained”
in T . Indeed, any subtree T ′ of T built as follows represents a strategy: start with T ′

reduced to the root r, then while possible, for any leaf v of T ′, if v is at an even distance
from r, choose a single child of v and add it to T ′ (this is the probing that the strategy
performs in this situation), otherwise, if v is at odd distance from r, add all its children
to T ′. It is easy to see that, in this way, any strategy, winning (locating the target in
at most ` turns, wherever it is) or not, can be represented.

By the same reasoning, for every node v at even distance 2(`−`′) from r, the subtree
of T rooted in v “contains” all strategies of length `′ and probing k vertices per turn,
assuming that, initially, the target occupies a vertex in L(v). Let us say that v is valid
if it contains at least one such winning strategy.

To find out if there is a winning strategy in G, let us proceed by dynamic pro-
gramming, bottom-up from the leaves of this tree to the root. A leaf v of T is valid
if and only if L(v) is a singleton (indeed, the leaves of T represent strategies without
any probe so the location of the target must be uniquely identified). Then, a vertex v
at odd distance from the root is valid if and only if all its children are valid (after a
probing, there must be a winning strategy, whatever be the answer). Finally, a vertex
v at even distance from the root is valid if and only if at least one of its children is
valid. Indeed, the subtree rooted at v contains a winning strategy if, knowing that the
target is in L(v), there exists at least one possible probing (one set of k vertices to be
probed) that leads toward a winning strategy, whatever be the answer to this probing.

Therefore, there is a winning strategy for G if and only if the root is valid which
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can be decided in time |V (T )| = nO(k`).

Claim 5.3.2. The (Relative) Localization Problem is in NP.

Proof of the claim. The proof is done for the Localization Problem. The certificate
is a k-strategy which can be described by a rooted decision tree T as follows. The nodes
of T are labelled by sets of k vertices (the vertices to be probed at a given step) and its
edges are labelled by sets of vertices representing the possible locations of the target.
Precisely, the root node represents the first k vertices to be probed in G according to
the k-strategy. For every node v ∈ V (T ) (but the root), the label Le ⊆ V (G) of the
parent-edge e of v represents the current possible locations of the target and the label
Lv ⊆ V (G), |Lv| ≤ k, is the set of vertices to be probed according to the strategy,
given that the target occupies a vertex in Le. Then, every child w of v corresponds to
a possible outcome (after probing the vertices in Lv). That is, Lvw is the new set of
possible locations after having probed Lv (given that the target was in Le). Note that,
clearly, Lvw ⊆ Le. Moreover, we may restrict our attention to progressive strategies, i.e.,
strategies for which, for every non-root vertex v with parent-edge e, and for every child-
edge f of v, Lf ⊂ Le. Indeed, otherwise, the vertices probed in Lv are not relevant and
a better choice would be any subset containing at least one vertex of Le (two vertices
of Le in the case of the Relative Localization Problem, where by definition k ≥ 2,
and this is the only part of the proof that differs between the two problems).

The previous remark shows that we can restrict ourselves to k-strategies represented
by rooted trees where all non-leaf nodes have at least two children. Moreover, any such
tree representing a winning strategy (a k-strategy that locates the target) has exactly
|V (G)| leaves since there is a one-to-one correspondence between a path from the root
to a leaf of T with the location of the target in G. A trivial induction on |V (T )| allows
to show that any rooted tree with n leaves and where all non-leaf nodes have at least
two children, has at most 2n nodes. Thus, any winning k-strategy may be encoded
polynomially and the Localization Problem is in NP. �

5.3.1 When the Number k of Probed Vertices per Step is Fixed

For a fixed integer k ≥ 1, the k-Probe Localization problem takes a graph G and
an integer ` ≥ 1 as inputs and asks whether λk(G) ≤ `. Analogously, for any fixed
integer k ≥ 2, the k-Probe Relative-Localization problem takes a graph G and
an integer ` ≥ 1 as inputs and asks whether λrelk (G) ≤ `.

Theorem 5.3.3. For every k ≥ 1, the k-Probe Localization problem is NP-
complete in the class of graphs with a universal vertex.

Proof. The problem is in NP by Claim 5.3.2. Let us prove it is NP-hard by a reduction
from the 3-Dimensional Matching (3DM) problem which is a well known NP-hard
problem. The 3DM problem takes a set X = I1 ∪ I2 ∪ I3 of 3n elements (|I1| = |I2| =
|I3| = n) and a set S of triples (x, y, z) ∈ I1 × I2 × I3 as inputs and asks whether there
are n triples of S that are pairwise disjoint.
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Figure 5.2: Example of a graph G constructed from an instance of 3DM in the proof of
Theorem 5.3.3. A thin line between one vertex (blue circle) and one rectangle represents all
edges between this vertex and every vertex in the rectangle. The instance of 3DM is encoded
by the edges between the vertices in Si (representing the sets) and the vertices in Xi, for
every 1 ≤ i ≤ k + 2.

Let k ≥ 1 be a fixed integer and let I = (X ,S) be an instance of 3DM. First, we may
assume that |X | = 3kn since, if not, it is sufficient to take k disjoint copies of (X ,S).
Moreover, we may assume that m = |S| is such that 2m− 1 ≡ 0 mod k (for instance
by adding dummy triples if needed). Let X = {x1, . . . , x3kn} and S = {S1, . . . , Sm}.

From (X ,S), we construct, in polynomial time, a graph G = (V,E) with the vertex-
set V = X ∪X ′′ ∪ S ∪ {s} ∪ {q} such that (see Fig. 5.2):

• X = X1 ∪ · · · ∪Xk+2 with X i = {xi1, . . . , xi3kn} for every i ≤ k + 2. Each of the
vertices xij, for i ∈ J1, k + 2K, represents the element xj, for j ≤ 3kn;

• X ′′ = {x′′1, . . . , x′′(k+2)m};

• S = S1 ∪ · · · ∪ Sk+2 with Si = {sij, 1 ≤ j ≤ m} for every i ∈ J1, k + 2K. Each of

the vertices sij, for i ∈ J1, k + 2K, represents the element Sj, for j ≤ m.

The edges of G are as follows:

• there is an edge between s and every vertex of V \ {s};

• there is an edge between q and every vertex of X ∪X ′′;

• for every j ∈ J1, 3knK and every g ∈ J1,mK such that xj ∈ Sg, there is an edge
between xij and sig for every i ∈ J1, k + 2K.
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Let p = m(k+2)−1
k

∈ N. We prove the theorem by showing that I = (X ,S) admits a
3DM if and only if λk(G) ≤ (k + 2)n+ p+ 1.

Claim 5.3.4. If I admits a 3DM, then λk(G) ≤ (k + 2)n+ p+ 1.

Proof of the claim. Let Y ⊆ S be a 3DM of I = (X ,S) (of size |Y | = kn). Up
to renumbering the sets and the elements, let us assume that Y = {S1, S2, . . . , Skn}
and assume that Si = {x3(i−1)+1, x3(i−1)+2, x3(i−1)+3} for every i ∈ J1, knK. Note that,
because Y is a 3DM of size kn,

⋃
1≤i≤kn Si = X , (i.e., all elements are covered).

We describe a k-strategy Φ to locate the target in G in at most (k+2)n+p+1 steps.
The first step of Φ consists of probing only the vertex q. Three cases may occur. Either
H1 = {q} (recall that Hs, here and further, denotes the set of vertices that remain
possible locations for the target after the sth step) in which case the target is located.
Or the target is at distance 2 from q, i.e., H1 = S, in which case Φ sequentially probes
every vertex of S but one until the target is located, which takes at most p extra steps.
Or the target is at distance 1 from q and H1 = X ∪X ′′ ∪ {s}.

Hence, we may assume that H1 = X ∪X ′′∪{s}. In this case, Φ proceeds by Phases
of at most n steps each. There will be at most k + 2 such Phases. Intuitively, during
Phase i ≤ k + 2, the strategy Φ probes vertices in Si in such a way that either the
target is located at one of the vertices of X i, or, at the end of the Phase, the target is
known not to be in X i.

Let us assume by induction on 1 ≤ i ≤ k+ 2 and 1 ≤ j ≤ n that, before the jth step
of Phase i, if the target has not been located yet, then the set of possible locations for
the target is

H1+(i−1)n+j−1 = σ ∪X ′′ ∪
{
xi3k(j−1)+1, . . . , x

i
3kn

}
∪

( ⋃
i<y≤k+2

Xy

)
,

where σ = {s} if i = j = 1 (or possibly, in the case k = 1, if i = 1 and j = 2), and
σ = ∅ otherwise.

This holds for i = j = 1. Then, the strategy Φ consists of probing the vertices in
Pi,j = {sik(j−1)+1, . . . , s

i
kj}. There are three cases to consider. Before going into the

details of the cases, recall that the sets Sk(j−1)+1, . . . , Skj belong to the 3DM Y and
so are pairwise disjoint. Hence, by construction of G, for every a, b ∈ Pi,j, we have
(NG(a) ∩X i) ∩ (NG(b) ∩X i) = ∅.

• Either all vertices of Pi,j are at distance 1 from the target. In this case, the target
is located at s (this case may only happen for i = j = 1 or, possibly, i = 1 and
j = 2 in the case k = 1).

• Or exactly one vertex, say sik(j−1)+x for 1 ≤ x ≤ k, of Pi,j is at distance 1 from

the target. Let y = k(j − 1) + x. In this case, the target must occupy one of
xi3(y−1)+1, x

i
3(y−1)+2, x

i
3(y−1)+3 (the vertices corresponding to the elements that are

contained in Sy). The strategy Φ probes two of these vertices, until the target is
located in at most two extra steps. Therefore, in this case, the target is located
in at most 1 + (i−1)n+ j+ 2 ≤ (k+ 2)n+p+ 1 steps (since i ≤ k+ 2 and j ≤ n).
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• The last case is when all the vertices of Pi,j are at distance 2 from the target. In
particular the target cannot occupy a vertex in U = {s} ∪ {xi3k(j−1)+1, . . . , x

i
3kj}.

And so, if j < n, then

H1+(i−1)n+j = H1+(i−1)n+j−1 \ U = X ′′ ∪
{
xi3kj+1, . . . , x

i
3kn

}
∪

( ⋃
i<y≤k+2

Xy

)
,

hence the induction hypothesis holds for j + 1. Finally, if j = n, then

H1+in = H1+(i−1)n+n−1 \ U = X ′′ ∪

( ⋃
i+1<y≤k+2

Xy

)

and the induction hypothesis holds for i + 1 and j = 1. In this case, Phase i + 1
starts if i+ 1 ≤ k + 2.

After the nth step of Phase k+ 2, we get that H1+(k+2)n = X ′′. The strategy Φ ends
by sequentially probing every vertex of X ′′ but one. So, the target can be located in at
most p extra steps. Therefore, λk(G) ≤ (k + 2)n+ p+ 1. �

Claim 5.3.5. If every 3DM of I has size strictly less than kn, then λk(G) > (k+2)n+
p+ 1.

Proof of the claim. Let us assume that every 3DM of I has size strictly less than kn.
We show that every k-strategy needs at least (k + 2)n + p + 2 steps to guarantee the
localization of the target in G. To avoid technicalities, let us assume that H0 = X∪X ′′,
i.e., the target is known a priori to occupy a vertex in X∪X ′′. We show that even with
this extra assumption (that is not favourable for the target), every k-strategy needs at
least (k + 2)n+ p+ 2 steps to guarantee the localization of the target.

Let Φ be any k-strategy. First, let us note that, since H0 = X ∪ X ′′ and both q
and s are universal for X ∪X ′′, then probing q or s does not bring further information.
Therefore, we may assume that Φ never probes q nor s. Let us now describe the
information retrieved upon probing vertices in X,X ′′ or S.

(a) Let u ∈ X ′′. Note that distG(u, z) = 2 for every z ∈ X ∪ X ′′ \ {u}. Therefore,
probing u only determines if the target is on u or not, and gives no further infor-
mation. In other words, probing u only allows to remove u from the set of possible
locations.

(b) Let u ∈ X i for any i ≤ k+ 2. Note that distG(u, z) = 2 for every z ∈ X ∪X ′′ \{u}.
Therefore, similarly, probing u only allows to remove u from the set of possible
locations.

(c) Let u ∈ Si for any i ≤ k+2. Let {x, y, z} = NG(u)∩X i, i.e., x, y, z are the vertices
corresponding to the elements contained in the set that corresponds to u. Note
that distG(u, z) = 2 for every z ∈ X ∪X ′′ \ {x, y, z}. Therefore, probing u removes
at most three vertices, namely x, y, z, from the set of possible locations.
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(d) More generally, let Z ⊆ Si with |Z| < kn. Probing all vertices of Z allows to
remove NG(Z) ∩X i, i.e., at most 3|Z| vertices, from the set of possible locations.

(e) Finally, let Z ⊆ Si with |Z| = kn. Because I has no 3DM of size kn, there
must be at least two vertices of Z whose neighbourhoods intersect in X i. That is,
|NG(Z)∩X i| ≤ 3kn−1. Probing all vertices of Z allows to remove at most 3kn−1
vertices from the set of possible locations.

Let P ⊆ X ∪ X ′′ ∪ S be the set of all vertices that have been probed during the
(k+2)n+p+1 first steps of Φ. We show that, at this point, the set of possible locations
for the target still contains at least two vertices and so an extra step is required.

For every 0 ≤ j ≤ kn, let αj be the number of sets Si that contain exactly kn − j
vertices of P . Formally, αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = kn − j}|. For every
kn < j ≤ m, let αj be the number of sets Si whose exactly j vertices have been probed,
i.e., αj = |{i | 1 ≤ i ≤ k + 2, |Si ∩ P | = j}|. By definition, since |Si| = m for every
i ≤ k + 2: ∑

0≤j≤m

αj = k + 2. (5.1)

Let y = |X ∩ P | be the total number of vertices probed in X and let x′′ = |X ′′ ∩ P |
be the total number of vertices probed in X ′′. By definition of y, x′′, and the α’s, the
total number ρ of vertices that have been probed after (k + 2)n+ p+ 1 steps satisfies:

ρ = y + x′′ +
∑

kn<j≤m

jαj +
∑

0≤j≤kn

(kn− j)αj. (5.2)

Moreover, since at most k vertices can be probed each step:

ρ ≤ k[(k + 2)n+ p+ 1] (5.3)

Note that, by Item (a) above, if x′′ ≤ (k + 2)m− 2, then at least two vertices have
not been probed and, therefore, are still potential locations for the target (as noticed
above, probing a vertex of X ′′ is the only way to remove it from the set of possible
locations). In such a case, another step would be needed to ensure the localization.
Therefore, we may assume that x′′ ∈ {(k + 2)m− 1; (k + 2)m}.

Let us assume that x′′ = (k + 2)m (below, we point out the few differences in the
case x′′ = (k + 2)m − 1). In that case, all vertices in X ′′ are removed from the set of
possible locations of the target that must be in X. Let 0 < j ≤ kn and let i ≤ k + 2
such that kn − j vertices have been probed in Si. By Item (d) above, probing the
vertices in Si removes at most 3(kn− j) vertices of X i (and no other vertices) from the
set of possible locations of the target. In other words, it leaves at least 3j vertices of
X i as possible locations. Let i ≤ k + 2 such that kn vertices have been probed in Si.
By Item (e) above, probing the vertices in Si removes at most 3kn − 1 vertices of X i

(and no other vertices) from the possible locations of the target. In other words, one
vertex of X i is still a possible location.
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Summing over all j ∈ J0, knK, the vertices probed in S leave at least α0 +
∑

1≤j≤kn
3jαj

vertices of X as possible locations for the target. To ensure the localization of the target
without more steps, only one vertex of X must remain as a possible location (in the
case when x′′ = (k + 2)m − 1, i.e., one vertex of X ′′ is still a possible location, then
no vertex of X must remain possible). Since, by Item (b) above, only the y vertices
probed in X may remove further vertices from the set of possible locations, it follows
that:

y + 1 ≥ α0 +
∑

1≤j≤kn

3jαj. (5.4)

In the case where x′′ = (k + 2)m− 1, this is y ≥ α0 +
∑

1≤j≤kn
3jαj.

We are now ready to show that the above inequalities lead to a contradiction, proving
that an extra step is required. For this purpose, let us consider again the total number
ρ of vertices that have been probed during the first (k + 2)n+ p+ 1 steps.

ρ = y + x′′ +
∑

kn<j≤m
jαj +

∑
0≤j≤kn

(kn− j)αj (by Equation (5.2))

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn

∑
0≤j≤m

αj −
∑

0≤j≤kn
jαj

= y + x′′ +
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj (by Equation (5.1))

= y + (k + 2)m+
∑

kn+1≤j≤m
(j − kn)αj + kn(k + 2)−

∑
0≤j≤kn

jαj (if x′′ = (k + 2)m)

≥ α0 +
∑

1≤j≤kn
3jαj − 1 + (k + 2)m+

∑
kn+1≤j≤m

(j − kn)αj + kn(k + 2)−
∑

0≤j≤kn
jαj

(by Inequality (5.4)) (if x′′ = (k + 2)m)

= α0 +
∑

1≤j≤kn
3jαj + pk +

∑
kn+1≤j≤m

(j − kn)αj + kn(k + 2)−
∑

0≤j≤kn
jαj (by definition

of p)

= k[n(k + 2) + p+ 1] +
∑

kn+1≤j≤m
(j − kn)αj + α0 +

∑
1≤j≤kn

2jαj − k

= k[n(k+ 2) +p+ 1] + 2(k+ 2)−2
∑

0≤j≤m
αj +

∑
kn+1≤j≤m

(j−kn)αj +α0 +
∑

1≤j≤kn
2jαj−k

(by Equation (5.1))

= k[n(k+2)+p+1]+4+
∑

kn+1≤j≤m
(j−kn)αj−2

∑
kn+1≤j≤m

αj−α0 +
∑

1≤j≤kn
2(j−1)αj +k

= k[n(k+2)+p+1]+4+
∑

kn+2≤j≤m
(j−kn−1)αj−

∑
kn+1≤j≤m

αj−α0+
∑

1≤j≤kn
2(j−1)αj+k

≥ k[n(k + 2) + p+ 1] + 4 + k − α0 −
∑

kn+1≤j≤m
αj

ρ ≥ k[n(k + 2) + p+ 1] + 2 (by Equation (5.1))

This contradicts Inequality (5.3) and concludes the proof of the claim. �
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Via slight modifications, the previous proof can also be applied to prove the hardness
of the k-Probe Relative-Localization problem.

Theorem 5.3.6. For every k ≥ 2, the k-Probe Relative-Localization problem
is NP-complete in the class of graphs with a universal vertex.

Proof. The proof of Theorem 5.3.3 applies, except that the strategy designed in
Claim 5.3.4 has to start by probing both s and q (instead of only q). In this vari-
ant (with relative distances), the localization may require one more step (than with
exact distances) in case the target is in S ∪ {s}. The claim still holds since this case
(the target in S ∪ {s}) is not the worst case.

5.3.2 When the Number ` of Steps is Fixed

For a fixed integer ` ≥ 1, the `-Step Localization problem takes a graph G and
an integer k ≥ 1 as inputs and asks whether κ`(G) ≤ k. In the case where the target
must be located through relative distances, the analogous problem `-Step Relative-
Localization is defined in the obvious way (but k ≥ 2 in that case).

Theorem 5.3.7. For every ` ≥ 1, the `-Step Localization problem is NP-complete
in the class of graphs with a universal vertex.

Proof. For ` = 1, the result follows from the fact that computing κ1(G) is exactly
the same as computing the metric dimension MD(G) of G, and that the problem of
computing the metric dimension is NP-complete in general [49]. So, from now on, let
us assume that ` ≥ 2.

The problem is in NP by Claim 5.3.2. To prove the NP-hardness let us reduce the
Metric Dimension problem (given a graph G and an integer k ≥ 1, is MD(G) ≤ k?)
restricted to the class of graphs that contain a universal vertex, which is known to be
NP-hard [62]. Let G be a graph that contains a universal vertex and k be an integer.
We construct, in polynomial time, a graph G′ such that MD(G) ≤ k if and only if a
target hidden in G′ can be located in at most ` steps by probing at most k vertices per
step, i.e., κ`(G

′) ≤ k.
The construction of G′ is as follows. Start from k(` − 1) + 1 disjoint copies of G:

G1, . . . , Gk(`−1)+1. Let v be a universal vertex of G, and for 1 ≤ i ≤ k(`− 1) + 1, let vi
denote the copy of v in Gi. Finally, add a universal vertex u to the graph. This results
in G′. Clearly, the construction is achieved in polynomial time.

We start by pointing out the following easy claim.

Claim 5.3.8. For any 1 ≤ a ≤ k(`− 1) + 1, if the target is known to occupy a vertex
of Ga, then probing a vertex w ∈ V (G′ \ Ga) does not remove any vertex in Ga from
the set of possible locations.

Proof of the claim. The vertex u is universal to Ga and, therefore, all vertices of Ga are
the same distance from u and every shortest path from w to a vertex of Ga includes u.
Thus, any two vertices of Ga cannot be distinguished via their distance to w. �

We now prove that MD(G) ≤ k if and only if κ`(G
′) ≤ k.
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• First let us assume that MD(G) ≤ k; we show that κ`(G
′) ≤ k. Consider the

k-strategy where, during step s (for 1 ≤ s ≤ ` − 1), we probe the vertices in
{v(s−1)k+1, . . . , vsk}.

– If the target is at one of these vertices, say vi, then it is located immediately
at some step.

– If the target is at distance 1 from one probed vertex vi, then it occupies a
vertex in the corresponding Gi (unless k = 1, in which case the target could
also occupy u). Note that, because G has diameter 2, then each of its copies
Gi is an isometric subgraph of G′. Hence, any resolving set of size k of G
(which exists since MD(G) ≤ k) is also a resolving set for the vertices of Gi

in G′. Probing such a resolving set in Gi during the next step then allows to
locate the target. In the case k = 1, Gi has at most 3 vertices as otherwise,
MD(G) > 1 since vi is a universal vertex in Gi. Then, there are at most
two other vertices in Gi that have not been probed (and are not adjacent if
there are two, again since otherwise, MD(G) > 1), and thus, the target can
be located in the next step by probing one of these vertices to distinguish it
from u and the other.

– If the target is at distance 1 from all the k ≥ 2 vi vertices, then it is located
at u.

– If at step `− 1 the target is at distance 2 from the probed vertices, then it is
located in Gk(`−1)+1 and can be located at step ` since we have assumed that
MD(G) ≤ k and each Gi is isometric in G′.

• Now we prove the other direction, that is, we show that MD(G) > k implies that
κ`(G

′) > k. Since there are k(`−1)+1 copies of Gi and only k(`−1) vertices can be
probed during the first `−1 steps, then, on the last step, regardless of the employed
strategy, there will always exist a copy, say Ga for some 1 ≤ a ≤ k(` − 1) + 1,
for which no vertices in Ga have been probed. If the target is hidden in Ga, then,
by Claim 5.3.8, all the vertices of Ga are still potential locations for the target.
The last step is then not sufficient to locate a target hidden in Ga since probing
a vertex w ∈ V (G′ \Ga) is useless by Claim 5.3.8, Ga is an isometric subgraph of
G′, and MD(Ga) > k. Hence, κ`(G

′) > k.

A proof establishing the hardness of `-Step Relative-Localization can analo-
gously be obtained by a reduction of the Centroidal Dimension problem.

Theorem 5.3.9. For every ` ≥ 1, the `-Step Relative-Localization problem is
NP-complete in the class of graphs with a universal vertex.

Proof. For ` = 1, the result follows from the fact that κrel1 (G) is exactly the centroidal
dimension CD(G) ofG, and that computing the centroidal dimension is an NP-complete
problem [60]. So let ` ≥ 2 be fixed.

The problem is in NP by Claim 5.3.2. To prove its NP-hardness, let us reduce
the Centroidal Dimension problem restricted to the class of graphs that contain a
universal vertex, which is known to be NP-hard [60]. Let G be a graph that contains
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a universal vertex, and k ≥ 2. We construct, in polynomial time, a graph G′ with
a universal vertex such that CD(G) ≤ k if and only if a target hidden in G′ can be
located in at most ` steps, by probing at most k vertices per step, i.e., κrel` (G′) ≤ k.

The construction of G′ is as follows. Start from k(` − 1) + 1 disjoint copies of G:
G1, . . . , Gk(`−1)+1. Let v be a universal vertex of G, and for 1 ≤ i ≤ k(` − 1) + 1, let
vi denote the copy of v in Gi. Then, add all the edges so that vk(`−1)+1 becomes a
universal vertex in the whole resulting graph, which is G′.

Claim 5.3.10. Let 1 ≤ a ≤ k(`− 1) + 1, and assume the target is known to occupy, in
G′, any vertex of Ga. If CD(G) > k, then we cannot locate the target in one step by
probing k vertices of G′.

Proof of the claim. Assume k vertices are probed in Ga. Since CD(Ga) > k and Ga is
an isometric subgraph of G′, there exist at least two vertices y1, y2 ∈ Ga that cannot
be distinguished based on the information received. That is y1 and y2 have the same
relative-distance vector. If any number of the k vertices probed in Ga had instead been
replaced by vertices in G′ \ Ga, then the relative-distance vectors of y1 and y2 may
change but they would still be identical to one another since vk(`−1)+1 is a universal
vertex (and thus, distance 1 from both y1 and y2) and a cut vertex which separates all
the Gi’s. �

We are now ready to prove that CD(G) ≤ k if and only if κrel` (G′) ≤ k.

• First let us assume that CD(G) ≤ k. We show that κrel` (G′) ≤ k. Consider
the k-strategy where, at step s for 1 ≤ s ≤ ` − 1, we probe the vertices in
{v(s−1)k+1, . . . , vsk}. Then:

– If the target is closer to one of the vertices in {v(s−1)k+1, . . . , vsk} probed
at step s, say v(s−1)k+x for some integer 1 ≤ x ≤ k, then the target is at
a vertex in G(s−1)k+x. Indeed, all the Gis are separated by a cut vertex
vk(`−1)+1 and since vk(`−1)+1 is universal, it is equidistant from all the vertices
of {v(s−1)k+1, . . . , vsk}. Note that each Gi is an isometric subgraph of G′.
Hence, any centroidal basis of size k of G (which exists since CD(G) ≤ k) is
also a centroidal basis for the vertices of Gi in G′. Probing such a centroidal
basis in Gi allows to locate the target during the next step s+ 1 ≤ `.

– If the target is equidistant from each of the vertices in {v(s−1)k+1, . . . , vsk}
probed at step s, then the target may not be at the vertices in
{v(s−1)k+1, . . . , vsk} nor at the vertices of G(s−1)k+1, . . . , Gsk. Therefore, if
s < `− 1, then Hs = {vsk+1, . . . , v(s+1)k+1}∪

⋃
0≤i≤k V (Gsk+1+i). Hence, after

s = `− 1 steps, Hs = V (Gk(`−1)+1). Then, since each Gi is an isometric sub-
graph of G′ and CD(G) ≤ k, probing a centroidal basis in Gk(`−1)+1 allows
to locate the target during the next step s+ 1 = `.

• Now we prove the other direction, that is, we show that CD(G) > k implies that
κrel` (G′) > k. Whatever be the probing strategy, if, on the last step, there exists a
copy, say Ga for some 1 ≤ a ≤ k(`− 1) + 1, for which no vertices in Ga have been
probed, then there is no way to know at which vertex of Ga the target is located.
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Indeed, all Gi’s are separated by a cut vertex, so probing a vertex in some Gi

provides no information on any other Gj, j 6= i. Since there are k(`−1)+1 copies
of Gi and only k(`−1) vertices may be probed in the first `−1 steps, then, on the
last step, regardless of the strategy, there will always exist a copy, say Ga for some
1 ≤ a ≤ k(` − 1) + 1, for which no vertices in Ga have been probed. According
to Claim 5.3.10, the last step is not sufficient to locate the target in Ga. Hence,
κrel` (G′) > k.

5.4 The Localization Problem in Trees

This section is devoted to the study of the Localization problem in the class of
trees. Recall that when ` = 1, the problem is equivalent to the one of determining
the metric dimension, which can easily be solved in polynomial time in trees [75, 114].
We first show that when k and ` are part of the input, deciding whether λk(T ) ≤ `
for a given tree T is NP-complete. Our reduction actually shows that the difficulty
of the problem comes from the choice of the nodes to be probed during the first step.
Surprisingly, we show that the first step is actually the only source of hardness. More
precisely, our main result is that if the first step is given (intuitively, either given by an
oracle or imposed by an adversary), then an optimal strategy (according to this first
pre-defined step) can be computed in polynomial time. As a consequence, we design a
(+1)-approximation algorithm for the Localization problem in trees and prove that,
in contrast with general graphs (Theorem 5.3.3), the k-Probe Localization problem
is polynomial-time solvable in the class of trees.

5.4.1 NP-hardness of the First Step

Before proceeding to the proof of the main result of this section, we first need to give
an exact formula for λk for a particular class of trees. More precisely, let k ≥ 1 be
fixed, and 1 < r ∈ N be such that r − 1 ≡ 0 mod k. For 1 < n ∈ N, we denote by Srn
the tree obtained from r copies of Sn (the star with n leaves) by adding one new node
c adjacent to the center of each of the r stars.

Lemma 5.4.1. For every k, r, n as above,

λk(S
r
n) =

r − 1

k
+

⌈
n− 1

k

⌉
.

Furthermore, MD(Srn) = r(n− 1).

Proof. For every 1 ≤ i ≤ r and 1 ≤ j ≤ n, let ci denote the center of the ith copy of Sn,
denoted by Si, and let cij denote the jth leaf of the ith copy of Sn. First, we prove that

λk(S
r
n) ≤ r−1

k
+ dn−1

k
e. Consider the k-strategy Φ where, at each step 1 ≤ s ≤ r−1

k
, the

nodes c
(s−1)k+1
1 , . . . , csk1 are probed. If at step s, one of the probed nodes, say c

(s−1)k+x
1

for some 1 ≤ x ≤ k, is:

• distance 0 from the target, then the target is located at c
(s−1)k+x
1 ;
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• distance 1 from the target, then the target is located at c(s−1)k+x;

• distance 2 from the target and k = 1, then the target is located at c or c
(s−1)k+x
y for

some 2 ≤ y ≤ n. The target is then located in a total of at most s + dn−1
k
e steps

since it occupies a leaf of the subgraph induced by c
(s−1)k+x
y and its neighbours

which happens to be a star Sn that is also an isometric subgraph of Srn;

• distance 2 from the target and k > 1, then the target is located at c if it is also

distance 2 from the other probed nodes. Otherwise, it is at c
(s−1)k+x
y for some

2 ≤ y ≤ n. The target is then located in a total of at most s+ dn−2
k
e steps since it

occupies a leaf of the subgraph induced by c
(s−1)k+x
y and all its neighbours except

for c, which happens to be a star Sn−1 that is also an isometric subgraph of Srn.

If at step s < r−1
k

all of the probed nodes are at distance 3 from the target, then

the target is located at one of the nodes csk+1, . . . , c(s+1)k. If at step s < r−1
k

all of the
probed nodes are at distance 4 from the target, then the target is located at one of the
nodes csk+1

j , . . . , c(s+1)kj .

If at step r−1
k

all of the probed nodes are at distance 3 from the target, then the

target is located at cr. If at step r−1
k

all of the probed nodes are at distance 4 from the
target, then the target is located at one of the nodes crj . The target is then located in

a total of at most r−1
k

+ dn−1
k
e steps since it occupies a leaf of the subgraph induced

by cr and all its neighbours except for c which happens to be a star Sn that is also an
isometric subgraph of Srn.

We now prove that λk(S
r
n) > r−1

k
+ dn−1

k
e − 1. We may assume that the target is

on a leaf as this is not a favourable case for it. Consider a k-strategy. Since there are
r copies of Sn in Srn and at most k r−1

k
nodes can be probed during the first r−1

k
steps,

then, after step r−1
k

, there will always exist a copy Sa for some 1 ≤ a ≤ r of Sn for
which no nodes in Sa have been probed. Assuming the target is in Sa, note that the
nodes probed in Srn \ Sa during the previous steps did not provide any information on
its location. Since Sa is a star with n leaves, we require at least dn−1

k
e additional steps

to locate the target.

The last part of the statement, i.e., MD(Srn) = r(n − 1), was proved, e.g., in [75,
114].

We are now ready to prove that the Localization problem remains NP-complete
when restricted to trees.

Theorem 5.4.2. The Localization problem is NP-complete in the class of trees.

Proof. The problem is in NP by Claim 5.3.2. We now prove its NP-hardness by a
reduction from the Hitting Set problem. The inputs are an integer k ≥ 1, a ground
set B = {b1, . . . , bn}, and a set S = {S1, . . . , Sm} of subsets of B, i.e., Si ⊆ B for every
i ≤ m. The Hitting Set problem aims at deciding if there exists a set H ⊆ B such
that |H| ≤ k and H ∩ Si 6= ∅ for every i ≤ m.
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Figure 5.3: Example of a tree T constructed from an instance of Hitting Set in the proof
of Theorem 5.4.2. In this example, the elements bi′ , bi′′ , and bn belong to the set S1 (but not
the elements b1 and bi) as figured by the three stars at level 2. The elements bi and bi′′ belong
to Sj (stars at level 2j) but not the elements b1, bi′ , and bn.

Adding one new element to the ground set and adding this element to one single
subset clearly does not change the solution. Therefore, by adding some dummy elements
(each one belonging to a single subset), we may assume that all subsets are of the same
size σ and that σ − 1 ≡ 0 mod k.

Let γ be any integer such that γ − 1 ≡ 0 mod k and γ > n− k − 1. The instance
T of the Localization problem is built as follows (see Fig. 5.3 for an illustration).
Start with n node-disjoint paths B1, . . . , Bn (called branches) of length 2m, where Bi =
(bi1, . . . , b

i
2m+1) for each i ≤ n. Then add one new root node r adjacent to bi1 for all

i ≤ n. For every 1 ≤ j ≤ m and for every 1 ≤ i ≤ n such that bi ∈ Sj, add γ new
nodes adjacent to bi2j. The subgraph induced by bi2j and by the γ leaves adjacent to it
is referred to as the star representing the element i in the set Sj (or representing the
set Sj in the branch i). The construction of T is clearly achieved in polynomial time.

Intuitively, it will always be favourable for the target to be located in a leaf of some
star because γ is “huge”. During the first step of any strategy, the level (roughly, the
distance to the root) of the target can be identified. Each even level 2j corresponds
to a set Sj. If, during the first step, one star corresponding to each even level can be
eliminated from the possible locations (which corresponds to hit every subset), then
the strategy finishes one step earlier than if all subsets cannot be hit (as, in such a
situation, all stars would have to be checked).
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More formally, we show below that λk(T ) ≤ 1 + σ−1
k

+ γ−1
k

if and only if there is a
hitting set H of size at most k for (B,S). Let us first show that if there is a hitting set
H of size at most k for (B,S), then λk(T ) ≤ ` for any ` ≥ 1+ σ−1

k
+ γ−1

k
. W.l.o.g. (up to

renumbering the elements), let us assume that H = {b1, . . . , bk} and let us present the
corresponding k-strategy. During the first step, the nodes b1

2m+1, . . . , b
k
2m+1 are probed.

We consider the following cases.

• First, if the target is at distance exactly 2m + 1 from one of (actually from all)
the probed nodes, then it is located at r.

• Then, let us assume that the target is at distance strictly less than 2m + 1 from
one of the probed nodes, w.l.o.g., that the target occupies a node in the branch B1

(including the leaves of the stars in this branch). If the target is at odd distance
from b1

2m+1, then the target is located since there is a unique node at distance 2h+1
from b1

2m+1 for each 0 ≤ h ≤ m. Otherwise, the target is at distance d = 2(m−h)
from b1

2m+1 for some 0 ≤ h < m (if h = m, then the target is trivially located). If
b1 /∈ Sh+1, then b1

2m+2−d has degree 2 and b1
2m+1−d is the unique node at distance d

from b1
2m+1 and the target is located. Otherwise, the target may occupy b1

2m+1−d
or any leaf adjacent to b1

2m+2−d. By Observation 5.4.4, this can be checked in dγ
k
e

steps by sequentially checking each of these nodes but one. Overall, in this case,
the target is located in at most 1 + dγ

k
e steps (including the first one).

• Hence, we may assume that the target is at distance at least 2m + 2 from each
of b1

2m+1, . . . , b
k
2m+1. Note that, in this case, the target is the same distance from

every probed node. Said differently, the information brought by the first step is
that the target is at some distance d ≥ 1 from the root r and not in branches
B1, . . . , Bk.

– If d is even, then the target can be at bk+1
d , . . . , bnd . Indeed, for every i ≤ n,

and any even distance d′, there is a unique node at distance d′ from r in
the branch Bi. By Observation 5.4.4, the target can be located in dn−k−1

k
e

steps by sequentially checking each of these nodes but one. Overall, it took
1 + dn−k−1

k
e steps to locate the target.

– Otherwise, d = 2j + 1 for some j ≤ m. Recall that H is a hitting set. In
particular, |Sj \ H| < |Sj| = σ. In the worst case, |Sj \ H| = σ − 1 and,
w.l.o.g. (up to renumbering), Sj \H = {bk+1, . . . , bk+σ−1}. In this case, the
target can be located at bk+1

d , . . . , bnd or at any leaf adjacent to one of the
nodes bk+1

2j , . . . , bk+σ−1
2j , (i.e., the leaves of the stars corresponding to the set

Sj in the branches that have not been hit). Then, the strategy continues
by sequentially probing the nodes bk+1

d , . . . , bn−1
d . Note that we start by the

branches containing the stars that remain to be checked. There are two cases
to be considered.

∗ Either after checking bk+1
d , . . . , bk+σ−1

d in σ−1
k

steps (recall that σ − 1 ≡ 0
mod k), the target is located to be in some star (this is the case if it is
at distance 2 from one probed node). Then, it remains to identify which
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leaf of the star is the location of the target. This can be done in γ−1
k

steps
by sequentially checking each of these leaves but one (Observation 5.4.4).
Overall, in this case, the target has been located in 1 + σ−1

k
+ γ−1

k
steps.

∗ Or the target does not occupy a leaf of a star and is located after a total
of 1 + dn−k−1

k
e steps (including the first step).

To conclude, if the minimum size of a hitting set is at most k, then λk(T ) ≤ ` for
any ` ≥ 1+max{dγ

k
e, dn−k−1

k
e, σ−1

k
+ γ−1

k
} = 1+ σ−1

k
+ γ−1

k
(the last equality holds since

γ > n− k − 1 and, since σ − 1 ≡ 0 mod k and σ > 1, we have σ−1
k
≥ 1).

We now show that if there are no hitting sets of size at most k for (B,S), then
λk(T ) > ` for any ` ≤ 1 + σ−1

k
+ γ−1

k
. Consider any k-strategy. After the first step,

at most k branches have some node that has been probed. These at most k branches
correspond to at most k elements of the ground set B and, since all hitting sets of
(B,S) have size at least k+ 1, there must be a set that does not contain any of these k
elements. W.l.o.g., let S1 = {b1, . . . , bσ} be this set. After the first step, let us assume
that the target is located at distance 3 from the root (it is possible to decide this a
posteriori since we are considering a worst case). Then, the target may be located at
any leaf of some star corresponding to S1. More precisely, the target may be at any
node in {b1

3, . . . , b
σ
3} or at any leaf adjacent to one of the nodes in {b1

2, . . . , b
σ
2}. Actually,

the target may also be at other nodes (the third node of other branches), but we can
ignore these choices. Even with this additional assumption, we show that the strategy
will last for too long.

Indeed, after the first step, the instance becomes equivalent to an instance that
consists of a rooted tree whose root has degree σ and each child of the root is adjacent
to γ + 1 leaves, and the target is known to occupy a leaf. By a direct adaptation of
Lemma 5.4.1, locating the target takes another σ−1

k
+ dγ

k
e steps. Overall, locating the

target thus requires at least 1+ σ−1
k

+dγ
k
e steps. Since γ−1 ≡ 0 mod k, then dγ

k
e > γ−1

k

and λk(T ) > 1 + σ−1
k

+ γ−1
k

.

5.4.2 A Polynomial-time Algorithm for the Next Steps

The proof of Theorem 5.4.2 shows that, in our reduction, choosing the nodes to be
probed during the first step to ensure an optimal strategy is equivalent to finding a
minimum hitting set. We show here that this first step is actually the only source of
hardness for solving Localization in trees.

The key argument is the following easy remark. Let us consider a tree T where an
immobile target is hidden and assume that a single node r ∈ V (T ) is probed. After this
single probe, the distance d ∈ N between the target and r is revealed. Therefore, from
the second step, the instance becomes equivalent to a tree T ′ (a subtree of T ) rooted
in r, whose leaves (all of them) are the same distance d from r, and where the target
is known to occupy some leaf of T ′. We first present an algorithm that computes in
polynomial time (independent of k and `) an optimal strategy to locate the target in
such instances.

Let T be the set of rooted trees with all leaves the same distance from the root.
Given a rooted tree (T, r) ∈ T (in what follows, we omit r when it is clear from the
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context), let λLk (T ) be the minimum integer h such that there exists a k-strategy Φ for
locating a target in at most h steps knowing a priori that the target occupies some leaf
of T . The next claim is one of the key arguments that makes the problem easier in this
context. For any node v in a rooted tree (T, r), we denote by Tv the subtree rooted at
v.

Claim 5.4.3. Let (T, r) ∈ T be a tree rooted in r and v be a child of r. If the target is
known to occupy a leaf of T , then probing any node in Tv allows to learn if the target
occupies a leaf of Tv or a leaf of T \ Tv.

Proof of the claim. Let d be the distance between r and the leaves of T . Let w be any
node of Tv and let d′ be the distance between w and r. The claim follows from the fact
that the target occupies a leaf of Tv if and only if its distance to w is strictly less than
d+ d′. �

Let T ∈ T be a tree rooted in r and v be a child of r, and let us assume that the
secret location of the target is some leaf of Tv. Note that (Tv, v) ∈ T . Let us assume
that Tv is not a path and let s be the first step of an optimal strategy Φ in T that
probes some node of Tv (such a step s must exist since otherwise the target would never
be located in Tv). By Claim 5.4.3, it is sufficient to probe a single node of Tv to learn
whether the target occupies a leaf of Tv. Then, applying an optimal strategy φv in Tv
will locate the target in a total of s+λLk (Tv)−1 steps if the first step of φv only requires
probing a single vertex of Tv and s + λLk (Tv) steps otherwise. So, it may be possible
to do better. Indeed, probing several nodes of Tv during the sth step of Φ may serve
not only to locate the target in Tv but also to “play” the first step of Φv. Doing so,
the strategy will take only s + λLk (Tv)− 1 steps. Let v1, . . . , vd∗ denote the children of
r. So, elaborating, an optimal strategy will consist of doing a tradeoff between probing
one single node in several of the Tvi ’s (and locating “quickly” in which subtree Tvi the
target is hidden, since several of them are considered simultaneously) and probing more
nodes in some of the Tvi ’s in order to get a head start for the strategy in the case the
Tvi hosting the target is identified.

For any tree T , let π(T ) be the minimum integer q ≤ k such that there exists a
k-strategy for locating a target in T in at most λLk (T ) steps, knowing a priori that the
target occupies some leaf of T , and such that q nodes are probed during the first step.

To illustrate this need of a tradeoff and the importance of π, let us consider the
example depicted in Fig. 5.4. The root r of T has eight children v1, . . . , v8 with the
pairs (λLk (Tvi), π(Tvi)) being (4, 2), (4, 1), (3, 3), (3, 3), (2, 2), (2, 2), (1, 1), and (0, 0),
respectively. Let k = 4. Here, the target can be located in at most four steps, through
the following strategy.

• Step 1. The probed nodes are those labeled 1© in Fig. 5.4, that is, two nodes of
Tv1 , one node of Tv2 , and one node of Tv3 . If the target occupies some leaf of Tv1

or Tv2 , then there is a strategy for locating the target in at most λLk (Tv1) − 1 =
λLk (Tv2)−1 = 3 extra steps because π(Tv1) (π(Tv2), resp.) nodes of Tv1 (Tv2 , resp.)
have been probed. If the target occupies some leaf of Tv3 , then there is a strategy
for locating the target in at most λLk (Tv3) = 3 extra steps (that is a total of four
steps). Thus, assume that the target occupies a leaf of some subtree Tvi , 4 ≤ i ≤ 8.
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Figure 5.4: A tree (T, r) ∈ T rooted at r. The eight children of r are v1, . . . , v8. The pair
(λLk (Tvi), π(Tvi)) for each Tvi is written below the corresponding subtree.In the figure, one
(two, three, resp.) x© in a subtree corresponds to one (two, three, resp.) node (nodes) of this
subtree being probed during step x.

• Step 2. The probed nodes are those labeled 2© in Fig. 5.4, that is, three nodes of
Tv4 and one node of Tv5 . If the target occupies some leaf of Tv4 or Tv5 , then using
similar arguments to those above, we can show there is a strategy for locating the
target in at most two extra steps (that is a total of four steps). Thus, assume that
the target occupies a leaf of Tv6 , Tv7 or Tv8 .

• Step 3. The probed nodes are those labeled 3© in Fig. 5.4, that is, two nodes of
Tv6 and one node of Tv7 . Again, if the target occupies some leaf of Tv6 or Tv7 ,
then, with at most one extra step, the target is located. Otherwise, the target is
on Tv8 and there is no need for an extra step.

Let (T, r) ∈ T be a tree rooted in r and let v1, . . . , vd∗ be the children of r. From
previous arguments, the computation of an optimal strategy for T consists of deter-
mining, for each subtree Tvi (1 ≤ i ≤ d∗), the first step for which a node of Tvi will be
probed (if the target has not been located in a different subtree at a previous step). If
one node is probed during this step, then λLk (Tvi) extra steps are needed if the target
occupies some leaf of Tvi (unless π(Tvi) = 1 in which case λLk (Tvi) − 1 extra steps are
needed). Furthermore, if we want to locate the target in at most λLk (Tvi) − 1 extra
steps (if the target occupies some leaf of Tvi), then π(Tvi) nodes of Tvi must be probed
during this step. Algorithms 1 and 2 compute such an optimal strategy for a tree in T
in polynomial time. We first describe their behaviour, before focusing on proving their
correctness.

Description of Algorithm 1 The main algorithm A1(k, (T, r)) takes an integer k ≥ 1
and a rooted tree (T, r) ∈ T as inputs and computes (λLk (T ), π(T )) and a corresponding
k-strategy. It proceeds bottom-up by dynamic programming from the leaves to the root.
Precisely, let v1, . . . , vd∗ be the children of r. For any 1 ≤ i ≤ j ≤ d∗, let T [i] = Tvi be
the subtree rooted at vi, and let T [i, j] = {r} ∪ Tvi ∪ . . . ∪ Tvj (T [i, j] = ∅ if i > j). To
lighten the notations, let us set λi = λLk (T [i]) and πi = π(T [i]) for every 1 ≤ i ≤ d∗.
Assume that, (Λ,Π) = (λi, πi)1≤i≤d∗ have been computed recursively and sorted in non-
increasing lexicographical order. Then, A2(k, (T, r), (Λ,Π)), described in Algorithm 2,
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Algorithm 1 A1(k, (T, r))

Require: An integer k and a tree (T, r) ∈ T rooted in r with children v1, . . . , vd∗

Ensure: (λLk (T ), π(T ))
1: if (T, r) is a rooted path then
2: return (0, 0)
3: for i = 1 to d∗ do
4: Let (λi, πi) = A1(k, (T [i], vi)) // recursive calls to Algorithm 1
5: Sort the (λi, πi)1≤i≤d∗ in non-increasing lexicographical order
6: return A2(k, (T, r), (λi, πi)1≤i≤d∗) // call to Algorithm 2

Algorithm 2 A2(k, (T, r), (Λ,Π))

Require: An integer k and a tree (T, r) ∈ T rooted in r with v1, . . . , vd∗ such that (Λ,Π) =
(λi, πi)1≤i≤d∗ is sorted in non-increasing lexicographical order

Ensure: (λLk (T ), π(T ))
1: l← 1, p← k, d← d∗

2: if T [d∗] is a rooted path then
3: d← z where 0 ≤ z < d∗ is the smallest integer such that T [z + 1] is a rooted path
4: l← 1 +

⌈
d∗−d−1

k

⌉
// l← 1 + λLk (T [d+ 1, d∗]) (Lem. 5.4.5)

5: p← k + k
(⌈

d∗−d−1
k

⌉
−
⌈
d∗−d−1
d∗−d

⌉)
− (d∗ − d− 1) // p← k − π(T [d+ 1, d∗])

(Lem. 5.4.5)
6: for i = d down to 1 do
7: if p = 0 or l < λi + 1 then
8: p← k, l← max(l + 1, λi + 1)
9: α← πi − (πi − 1)d(l − (λi + 1))/le // α = πi if, in Line 7, l < λi + 1, and α = 1 otw.

10: if α ≤ p then
11: p← p− α
12: else
13: p← k − 1, l← l + 1 // l = 1 + λLk (T [i, d∗]); p = k − π(T [i, d∗]) (Lem. 5.4.9)
14: return (l − 1, k − p)

takes the integer k ≥ 1, the rooted tree (T, r) ∈ T , and the sorted tuple (Λ,Π) as
inputs and computes (λLk (T ), π(T )) and a corresponding strategy.

Description of Algorithm 2 We now informally describe A2(k, (T, r), (Λ,Π)). The
first part, from Lines 2 to 5, deals with the subtrees Tvd+1

, . . . , Tvd∗ that are rooted
paths (Tvi ’s being paths rooted at one of their two ends, while the second end is a leaf).
In other words, these Lines deal with the Tvi ’s such that (λi, πi) = (0, 0). Indeed, this
case is somehow pathologic, and needs to be treated separately.

The second part (from Line 6) of Algorithm 2 goes as follows. Informally,
A2(k, (T, r), (Λ,Π)) recursively builds, for i = d down to 1, an optimal k-strategy
Φ for T [i, d∗] from an optimal k-strategy Φ′ of T [i + 1, d∗] and from an optimal k-
strategy Φ′′ of T [i] (the latter one being given as input through (λi, πi)). In other
words, (λLk (T [i, d∗]), π(T [i, d∗])) is computed from (λLk (T [i+ 1, d∗]), π(T [i+ 1, d∗])), and
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(λi, πi). For every 1 ≤ i ≤ d + 1, let li (resp., pi) denote the value of l (resp. of p)
just before the (d + 2 − i)th iteration of the for loop (so, l1 and p1 are the final val-
ues of l and p).Intuitively, let us assume that an optimal strategy for T [i + 1, d∗] has
been computed, that it takes at most li+1 − 1 steps, and that it requires a minimum of
k − pi+1 = π(T [i + 1, d∗]) nodes to be probed during its first step.Roughly, there are
five cases to consider.

• If πi ≤ pi+1 and λi = li+1 − 1, then the strategy Φ follows Φ′ but, in addition,
probes πi nodes of T [i] during its first step. If the target is in T [i], then Φ follows
Φ′′ (and takes a total of at most λi steps), otherwise, it proceeds as Φ′ (and takes
a total of at most li+1 − 1 steps). We get li = li+1 and pi = pi+1 − πi.

• Else, if πi > pi+1 > 0 and λi = li+1 − 1, then the first step of Φ probes a unique
node in T [i]. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at
most λi + 1 steps). Otherwise, it proceeds as Φ′ (and takes a total of at most li+1

steps). We get li = li+1 + 1 and pi = k − 1.

• Else, if pi+1 = 0 and λi ≤ li+1−1, then the first step of Φ probes a unique node in
T [i]. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at most λi + 1
steps). Otherwise, it proceeds as Φ′ (and takes a total of at most li+1 steps). We
get li = li+1 + 1 and pi = k − 1.

• Else, if λi < li+1− 1 and pi+1 > 0, then the strategy Φ follows Φ′ but, in addition,
probes one node of T [i] during its first step. If the target is in T [i], then Φ follows
Φ′′ (and takes a total of at most λi + 1 steps), otherwise, it proceeds as Φ′ (and
takes a total of at most li+1 − 1 steps). We get li = li+1 and pi = pi+1 − 1.

• Finally, if (λi > li+1 − 1), then the strategy Φ probes πi nodes in T [i] during the
first step. If the target is in T [i], then Φ follows Φ′′ (and takes a total of at most
λi steps), otherwise, it proceeds as Φ′ (and takes a total of at most li+1 steps).
We get li = λi + 1 and pi = k − πi.

Correctness and complexity of Algorithms 1 and 2 We start by proving the cor-
rectness of the two main parts of Algorithm 2, i.e., that of the peculiar case (Lines 2
to 5) and of the general case (from Line 6).

First, we consider the first part of Algorithm 2. Lemma 5.4.5 below proves that
Lines 2 to 5 compute (λLk (T [vd+1, d

∗]), π(T [vd+1, d
∗])). Let us recall the following obser-

vation that is easy to see.

Observation 5.4.4. For every star Sn with n leaves, λk(Sn) = dn−1
k
e.

We define S ⊂ T as the set of subdivided rooted stars S, (i.e., trees with at most
one node of degree at least 3) with all leaves the same distance from the root, where
the root of S is the (unique) node with degree at least 3 or one of the two ends of S is
a path.

Lemma 5.4.5. For every subdivided rooted star S ∈ S with d leaves, λLk (S) = dd−1
k
e

and π(S) = −k(dd−1
k
e − dd−1

d
e) + (d− 1).
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Proof. The strategy consists of sequentially probing each leaf of S but one. Either the
target will be probed at some step, or it must be in the unique leaf that has not been
probed. During the first step, π(S) leaves are probed, and exactly k leaves are probed
during every other step. Such a strategy lasts for dd−1

k
e steps.

For any strategy using less than dd−1
k
e steps, the nodes of at most k(dd−1

k
e−1) ≤ d−2

branches have been probed. Hence, there are at least two branches of S for which no
nodes have been probed and so it is not possible to decide which one of these branches
is occupied by the target.

Similarly, it can be checked that, for any strategy using at most dd−1
k
e steps and

probing less than π(S) nodes during the first step, there are at least two branches of
S for which no nodes have been probed. To be convinced of that point, notice that
π(S) = −k(dd−1

k
e − dd−1

d
e) + (d− 1) is equivalent to:

• π(S) = 0 if d− 1 = 0;

• π(S) = k if d− 1 > 0 and (d− 1) mod k = 0;

• π(S) = (d− 1) mod k otherwise.

This concludes the proof.

We now focus on proving the correctness of the second part of Algorithm 2, which is
mainly done in Lemma 5.4.9 below. We first introduce three easy observations, whose
proofs are omitted.

Observation 5.4.6. Let (T, r) ∈ T be a rooted tree. Then, λLk (T ) = 0 if and only if T
is a rooted path, and π(T ) = 0 if and only if T is a rooted path.

Although the following observation (closedness of λk under subtree) does not hold
in general graphs (see Observation 5.2.1), it can easily be seen that this holds in the
case of trees.

Observation 5.4.7. For any tree T and any subtree T ′ of T , λLk (T ′) ≤ λk(T
′) ≤ λk(T )

and λLk (T ′) ≤ λLk (T ).

The next observation is obvious (indeed, to prove it, just note that the first step
probing a single vertex can simply be ignored) but will be quite useful in what follows.

Observation 5.4.8. For any tree T , there exists a k-strategy for locating the target in
at most λk(T ) + 1 steps (resp., in at most λLk (T ) + 1 steps if the target is known to
occupy a leaf) and that probes a single arbitrary node during its first step.

We are now ready to prove the next result, which essentially proves that the second
part of Algorithm 2 is correct. That is, we prove, provided the Tvi ’s are sorted in non-
increasing lexicographical order (over (λi, πi)), that the strategy Φ described earlier is
optimal for T [i, d∗], that is, it computes (λLk (T [i, d∗]), π(T [i, d∗])).

Lemma 5.4.9. For every 1 ≤ i ≤ d+ 1, we have λLk (T [i, d∗]) = li− 1 and π(T [i, d∗]) =
k − pi.
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Proof. The proof is by induction on d+ 1− i ≤ d+ 1. For i = d+ 1, there are two cases
to be considered.

• If d = d∗ (i.e., the condition on Line 2 is not satisfied), then, before the first
iteration, ld+1 = 1, pd+1 = k and T [d+ 1, d∗] = ∅, and so λLk (∅) = ld+1− 1 = 0 and
π(∅) = k − pd+1 = 0. So the induction hypothesis is satisfied for i = d+ 1.

• Otherwise, d < d∗ and Tvd+1
, . . . , Tvd∗ are rooted paths. That is, T [d+ 1, d∗] ∈ S.

Then, the induction hypothesis for i = d + 1 is satisfied by Lemma 5.4.5 and
Lines 2 to 5 of Algorithm 2.

Let us assume that the induction hypothesis holds for 1 < i + 1 ≤ d + 1. That
is, at the end of the (d − i)th iteration of the for loop, λLk (T [i + 1, d∗]) = li+1 − 1 and
π(T [i + 1, d∗]) = k − pi+1. We will prove that it is also true after the next iteration of
the for loop, i.e., λLk (T [i, d∗]) = li − 1 and π(T [i, d∗]) = k − pi.

It is very important to note that Lines 2 and 3 imply that λi > 0 and πi > 0, for
every 1 ≤ i ≤ d. We consider five cases depending on the values of pi+1, πi, λi, and li+1.

• Case 0 < πi ≤ pi+1, li+1 = λi + 1.

By the induction hypothesis, λLk (T [i+ 1, d∗]) = li+1− 1 = λi and π(T [i+ 1, d∗]) =
k − pi+1. Because the value of l at the beginning of this iteration of the for loop
is li+1 = λi + 1, then α = πi. Then, since πi ≤ pi+1, we get that p becomes
p− α = pi+1 − πi and l is not modified. Hence, li = li+1 and pi = pi+1 − πi.
We now prove that λLk (T [i, d∗]) = li+1 − 1 and π(T [i, d∗]) = k − pi+1 + πi. By
Observation 5.4.7, we have λLk (T [i, d∗]) ≥ λLk (T [i + 1, d∗]) = li+1 − 1. To prove
that λLk (T [i, d∗]) ≤ λLk (T [i+ 1, d∗]) = li+1− 1, it is sufficient to describe a strategy
Φ for λLk (T [i, d∗]) with a total of at most li+1 − 1 steps.

Let Φ′ be an optimal strategy for T [i+ 1, d∗] probing at most π(T [i+ 1, d∗]) nodes
during the first step. Also, let Φ′′ be an optimal strategy for T [i] probing at most
πi nodes during the first step. The first step of Φ consists of probing πi nodes
of T [i] (as Φ′′) and π(T [i + 1, d∗]) = k − pi+1 nodes of T [i + 1, d∗] (as Φ′). By
assumption, πi ≤ pi+1, and, by the induction hypothesis, π(T [i+1, d∗]) = k−pi+1,
so πi + π(T [i + 1, d∗]) ≤ k and at most k nodes are probed. By Claim 5.4.3, this
first step allows to decide if the target is in T [i] or not (in the latter case, it is in
T [i+1, d∗]). If the target is in T [i], then Φ continues by following the strategy Φ′′ in
T [i], which will locate the target in at most λi−1 = li+1−2 extra steps. Otherwise
(the target is in T [i+ 1, d∗]), Φ continues by following the optimal strategy Φ′ for
T [i + 1, d∗] which will locate the target in at most λLk (T [i + 1, d∗])− 1 = li+1 − 2
extra steps. In all cases, Φ locates the target in at most li+1 − 1 steps.

We now prove that π(T [i, d∗]) = k − pi+1 + πi. For purpose of contradiction, let
us assume that there is a strategy for locating the target in T [i, d∗] in at most
λi = li+1 − 1 steps and probing strictly less than k − pi+1 + πi nodes during the
first step. By definition, at least πi nodes of T [i] must be probed during the first
step to locate the target in at most λi = li+1 − 1 steps. Thus, it means that
strictly less than k− pi+1 nodes of T [i+ 1, d∗] can be probed during the first step.
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This contradicts that the strategy performs in at most λi = li+1 − 1 steps since
π(T [i+ 1, d∗]) = k − pi+1.

• Case πi > pi+1 > 0, li+1 = λi + 1.

In this case, it can be checked that α = πi and that the else instruction (Line 12) is
executed and so li = li+1 + 1 and pi = k−1. We will prove that λLk (T [i, d∗]) = li+1

and π(T [i, d∗]) = 1.

By the induction hypothesis, λLk (T [i+ 1, d∗]) = li+1− 1 = λi and π(T [i+ 1, d∗]) =
k − pi+1.

We prove that λLk (T [i, d∗]) ≥ λLk (T [i+ 1, d∗]) + 1 = li+1. For purpose of contradic-
tion, let us assume that λLk (T [i, d∗]) < li+1 and let Φ′ be a strategy for locating the
target in T [i, d∗] in at most li+1−1 steps. Since li+1−1 = λi, then at least πi nodes
of T [i] must be probed during the first step. Since λLk (T [i+ 1, d∗]) = li+1− 1 = λi
and π(T [i+1, d∗]) = k−pi+1, at least k−pi+1 nodes of T [i+1, d∗] must be probed
during the first step. This means that at least πi + k − pi+1 > k nodes must be
probed during the first step, a contradiction.

We now prove that λLk (T [i, d∗]) = li+1. It is sufficient to design a strategy Φ for
locating the target in T [i, d∗] in at most li+1 steps. By Observation 5.4.8, there is
a strategy Φ′ for T [i] for locating the target in at most λi + 1 steps that probes a
single node during the first step. Also, let Φ′′ be an optimal strategy for T [i+1, d∗].
The first step of Φ consists of probing one node of T [i]. If the target is in T [i], the
strategy continues with Φ′ (in at most λi = li+1−1 steps), otherwise, the strategy
continues with Φ′′ (in at most λLk (T [i + 1, d∗]) = li+1 − 1 steps). From this, we
deduce that π(T [i, d∗]) ≤ 1 and, by definition of π, we get that π(T [i, d∗]) = 1.

• Case pi+1 = 0, li+1 ≥ λi + 1.

In this case, because of the if instruction (Line 7), the value of p is set to k and
li = li+1 + 1. Then, α = 1 and so (if instruction of Line 10) pi = k − 1. We will
prove that λLk (T [i, d∗]) = li+1 and π(T [i, d∗]) = 1. By the induction hypothesis,
λLk (T [i+ 1, d∗]) = li+1 − 1 ≥ λi and π(T [i+ 1, d∗]) = k.

We first prove that λLk (T [i, d∗]) ≥ λLk (T [i + 1, d∗]) + 1 = li+1. For purpose of
contradiction, let us assume that λLk (T [i, d∗]) < li+1 and let Φ be a k-strategy for
T [i, d∗] locating the target in at most li+1 − 1 steps. First, if a node of T [i] is
probed during the first step of Φ, it means that at most k − 1 < k − pi+1 = k
nodes of T [i + 1, d∗] are probed during the first step of Φ, contradicting that
k − pi+1 = π(T [i + 1, d∗]) is the minimum number of nodes of T [i + 1, d∗] that
must be probed during the first step of an optimal k-strategy for T [i+ 1, d∗].

Hence, neither Φ nor any k-strategy locating the target in T [i, d∗] in at most
li+1 − 1 steps can probe some node of T [i] during its first step. Below, we will
build such a strategy Φ′ (that probes some nodes of T [i] during its first step) from
Φ, which leads to a contradiction.
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Since Φ does not probe any node of T [i] during its first step, then li+1 − 1 > λi
(otherwise, a target hidden in T [i] will not be located in at most li+1− 1 steps, by
definition of λi > 0). Let x > 1 be the first step of Φ that probes a node of T [i] if
the target is in T [i] (such a step exists since T [i] is not a rooted path by definition
of d, i.e., since λi > 0). Then, li+1 − x ≥ λi since, otherwise, a target hidden in
T [i] could not be located by Φ in at most li+1 − 1 steps. If li+1 − x = λi, then
the xth step of Φ must probe πi nodes of T [i]. Otherwise, if li+1− x > λi, we may
assume that the xth step of Φ probes a single node of T [i] (by Observation 5.4.8).

Let i + 1 ≤ j ≤ d∗ be such that the first step of Φ probes some nodes of T [j].
Because the subtrees have been sorted, λj ≤ λi < li+1 − 1 and we may assume
that the first step of Φ probes one node in T [j] (by Observation 5.4.8). Let us
define the k-strategy Φ′ as follows. The strategy Φ′ follows Φ but, during its first
step, it probes one node of T [i] instead of probing some nodes of T [j]. If the
target is located in T [i], then Φ′ applies an optimal strategy in T [i] and locates
the target in at most λi < li+1 − 1 extra steps. Otherwise, Φ′ continues to mimic
the strategy Φ until its xth step. If the target has been located in some subtree
before the xth step, then Φ′ continues to act as Φ. Otherwise, the xth step of Φ′

mimics the xth step of Φ but, instead of probing one node of T [i] (resp. πi nodes
of T [i] if li+1 − x = λi), Strategy Φ′ probes one node of T [j] (resp. πj ≤ πi nodes
of T [j] if li+1 − x = λi). Then, Φ′ proceeds as Φ.

It is easy to show that Φ′ is a k-strategy for T [i, d∗] locating the target in at most
li+1− 1 steps, and probing some node of T [i] during its first step, a contradiction.

We now prove that λLk (T [i, d∗]) = li+1 and that π(T [i, d∗]) = 1. It is sufficient
to design a strategy Φ for T [i, d∗] locating the target in at most li+1 steps. By
Observation 5.4.8, there is a strategy Φ′ for T [i] for locating the target in at most
λi + 1 steps and probes a single node during the first step. Also, let Φ′′ be an
optimal strategy for T [i+ 1, d∗]. The first step of Φ consists of probing one node
of T [i]. If the target is in T [i], then the strategy continues with Φ′ (in at most
λi ≤ li+1 − 1 extra steps), otherwise, the strategy continues with Φ′′ (in at most
λLk (T [i+ 1, d∗]) = li+1 − 1 extra steps). From this, we deduce that π(T [i, d∗]) ≤ 1
and, by definition of π, we get that π(T [i, d∗]) = 1.

• Case pi+1 > 0, li+1 > λi + 1.

In this case, the condition of the if instruction (Line 7) is not satisfied, α = 1, and
so the condition of the if instruction (Line 10) is satisfied. Hence, li = li+1 and
pi = pi+1−1. We will prove that λLk (T [i, d∗]) = li+1−1 and π(T [i, d∗]) = k−pi+1+1.
By the induction hypothesis, we have λLk (T [i+ 1, d∗]) = li+1− 1 > λi and π(T [i+
1, d∗]) = k − pi+1. By Observation 5.4.7, λLk (T [i, d∗]) ≥ λLk (T [i+ 1, d∗]) = li+1 − 1
also.

To prove that λLk (T [i, d∗]) ≤ λLk (T [i+ 1, d∗]) = li+1 − 1, it is sufficient to describe
a strategy Φ for λLk (T [i, d∗]) with a total of at most li+1 − 1 steps. By Observa-
tion 5.4.8, there is a strategy Φ′ for T [i] for locating the target in at most λi + 1
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steps that probes a single node during the first step. Let Φ′′ be an optimal strat-
egy for T [i + 1, d∗] probing at most π(T [i + 1, d∗]) = k − pi+1 < k nodes during
the first step. The first step of Φ consists of probing one node in T [i] (as Φ′) and
π(T [i + 1, d∗]) = k − pi+1 nodes of T [i + 1, d∗] (as Φ′′). By assumption, 0 < pi+1,
so 1 + π(T [i + 1, d∗]) ≤ k and at most k nodes are probed. By Claim 5.4.3, this
first step allows to decide if the target is in T [i] or not (in which case it is in
T [i+ 1, d∗]). If the target is in T [i], then Φ continues by following the strategy Φ′

in T [i] which will locate the target in at most λi < li+1− 1 extra steps. Otherwise
(the target is in T [i+ 1, d∗]), Φ continues by following the optimal strategy Φ′′ for
T [i + 1, d∗] which will locate the target in at most λLk (T [i + 1, d∗])− 1 = li+1 − 2
extra steps. In all cases, Φ locates the target in at most li+1 − 1 steps.

Let us prove that π(T [i, d∗]) = k − pi+1 + 1. For purpose of contradiction, let
us assume that there is a strategy Φ for locating the target in T [i, d∗] in at most
li+1−1 steps that probes strictly less than k−pi+1 +1 nodes during the first step.
We will show that we can construct a strategy Φ′ in T [i + 1, d∗] for locating the
target in at most `i+1 − 1 steps and probes at most k− pi+1 − 1 nodes during the
first step, a contradiction. If the first step of Φ probes at least one node of T [i],
then it probes at most k−pi+1−1 nodes of T [i+ 1, d∗] contradicting the fact that
λLk (T [i + 1, d∗]) = li+1 − 1 and π(T [i + 1, d∗]) = k − pi+1. Hence, we may assume
that the first step of Φ probes k − pi+1 nodes of T [i+ 1, d∗] and no nodes in T [i].

Let t > 1 be the minimum integer such that at least one node of T [i] is probed
during the tth step of Φ. After step t, at most li+1 − t − 1 steps remain and so
li+1 − t − 1 ≥ λi − 1. Let j ∈ Ji + 1, d∗K be such that at least one node of T [j]
is probed during the first step of Φ. Note that j > i and, because the subtrees
are ordered in non-increasing lexicographical order, either λj < λi or (λj = λi and
πj ≤ πi).

Let us consider the following strategy Φ′ for T [i + 1, d∗]. The first t − 1 steps of
the strategy Φ′ follow the ones of Φ but do not probe any node of T [j]. That is,
for every j′ ∈ Ji + 1, d∗K \ {j} and for every t′ < t, the step t′ of Φ′ probes the
same nodes of T [j′] as the step t′ of Φ. In particular, the first step of Φ′ probes
at most k − pi+1 − 1 nodes. If the target has been located in a subtree different
from T [j] during the first t−1 steps, then Φ′ continues as Φ (but without probing
the nodes of T [i] since Φ′ is a strategy for T [i+ 1, d∗]). Otherwise, the tth step of
Φ′ proceeds as follows. For every j′ ∈ Ji+ 1, d∗K \ {j}, the step t of Φ′ probes the
same nodes of T [j′] as the step t of Φ. Again, the strategy Φ′ does not probe any
node of T [i]. Note that, during its step t, the strategy Φ probes at least one node
of T [i], and it probes at least πi nodes of T [i] if li+1− t = λi. Therefore, there are
two cases to be considered.

– If li+1 − t > λj, then Φ′ probes one node of T [j] during step t. If the target
is located in T [j] then the next steps of Φ′ follow an optimal strategy in T [j]
and will locate the target in at most λj extra steps. Otherwise, the next steps
of Φ′ follow the ones of Φ.
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– If li+1− t = λj, then it implies that li+1− t = λi (since `i+1− t ≥ λi ≥ λj) and
that the step t of Φ was probing πi nodes in T [i]. The strategy Φ′ replaces
these πi probes by probing πj ≤ πi nodes of T [j]. If the target is located
in T [j] then the next steps of Φ′ follow an optimal strategy in T [j] and will
locate the target in at most λj − 1 extra steps. Otherwise, the next steps of
Φ′ follow the ones of Φ.

Overall, Φ′ is a strategy for locating the target in T [i + 1, d∗] in at most li+1 − 1
steps that probes at most k−pi+1−1 nodes during the first step. This contradicts
the fact that π(T [i+ 1, d∗]) = k − pi+1. Hence, π(T [i, d∗]) = k − pi+1 + 1.

• Case li+1 < λi + 1.

In this case, because of the if instruction (Line 7), the value of p is set to k
and li = λi + 1. Then, α = πi and so (if instruction on Line 10) pi = k − πi.
We will prove that λLk (T [i, d∗]) = λi and π(T [i, d∗]) = πi. By the induction
hypothesis, λLk (T [i + 1, d∗]) = li+1 − 1 < λi and π(T [i + 1, d∗]) = k − pi+1. Also,
by Observation 5.4.7, λLk (T [i, d∗]) ≥ λLk (T [i]) = λi.

To prove that λLk (T [i, d∗]) ≤ λi, it is sufficient to describe a strategy Φ for
λLk (T [i, d∗]) with a total of at most λi steps. Let Φ′ be an optimal strategy for
T [i] probing at most πi nodes during the first step. Let Φ′′ be an optimal strategy
for T [i + 1, d∗] for locating the target in at most li+1 − 1 < λi steps and probing
at most π(T [i+ 1, d∗]) = k − pi+1 nodes during the first step. The first step of Φ
probes πi nodes of T [i] (as Φ′). By Claim 5.4.3, this first step allows to decide if
the target is in T [i] or not. If it is in T [i] then Φ follows Φ′. Otherwise, Φ executes
Φ′′ in T [i+ 1, d∗].

To conclude, let us prove that π(T [i, d∗]) = πi. The previous strategy Φ shows
that π(T [i, d∗]) ≤ πi. Since λLk (T [i, d∗]) = λi, any strategy for T [i, d∗] must probe
at least πi nodes of T [i] during the first step by definition of πi. This concludes
the proof.

With Lemma 5.4.9 in hand, we are now ready to prove that Algorithms 1 and 2
are correct. We also prove that their running time is polynomial. More precisely,
we prove in Theorem 5.4.11 below that A1(k, (T, r)) computes (λLk (T ), π(T )) and a
corresponding k-strategy in time O(n log n), where n is the number of nodes. To do
that, Theorem 5.4.10 proves the correctness and the linear (in the number of children
of r) time complexity of A2(k, (T, r), (Λ,Π)).

Theorem 5.4.10. Let k ≥ 1 and (T, r) ∈ T be a tree rooted in r with children
v1, . . . , vd∗, such that the tuples (Λ,Π) = (λi, πi)1≤i≤d∗ are sorted in non-increasing
lexicographical ordering. Then, A2(k, (T, r), (Λ,Π)) returns (λLk (T ), π(T )) and a cor-
responding strategy. Furthermore, the time complexity of A2 is O(d∗) (independent of
k).

Proof. The time complexity is obvious and the correctness follows from Lemma 5.4.9
for i = 1. The fact that the strategy is also returned is not explicitly described in
Algorithm 2 but directly follows from the proof of Lemma 5.4.9.
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Theorem 5.4.11. Let k ≥ 1 and let (T, r) ∈ T be an n-node rooted tree. Then,
A1(k, (T, r)) returns (λLk (T ), π(T )) and a corresponding strategy. Furthermore, the time
complexity of A1 is O(n log n) (independent of k).

Proof. The correctness is simply proved by induction and by Theorem 5.4.10. For the
time complexity, at every recursive call on a subtree Tv rooted at v (with dv children),
the additional number of operations is O(dv log dv) (sorting) plus O(dv) (Algorithm A2,
by Theorem 5.4.10). Since, in any n-node tree T ,

∑
v∈V (T ) dv = 2(n − 1), this gives

a total complexity of O(
∑

v∈V (T ) dv log dv) = O(n log n). Again, the strategy is not
explicit in our presentation but can be easily computed.

5.4.3 A Polynomial-time (+1)-approximation

From Algorithm A1(k, (T, r)), it is easy to get an efficient approximation algorithm for
solving Localization in trees when k and ` are part of the input, and a polynomial
time algorithm when k is fixed.

Theorem 5.4.12. There exists an algorithm with running time O(n log n) that, given
any integer k ≥ 1 and n-node tree T , computes a k-strategy for locating a target in T
in at most λk(T ) + 1 steps.

Proof. The strategy proceeds as follows. The first step probes any arbitrary node r
of T . Let d be the distance between r and the target, L ⊆ V (T ) be the set of nodes
at distance exactly d from r, and T d be the subtree induced by r and every node on
a path between r and the nodes in L. Note that (T d, r) ∈ T and that the target is
occupying a leaf of T d. Hence, the target can be located by applying A1(k, (T d, r)).
By Theorem 5.4.11, this will locate the target in at most 1 + maxd λ

L
k (T d) ≤ 1 + λk(T )

steps.

Theorem 5.4.13. There exists an algorithm with running time O(nk+2 log n) that,
given any integer k ≥ 1 and n-node tree T , computes an optimal k-strategy for locating
a target in T in at most λk(T ) steps.

Proof. The proof is similar to the one of Theorem 5.4.12, but instead of probing a single
node during the first step, we enumerate all the O(nk) possibilities for the first step,
and, for each of them, we then apply Algorithm A1. For one of these instances, the
target will be located within λk(T ) steps.

To conclude this section, it is important to mention that both Theorems 5.4.12
and 5.4.13 also hold in the case of edge-weighted trees. Indeed, distances are only used
in Claim 5.4.3 which clearly holds for edge-weighted trees.

5.5 Further work

In this chapter, we have studied the computational complexity of the Localization
problem. We have established the importance of its two main parameters, namely the
number k of vertices that can be probed each step, and the number ` of steps within
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which the target must be located. Namely, fixing any of these two parameters makes
the problem NP-complete. This remains true for the Relative-Localization problem as
well.

We have then focused on the case of trees. For that case, we have proved that the
Localization problem remains NP-complete. However, the only source of hardness
is due to the first probing step as, as soon as the second step begins, an optimal way
to play can be computed in polynomial time. As a consequence, the problem, though
hard, can be approximated efficiently.

Our results in trees leave the open question of whether determining λk(T ) is FPT
(in k) in the class of trees T . Also, we do not know the complexity of determining
whether κ`(T ) ≤ k for a tree T . An interesting line of research could be to study all
those problems in other graph classes, such as interval or planar graphs.

The problem of determining λrelk (T ) for a tree T seems to be much more intricate
even for simple topologies. A first step towards a better understanding of it would be to
fully understand the centroidal dimension of paths (i.e., to determine κrel1 (P ) for every
path P ), which has been initiated in [60]. A more challenging direction would then be
to consider the case of all trees.
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Chapter 6

Oriented Metric Dimension

6.1 Introduction

A natural way of generalizing graph theoretical problems is to consider their directed
counterparts. In this chapter, the metric dimension of digraphs is considered. The
metric dimension of digraphs was first considered by Chartrand, Rains, and Zhang
in [42], before receiving further consideration in several works (see [55, 56, 96, 103, 105]).
It is worthwhile recalling that, in digraphs, distances have behaviours that differ from
those in undirected graphs. Notably, an important point that should be addressed is
that, in the context of general digraphs D, we might have dist(u, v) 6= dist(v, u) for
any two vertices u, v, where dist(u, v) here refers to the length of a shortest directed
path from u to v. A digraph D is strongly-connected (or strong for short) if, for every
u, v ∈ V (D), there is a directed path from u to v, and conversely one from v to u.
Hence, if D is not strong, then there are vertices u, v ∈ V (D) such that no directed
paths from u to v exist. In such a case, we set dist(u, v) = +∞.

These peculiar aspects of distances in digraphs must be taken into account when
defining directed notions of resolving sets and metric dimension. Throughout this
chapter, the notions of resolving sets and metric dimension in digraphs are with respect
to the following definitions. Let R be a subset of vertices of a digraph D. Two vertices
u, v of D are said to be distinguished, denoted by u �R v, if there exists w ∈ R such
that dist(w, u) 6= dist(w, v). Otherwise, u and v are undistinguished by R, which is
denoted by u ∼R v. In particular, if dist(w, u) is finite and dist(w, v) is not for some
w ∈ R, then u �R v. A set R ⊆ V (D) is called resolving if all pairs of vertices of D
are distinguished by R. The metric dimension of D, denoted by MD(D), is then the
smallest size of a resolving set. Note that MD(D) is defined for every digraph D; in
particular, we have MD(D) < |V (D)| since R = V (D) \ {v} is a resolving set for any
v ∈ V (D) (as having any vertex in a resolving set makes it distinguished from all other
vertices).

Our definitions of directed resolving sets and metric dimension actually differ from
those originally introduced by Chartrand, Rains, and Zhang. On the one hand, in their
definition of resolving sets, they consider the distances from each of the vertices not in
R to the vertices in R in order to distinguish the vertices of D. In our definition, the
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distances from each of the vertices in R to the vertices not in R are considered. Note
that both definitions are equivalent on that point, as, given a digraph D, if we reverse

the direction of all arcs, resulting in a digraph D̃, then any shortest path from u to v

in D becomes a shortest path from v to u in D̃.
On the other hand, their definition of resolving sets requires that the distances from

each pair of distinct vertices to the vertices in R which distinguish them be defined,
while our definition (with distances from vertices in R to the other vertices) allows for
undefined distances (+∞) to be used as well. Contrary to our definition, this implies
that their definition of metric dimension is not defined for all digraphs. As far as we
know, the characterization of digraphs that admit a metric dimension (following their
definition) is still an open problem [42].

Although our definitions and those of Chartrand, Rains, and Zhang are different, it
is worthwhile mentioning that most of our investigations in this chapter also apply to
their context, as we mainly focus on strong digraphs, in which case our definitions and
theirs are equivalent (up to reversing all arcs).

To date, the investigations on the metric dimension of digraphs have thus been
with respect to the definitions originally introduced by Chartrand, Rains, and Zhang.
As a first step, they notably gave in [42], a characterization of digraphs with metric
dimension 1. Complexity aspects were considered in [105], where it was proved that
determining the metric dimension of a strong digraph is NP-complete. Bounds on the
metric dimension of various digraph families were later exhibited (Cayley digraphs [55],
line digraphs [56], tournaments [96], digraphs with cyclic covering [103], De Bruijn and
Kautz digraphs [105], etc.).

6.1.1 From Undirected Graphs to Oriented Graphs

To avoid any confusion, let us recall that an orientation D of an undirected graph
G is obtained when every edge uv of G is oriented either from u to v (resulting in
the arc (u, v)) or conversely (resulting in the arc (v, u)). An oriented graph D is a
directed graph that is an orientation of a simple graph. Note that when G is simple,
D cannot have two vertices u, v such that (u, v) and (v, u) are arcs. Such symmetric
arcs are allowed in digraphs, which is the main difference between oriented graphs and
digraphs. Throughout this chapter, when simply referring to a graph, we mean an
undirected graph.

In [43], Chartrand, Rains, and Zhang considered the following way of linking resolv-
ing sets of undirected graphs and digraphs. They considered, for a given graph G, the
worst orientations of G for the metric dimension, i.e., orientations of G with maximum
metric dimension. Looking at our definition of resolving sets and metric dimension,
this is a legitimate question as it has to be pointed out that, for a graph, the metric
dimension might or might not be preserved when orienting its edges. An interesting
example (reported, e.g., in [42, 96]) is the case of a graph G with a Hamiltonian path:
while MD(G) can be arbitrarily large in general (consider, e.g., any complete graph),
there is an orientation D of G verifying MD(D) = 1 (just orient all edges of a Hamilto-
nian path from the first vertex towards the last vertex, and all remaining edges in the
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opposite direction). Conversely, there exist orientations D of G for which MD(D) can
be much larger than MD(G). As an example, let us consider any path P with 2n + 1
vertices v0, ..., v2n. Clearly, MD(P ) = 1; however, the orientation D of P obtained by
making every vertex v2k+1 (k = 0, ..., n−1) become a source, (i.e., orienting its incident
edges away) verifies MD(D) = n. As shown in this chapter, this phenomenon occurs
for strong orientations as well.

In [43], the authors proved that, for every positive integer k, there exist infinitely
many graphs for which the metric dimension of any of its strongly-connected orienta-
tions is exactly k. They have also proved that there is no constant k such that the
metric dimension of any tournament is at most k.

6.1.2 Our Results

All results in this chapter are from [c-6], which is joint work with J. Bensmail and N.
Nisse. Motivated by the observations above, we investigate, throughout this chapter,
the parameter WOMD defined as follows. For any connected graph G, let WOMD(G)
denote the maximum value of MD(D) over all strong orientations D of G. Let us ex-
tend this definition to graph families as follows. For any family G of 2-edge-connected

graphs†, let WOMD(G) = max
G∈G

WOMD(G)
|V (G)| . Section 6.2 first introduces tools and re-

sults that will be used in the next sections. In Section 6.3, bounds on WOMD(G∆)
are proved, where G∆ refers to the family of 2-edge-connected graphs with maximum
degree ∆. In particular, we prove that we asymptotically have 2

5
≤ WOMD(G3) ≤ 1

2
.

In Section 6.4, we then consider the families of grids and tori. For the family T of
tori, we prove that we asymptotically have WEOMD(T ) = 1

2
, where the parameter

WEOMD(T ) is defined similarly to WOMD(T ) except that only strong Eulerian ori-
entations of tori, (i.e., all vertices have in-degree and out-degree 2) are considered.
For the family G of grids, we then prove that asymptotically 1

2
≤ WOMD(G) ≤ 2

3
.

Remaining open questions and problems are gathered in Section 6.5.

6.2 Tools and Preliminary Results

We start off by pointing out the following property of resolving sets in digraphs having
vertices with the same in-neighbourhood. This result will be one of our main tools for
building digraphs with large metric dimension.

Lemma 6.2.1. Let D be a digraph and S ⊆ V (D) be a subset of |S| ≥ 2 vertices
such that, for every u, v ∈ S, we have N−(u) = N−(v). Then, any resolving set of D
contains at least |S| − 1 vertices of S.

Proof. If two vertices u, v ∈ S do not belong to a resolving set R, then dist(w, u) =
dist(w, v) for every w ∈ R, contradicting that R is a resolving set.

†The edge-connectivity requirement, here and further, is to guarantee the good definition of WOMD(G) for
every G ∈ G∆, as it is a well-known fact that a graph has strong orientations if and only if it is 2-edge-connected
(see [108]).

125



We now introduce a technique that will be used in the next sections for exhibiting
upper bounds on the metric dimension of strong digraphs with maximum out-degree
at least 2. The technique is based on a connection between the resolving sets of a such
digraph and the vertex covers of a particular graph associated to it. A vertex cover of
a graph G is a subset S ⊆ V (G) of vertices such that, for every edge uv of G, at least
one of u and v belongs to S. To any digraph D we associate an auxiliary (undirected)
graph Daux constructed as follows:

• the vertices of Daux are those of D;

• for every two distinct vertices u, v of D such that N−D (u) ∩N−D (v) 6= ∅, let us add
the edge uv to Daux.

In other words, Daux is the simple undirected graph depicting the pairs of distinct
vertices of D sharing an in-neighbour. By construction, note that, in Daux, every two
distinct vertices are joined by at most one edge.

It turns out that, for strong digraphs D with maximum out-degree at least 2, a
vertex cover of Daux is resolving in D.

Lemma 6.2.2. Let D be a strong digraph with ∆+(D) ≥ 2. Then, any vertex cover of
Daux is a resolving set of D.

Proof. Towards a contradiction, assume the claim is false, i.e., there exists a set S ⊆
V (D) which is a vertex cover of Daux but not a resolving set of D. Since ∆+(D) ≥ 2,
there are edges in Daux and thus S 66= ∅. Let v1, v2 be two vertices that cannot be
distinguished through their distances from S; in other words, for every w ∈ S (note
that w 6= v1, v2), we have distD(w, v1) = distD(w, v2), and that distance is finite since
D is strong. Now consider such a vertex w ∈ S at minimum distance from v1 and v2.
In D, any shortest path P1 from w to v1 has the same length as any shortest path P2

from w to v2.
Because v1 6= v2 and P1, P2 are shortest paths, note that all vertices of P1 and P2

cannot be the same; let thus x1 denote the first vertex of P1 that does not belong to
P2, and, similarly, let thus x2 denote the first vertex of P2 that does not belong to P1.
In other words, the first vertices of P1 and P2 coincide up to some vertex x, but the
next vertices x1 (in P1) and x2 (in P2) are different. So, Daux contains the edge x1x2,
and at least one of x1, x2 belongs to S. Furthermore, x1 and x2 are closer to v1, v2 than
w is; this is a contradiction to the original choice of w.

Lemma 6.2.2 shows that a resolving set of any strong digraph (with maximum out-
degree at least 2) can be obtained by considering every vertex and choosing at least all
of its out-neighbours but one. The proof suggests that this is because this is a way to
distinguish all shortest paths from a vertex to other ones.

Corollary 6.2.3. For every strong digraph D with ∆+(D) ≥ 2, the metric dimension
MD(D) of D is at most the size of a minimum vertex cover of Daux.

Unfortunately, determining the minimum size of a vertex cover of a given graph is an
NP-complete problem in general [67]. However, in the context of Corollary 6.2.3, we are
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r r'

Figure 6.1: The oriented graph D3,3,2. The set of red vertices is an example of an optimal
resolving set.

mostly interested in having reasonable upper bounds on the size of a minimum vertex
cover of Daux. Such upper bounds can be exhibited when D has particular additional
properties, as will be shown in the next sections.

6.3 Strong Oriented Graphs with Bounded Maximum Degree

By the maximum degree ∆(D) of a given oriented graph D, we mean the maximum
degree of its underlying undirected graph, (i.e., the maximum value of d−(v) + d+(v)
over the vertices v of D). In this section, we investigate the maximum value that
MD(D) can take among all strong orientations D of a graph with given maximum
degree. Since a strong oriented graph D with ∆(D) = 2 is a directed cycle, in which
case MD(D) is trivially 1, we focus on cases where ∆(D) ≥ 3.

All our lower bounds in this section are obtained through the following constructions.
For any k ∈ N and ∆ ≥ 2, we denote by T∆,k the rooted ∆-ary complete tree with
depth k. More precisely, T∆,k is a rooted tree such that every non-leaf vertex has ∆

children and all leaves are at distance k from the root. Note that |V (T∆,k)| = ∆k+1−1
∆−1

and T∆,k has ∆k leaves and maximum degree ∆ + 1. For any k ∈ N and ∆, i ≥ 2,
let D∆,k,i be the oriented graph defined as follows (see Figure 6.1 for an illustration).
Start with T being a copy of T∆,k−1 with all edges oriented from the root to the leaves.
Let vk−1

1 , · · · , vk−1
∆k−1 be the leaves of T and let r be its root. For every 1 ≤ j ≤ ∆k−1,

add i out-neighbours uj1, · · · , u
j
i to vk−1

j . Then, for 1 ≤ j ≤ ∆k−1 and 1 ≤ ` < i, add

the arc (uj`, u
j
i ). Then, add a copy T ′ of T∆,k−2 where all edges are oriented from the

leaves to the root. Let v′1, · · · , v′∆k−2 be the leaves of T ′ and let r′ be its root. For every
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1 ≤ j ≤ ∆k−2 and for every 1 ≤ ` ≤ ∆, add the arc (u
∆(j−1)+`
i , v′j). Finally, add the arc

(r′, r); note that this ensures that D∆,k,i is strong.

Theorem 6.3.1. For every k ∈ N and ∆, i ≥ 2, D∆,k,i is a strong oriented graph with
maximum degree ∆ + 1,

|V (D∆,k,i)| =
∆k − 1

∆− 1
+ i∆k−1 +

∆k−1 − 1

∆− 1

and
MD(D∆,k,i) ≥ ∆k−1 − 1 + ∆k−1 max {1, i− 2} .

Proof. We only need to prove the last statement. For every 1 ≤ ` ≤ ∆k−1, let
v`1, · · · , v`∆` denote the vertices of D∆,k,i at distance ` from r = v0

1. Note that, for

every 0 ≤ ` ≤ k − 2 and 1 ≤ j ≤ ∆`, the vertices v`+1
∆(j−1)+1, · · · , v

`+1
∆(j−1)+∆ have

the same in-neighbourhood {v`j}. By Lemma 6.2.1, every resolving set of D∆,k,i thus

has to include at least ∆ − 1 of these vertices. For every 1 ≤ j ≤ ∆k−1, the vertices
vki(j−1)+1, · · · , vki(j−1)+i−1 have the same in-neighbourhood {vk−1

j }. Again by Lemma 6.2.1,
every resolving set of D∆,k,i must thus include at least i−2 of these vertices. Moreover,
it can be checked that, when i = 2, every resolving set of D∆,k,i must include at least
one of vk2(j−1)+1, v

k
2(j−1)+2. Figure 6.1 shows an example of a resolving set of D3,3,2.

Hence, any resolving set R of D∆,k,i verifies

|R| ≥

(
k−2∑
`=0

∆`(∆− 1)

)
+ ∆k−1 max{1, i− 2}

which can be manipulated into the claimed lower bound.

In the rest of this section, we exhibit upper bounds on MD(D) for oriented graphs
D with bounded maximum degree, some of which are close to lower bounds that can
be established using Theorem 6.3.1.

6.3.1 Strong Subcubic Oriented Graphs

We begin with strong subcubic, (i.e., with maximum degree 3) oriented graphs D. The
upper bound is obtained from Corollary 6.2.3.

Lemma 6.3.2. For every strong subcubic n-node oriented graph D, we have MD(D) ≤
n
2
.

Proof. In D, there are only three types of vertices, namely:

• vertices v with d−(v) = d+(v) = 1;

• vertices v with d−(v) = 1 and d+(v) = 2;

• vertices v with d−(v) = 2 and d+(v) = 1.
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Note that from the point of view of the arcs out-going from the vertices, only the
vertices v verifying d+(v) = 2 create edges in Daux. More precisely, every such vertex
v yields at most one edge in Daux (“at most” because two such vertices can have the
same two out-neighbours, in which case only one edge is created). Since D verifies∑

v∈V (D) d
−
D(v) =

∑
v∈V (D) d

+
D(v), clearly its number of vertices v with d+(v) = 2 is at

most 1
2
n. This yields that Daux is a graph with order n and at most 1

2
n edges. Thus,

Daux admits a vertex cover S with size at most 1
2
n: one such set can be obtained, e.g.,

by considering each of its edges in turn, and arbitrarily adding one of its ends to S.
The result now follows from Lemma 6.2.2.

From Theorem 6.3.1 and Lemma 6.3.2, we thus get:

Corollary 6.3.3. Let G3 be the family of 2-edge-connected graphs with maximum de-
gree 3. For any ε > 0, we have

2

5
− ε ≤ WOMD(G3) ≤ 1

2
.

Proof. Let G ∈ G3 and D be any strong orientation of G (it exists because G is 2-edge-
connected). The upper bound follows from Lemma 6.3.2 (since, because∑

v∈V (D) d
−(v) =

∑
v ∈V (D) d

+(v) and D is strong, we have ∆+(D) ≥ 2). The lower
bound follows from Theorem 6.3.1 by considering the oriented graph D2,k,2. Indeed, any
resolving set of D2,k2 has at least 2∗2k−1−1 vertices and n = |V (D2,k,2)| = 5∗2k−1−2.
Hence, lim

k→∞
MD(D2,k,2) ≥ 2n

5
.

6.3.2 Strong Oriented Graphs with Maximum Degree at least 4

In the next result, we exhibit a general upper bound on MD(D) for every strong digraph
D with given maximum in-degree and maximum out-degree (at least 2). Recall that a
proper vertex-colouring of an undirected graph is a partition of the vertices into stable
sets.

Theorem 6.3.4. For every strong n-node digraph D with maximum in-degree ∆− and
maximum out-degree ∆+ ≥ 2, we have

MD(D) ≤ ∆−(∆+ − 1)

∆−(∆+ − 1) + 1
n.

Proof. The maximum degree of a vertex v of Daux is ∆−(∆+ − 1): this is because v
has at most ∆− in-neighbours in D, each of which, if it has an out-neighbour different
from v, might yield a new edge incident to v in Daux. So each of these at most ∆−

in-neighbours of v in D might create, in Daux, up to ∆+−1 edges incident to v. Hence,
the maximum degree of Daux is ∆−(∆+ − 1). From greedy colouring arguments, it
thus follows that Daux admits a proper vertex-colouring using at most ∆−(∆+− 1) + 1
colours.

The claim now follows from Lemma 6.2.2 by just noting that, for any graph with
a given proper vertex-colouring, a vertex cover can be obtained by taking all colour
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classes but one. In particular, since a proper k-vertex-colouring of an n-node graph
always has a colour class with size at least 1

k
n, we deduce the claim by considering, as a

vertex cover of Daux, all colour classes but a biggest one of any proper (∆−(∆+−1)+1)-
vertex-colouring.

Theorems 6.3.1 and 6.3.4 yield the following:

Corollary 6.3.5. Let G4 be the family of 2-edge-connected graphs with maximum de-
gree 4. For any ε > 0, we have

1

2
− ε ≤ WOMD(G4) ≤ 6

7
.

Proof. Let G ∈ G4 and let D be a strong orientation of G (it exists because G is 2-
edge-connected). The upper bound follows from Theorem 6.3.4, since a strong oriented
graph with maximum degree 4 has maximum in-degree and maximum out-degree at
most 3 (and at least 2, since

∑
v∈V (D) d

−(v) =
∑

v ∈V (D) d
+(v)). Therefore, the largest

upper bound given by Theorem 6.3.4 is when ∆+(D) = ∆−(D) = 3 which leads to
the upper bound of 6/7. The lower bound follows from Theorem 6.3.1 by considering
the oriented graph D3,k,2. Indeed, for all k ∈ N, MD(D3,k,2) ≥ 2 ∗ 3k−1 − 1 and
|V (D∆,k,i)| = 4 ∗ 3k−1 − 1.

More generally, i.e., for larger values of the maximum degree, the construction in
Theorem 6.3.1 is asymptotically optimal:

Corollary 6.3.6. Let G∆+1 be the family of 2-edge-connected graphs with maximum
degree ∆ + 1. Then,

lim
∆→∞

WOMD(G∆+1) = 1.

Proof. By definition, WOMD(G∆+1) ≤ 1 for every ∆. To prove the claim, it is sufficient
to show that lim

∆→∞
WOMD(D∆,k,∆) = 1. By Theorem 6.3.1, for ∆ ≥ 3,

MD(D∆,k,∆) ≥ (∆− 1)∆k−1 − 1.

Moreover, |V (D∆,k,∆)|(∆− 1) = ∆k+1 + ∆k−1 − 2. Hence,

MD(D∆,k,∆)

|V (D∆,k,∆)|
≥ (∆− 1)2∆k−1 − (∆− 1)

∆k+1 + ∆k−1 − 2
=

1− 1
∆

(
2− 1

∆
+ 1

∆k−1 − 1
∆k

)
1 + 1

∆2

(
1− 2

∆k−1

) →
∆→∞

1.

6.4 Strong Orientations of Grids and Tori

By a grid Gn×m, we refer to the Cartesian product Pn�Pm of two paths Pn, Pm. A
torus Tn×m is the Cartesian product Cn�Cm of two cycles Cn, Cm. In the undirected
context, it is easy to see that MD(Gn×m) = 2 while MD(Tn×m) = 3 (see, e.g., [100]);
however, things get a bit more tricky in the directed context.
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Figure 6.2: An orientation ~T ∗ of the 6 ∗ 6 torus T6,6 verifying MD(~T ∗) = |V (T6,6)|/2. Every
two vertices marked with a same letter have the same in-neighbourhood; thus, every resolving
set must contain at least one of them.

Grids and tori have maximum degree 4; thus, bounds on the maximum metric dimen-
sion of a strong oriented grid or torus can be derived from our results in Section 6.3.2.
In this section, we improve these bounds through dedicated proofs and arguments. We
first consider strong Eulerian oriented tori (all vertices have in-degree and out-degree 2),
for which we exhibit the maximum value of the metric dimension. We then consider
strong oriented grids, for which we provide improved bounds.

6.4.1 Strong Eulerian Orientations of Tori

Let 0 < n ≤ m be two integers, and let Tn×m be the torus on nm vertices. That is,
V (Tn×m) = {(i, j) | 0 ≤ i < n, 0 ≤ j < m}, and (i, j), (k, `) ∈ E(Tn×m) if and only if
|i − k| ∈ {1, n − 1} and j = `, or |j − `| ∈ {1,m − 1} and i = k. By convention, the
vertex (0, 0) is regarded as the topmost, leftmost vertex of the torus. That is, {(0, j) ∈
V (Tn×m) | 0 ≤ j < m} is the topmost (or first) row, and {(i, 0) ∈ V (Tn×m) | 0 ≤ i < n}
is the leftmost (or first) column.

As a main result in this section, we determine the maximum metric dimension of a
strong Eulerian oriented torus. More precisely, we study the following slight modifica-
tions of the parameter WOMD. For a connected graph G, we denote by WEOMD(G)
the maximum value of MD(D) over all strong Eulerian orientations D of G. For a

family G of 2-edge-connected graphs, we set WEOMD(G) = max
G∈G

WEOMD(G)
|V (G)| .

Theorem 6.4.1. For the family T of tori, we have WEOMD(T ) = 1
2
.

We first show that there exist strong Eulerian oriented tori D with MD(D) ≥ nm
2

.

Lemma 6.4.2. For every n0,m0 ∈ N, there is n ≥ n0,m ≥ m0, and a strong Eulerian
orientation ~T ∗ of the torus Tn×m such that MD(~T ∗) ≥ nm

2
.
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Proof. Let n (resp., m) be the smallest even integer greater or equal to n0 (resp., m0).

We orient Tn×m in the following way, resulting in ~T ∗ (see Figure 6.2 for an illustration).
The edges of the even rows of Tn×m are oriented from left to right, i.e., ((2i, j)(2i, j+ 1
mod m)) is an arc for every 0 ≤ j < m and 0 ≤ i < n/2. The edges of the odd rows
are oriented from right to left, i.e., ((2i+ 1, j)(2i+ 1, j−1 mod m)) is an arc for every
0 ≤ j < m and 0 ≤ i < n/2. The edges of the even columns are oriented from top to
bottom, i.e., ((i, 2j)(i+ 1 mod n, 2j)) is an arc for every 0 ≤ j < m/2 and 0 ≤ i < n.
The edges of the odd columns are oriented from bottom to top, i.e., ((i, 2j + 1)(i − 1
mod n, 2j + 1)) is an arc for every 0 ≤ j < m/2 and 0 ≤ i < n.

For every 0 ≤ i < n/2 and 0 ≤ j < m/2, vertices (2i, 2j+1) and (2i+1, 2j) have the
same in-neighbourhood. Moreover, (2i, 2j) and (2i − 1 mod n, 2j − 1 mod m) have

the same in-neighbourhood. By Lemma 6.2.1, any resolving set of ~T ∗ must contain at
least one vertex of each of these nm

2
pairs of vertices. Hence, MD(~T ∗) ≥ nm

2
.

We now prove the upper bound.

Lemma 6.4.3. For every strong Eulerian oriented torus ~Tn×m with n rows and m
columns,

MD(~Tn×m) ≤ n′m′

2
+ n′′ +m′′,

where, for x ∈ {n,m}, (x′, x′′) equals (x, 0) if x is even and (x− 1, x) otherwise.

In particular, if both n and m are even, then MD(~Tn×m) ≤ nm
2

.

Proof. Let us first consider the case when n and m are even. The proof is constructive
and provides a resolving set of size at most nm

2
. The algorithm starts with the set

R = {(i, j) ∈ V (~Tn×m) | i + j even} (note that it is a minimum vertex cover and a
stable set of size nm

2
) and iteratively performs local modifications (swaps one vertex in

R with one of its neighbours not in R) without changing the size of R until R becomes
a resolving set R∗.

Let us assume that R = {(i, j) ∈ V (~Tn×m) | i + j even} is not a resolving set
(otherwise, we are done). This means that at least two vertices are not distinguishable
by their distances to the vertices in R. Let u and v be two such vertices. Recall that
we denote this relationship by u ∼R v.

Necessarily, if u ∼R v then u, v /∈ R (since any vertex w ∈ R is the only one at
distance 0 from itself, it can be distinguished from every other vertex). Moreover,
since R is a vertex cover and d−(u) = d−(v) = 2, each of u and v must have two
in-neighbours in R. Since u and v are not distinguishable, they must have the same
in-neighbours, denoted by nu, nv ∈ R. That is, since each vertex has exactly two in-
neighbours and two out-neighbours (by Eulerianity), N+(nu) = N+(nv) = {u, v} and
N−(u) = N−(v) = {nu, nv}. In what follows, by convention, let us assume that u and
nu are in the same row, say r ∈ {0, ..., n − 1}, and v and nv are in row r + 1 mod n
(note that the row numbers increase from the top of the torus to the bottom). There
are two cases (depending on whether u is on the “left” or on the “right” of the “square”
(u, v, nu, nv)), as depicted in Figure 6.3.
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Figure 6.3: The two cases of “bad squares”. Black vertices are the ones in the initial set R.

If u ∼R v, then this implies that u (and similarly v) can be distinguished from any
vertex different from v (resp. u). Moreover, if there are four vertices u, v, x, y such that
u ∼R v and x ∼R y, then {u, v, nu, nv} ∩ {x, y, nx, ny} = ∅. Each such (u, v, nu, nv),
where u ∼R v, is called a bad square. Formally, this discussion implies:

Claim 6.4.4. For every u, v ∈ V (~Tn×m), if u ∼R v, then u and v belong to the same
bad square {u, v, nu, nv}. Moreover, all bad squares are vertex-disjoint.

Let {Qi = (ui, vi, niu, n
i
v) | 1 ≤ i ≤ p} be the set of all (vertex-disjoint) bad squares

such that ui ∼R vi for every i ≤ p, where p is the number of pairs of undistinguishable
vertices. Let Q =

⋃
i≤pQi.

The algorithm that computes R∗ from R is very simple. Start with R∗ = R. For
every i ≤ p, remove niv from R∗ and add ui to R∗. For every 1 ≤ i ≤ p, let Ri be the set
obtained after swapping njv and uj for every j ≤ i (and R = R0 and R∗ = Rp). Note
that, since all bad squares are disjoint, |R∗| = |Ri| = |R|, for every i ≤ p.

Remark 6.4.5. Any vertex in R that either does not belong to a bad square or that
belongs to the upper row of a bad square is also in R∗.

The remainder of this proof aims at proving that the obtained set R∗ is a resolving
set, containing clearly half of the vertices of ~Tn×m.

Claim 6.4.6. For any x, y ∈ V (~Tn×m) \ Q that are distinguishable by R, x and y are
distinguishable by R∗.

Proof of the claim. Let x, y ∈ V (~Tn×m) \ Q be distinguished by R = R0, and let
us prove by induction on i ≤ p that x and y are distinguishable by Ri. Let i ≥ 1;
by the induction hypothesis, x and y are distinguishable in Ri−1, so there is a vertex
q ∈ Ri−1 such that dist(q, x) 6= dist(q, y). If q ∈ Ri, then x and y are distinguished.
Otherwise, q = niv. Note that, for every vertex w /∈ Qi, dist(n

i
v, w) = dist(niu, w).

Hence, dist(niu, x) 6= dist(niu, y) and x and y can be distinguished by Ri. �

Claim 6.4.7. For every i ≤ p, every vertex in Qi can be distinguished from any other
vertex by R∗.

Proof of the claim. Indeed, niu, u
i ∈ R∗, and vi is the only vertex not in R∗ at distance 1

from niu ∈ R∗. It remains to prove that niv can be distinguished from any other vertex.
Let us consider the case when niv is the bottom-right vertex of Qi (the case when niv
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Figure 6.4: Different cases considered in the proof of Lemma 6.4.3. Black vertices are the ones
of R. A black vertex circled in red is in R ∩ R∗. Dotted squares are bad squares. Blue arcs
are the ones whose orientation has been fixed depending on the cases, while the orientations
of black arcs are forced.

is the bottom-left vertex of Qi is symmetric). Let a and b be the two in-neighbours
of niv. Note that a, b /∈ R. Let c be the vertex (6= niv) adjacent to a and b. Let d be
the out-neighbour of v which is adjacent to a (via either (a, d) or (d, a)). Since the bad
squares are disjoint, d cannot be in the lower row of a bad square and, so, by the above
remark, d ∈ R ∩R∗; see Figure 6.4. There are several cases to be considered.
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• Case 1: c /∈ R∗.
This is the case where b and c are in a same bad square (depicted in blue in
Figure 6.4a). Therefore, b ∈ R∗. Moreover, this bad square and the fact that the
in-degree and out-degree of every vertex is 2 force the orientation of the arcs to
be in such a way that niv is the only vertex at distance 1 from b and at distance 2
from d. Hence, niv is distinguishable from any other vertex.

• Case 2: c ∈ R∗.

– Case 2.1: a ∈ R∗.
So a must be in a bad square. There are two cases depicted by the green
dotted squares in Figures 6.4b. In both cases, since c and d are in R∗, niv is the
only vertex not in R∗ that is at distance 1 from a. Hence, niv is distinguishable
from any other vertex.

– Case 2.2: a 6∈ R∗
Therefore, the vertex e /∈ {c, d, niv} is adjacent to a and belongs to R∗. Let h
be the vertex different from a that is adjacent to d and e.

We now consider the possible values of N−(a).

∗ Case 2.2.1: N−(a) = {c, d} (see Figure 6.4c).
Since e ∈ R∗, niv is the only vertex not in R∗ that is at distance 2 from c
and d.

∗ Case 2.2.2: N−(a) = {d, e} and (e, h) is an arc (see Figure 6.4d, left).
Since {a, e, h, d} is not a bad square (since a /∈ R∗), there is an arc from
h to d. Note that niv is at distance 2 from d and e. The only other vertex
not in R∗ that may be at distance 2 from d and e is the vertex g (on the
left of h). In that case, the vertex f 6= h that is adjacent to d and g must
be such that there is an arc from f to g. Since either f or g belongs to
R∗, g and niv can be distinguished.

∗ Case 2.2.3: N−(a) = {d, e} and (h, e) is an arc (see Figure 6.4d, right).
Since {a, e, h, d} is not a bad square (since a /∈ R∗), there is an arc from
d to h. Note that niv is at distance 2 from d and e. The only other vertex
not in R∗ that may be at distance 2 from d and e is the vertex i (below
h). In that case, there is an arc from h to i. Since either i or h belongs
to R∗, i and niv can be distinguished.

∗ Case 2.2.4: N−(a) = {c, e} (see Figures 6.4e).
Let k 6= a be the vertex adjacent to c and e. The two cases, depending on
whether there is the arc (c, k) or (k, c), are similar to the previous Cases
2.2.2 and 2.2.3.

This concludes the proof of the claim. �
Hence, in the case n,m even, R∗ is a resolving set of size nm

2
. In the cases when n

(resp., m) is odd, we first add all the vertices of the first row (resp., of the first column)
to the resolving set. The remaining vertices induce a grid with even sides on which we
proceed as above.
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6.4.2 Strong Oriented Grids

In this section, we consider the maximum metric dimension of a strong oriented grid.
For every such grid, we deal with its vertices using the same terminology introduced in
Section 6.4.1 for tori, (i.e., the vertices of the topmost row have first coordinate 0, and
the vertices of the leftmost column have second coordinate 0). Our main result to be
proved in this section is the following.

Theorem 6.4.8. Let G be the family of grids. For any ε > 0, we have

1

2
− ε ≤ WOMD(G) ≤ 2

3
+ ε.

We start off by exhibiting strong orientations of grids for which the metric dimension
is about half of the vertices.

Lemma 6.4.9. For every n0,m0 ∈ N, there is n ≥ n0, m ≥ m0 and a strong orientation
~G∗ of the grid Gn×m such that MD(~G∗) ≥ nm

2
− n+m

2
.

Proof. Let n (resp., m) be the smallest even integer greater or equal to n0 (resp., m0).

We orient Gn×m as follows, resulting in ~G∗. All edges of the even rows are oriented from
right to left, while all edges of the odd rows are oriented from left to right. All edges of
the even columns are oriented from top to bottom, while all edges of the odd columns
are oriented from bottom to top. Note that ~G∗ is indeed strong under the assumption
that n and m are even (in particular, no corner vertex is a source or sink).

For every even 0 ≤ i < n and odd 1 ≤ j < m− 1, the vertices (i, j) and (i+ 1, j+ 1)
have the same in-neighbourhood. Similarly, for every odd 1 ≤ i < n − 1 and odd
1 ≤ j < m, the vertices (i, j) and (i + 1, j − 1) have the same in-neighbourhood. For
each of these pairs of vertices, Lemma 6.2.1 implies that at least one of the two vertices
must belong to any resolving set of ~G∗. The only vertices that do not appear in these
pairs are those of the form (0, 2k), (2k+ 1, 0), (2k,m− 1), and (n− 1, 2k+ 1) for k ∈ N
and the vertices (n−1, 0) and (n−1,m−1). There are n+m such vertices. The bound
then follows.

We now prove that every strong oriented grid has a resolving set including 2
3

of the
vertices.

Theorem 6.4.10. For every strong oriented grid ~Gn,m with n rows and m columns, if

m ≡ 0 mod 3 or n ≡ 0 mod 3, then MD(~Gn,m) ≤ 2nm
3

, and MD(~Gn,m) ≤ b2nm
3
c+2m

otherwise.

Proof. Let us first consider the case when m mod 3 = 0 (the case n mod 3 = 0 is
similar up to rotation). The algorithm starts with the set R = {V (Gn×m)\(i, 3j−1)|0 ≤
i ≤ n − 1, 1 ≤ j ≤ m/3}, (i.e., R contains the first 2 out of every 3 columns from left
to right in the grid) and iteratively performs local modifications (swaps one vertex in
R with one of its neighbours not in R) without changing the size of R until R becomes
a resolving set R∗. Note that |R| = 2nm

3
.
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Assume R is not a resolving set (otherwise, we are done). This means that at least
two vertices are not distinguishable by their distances from the vertices in R. Let u and
v be two such vertices. Clearly, u, v /∈ R as otherwise they are distinguishable since one
of them is the only vertex at distance 0 from itself.

Claim 6.4.11. For every u, v ∈ V (Gn×m), if u ∼R v, then u and v belong to the same

column in ~Gn,m.

Proof of the claim. For purpose of contradiction, let us assume that u ∼R v with u ∈ C1

and v ∈ C2 where C1 and C2 are two distinct columns of V (~Gn,m) which contain no
vertices in R. W.l.o.g., C1 is to the left of C2. Let Cr

1 be the column just to the right
of C1 and let C`

2 be the column just to the left of C2. Note that all the vertices of Cr
1

and C`
2 are in R and that Cr

1 and C`
2 are distinct. Since only strong orientations are

considered and Cr
1 separates u from every vertex in the columns to the right of Cr

1 ,
there exists a vertex a in Cr

1 such that, for every vertex x in a column to the right of Cr
1

(in particular, for every vertex in C`
2), dist(a, u) < dist(x, u). Similarly, there exists a

vertex b in C`
2 such that, for every vertex x in a column to the left of C`

2 (in particular,
for every vertex in Cr

1), dist(b, v) < dist(x, v). Therefore, dist(b, v) < dist(a, v) and
dist(a, u) < dist(b, u) and, it is not possible to have both dist(b, v) = dist(b, u) and
dist(a, u) = dist(a, v) simultaneously. Since a, b ∈ R, u and v are distinguished, a
contradiction. �

Claim 6.4.12. For every u, v ∈ V (~Gn,m) such that u ∼R v, in a column C (containing
no vertices in R), there is a unique vertex w ∈ C at the same distance from u and v
such that, for any z ∈ R, every shortest path from z to u (to v resp.) passes through w.

Proof of the claim. W.l.o.g., let us assume that u is in a row above v. Since u and
v are not distinguishable, dist(x, u) = dist(x, v) for any vertex x ∈ R. Let z ∈ R be
a vertex of R that minimizes its distance to u (and so to v). Let Pu (resp., Pv) be a
shortest path from z to u (resp., v). All vertices of Pu (resp., of Pv) are not in R (by
the minimality of the distance between z and u) and so are in C. The only possibility
then, is that both Pu and Pv start with a common arc (z, w) (with w ∈ C uniquely
defined) and then Pu goes up to u, while Pv goes down to v.

Now, let x be any vertex in R and let Q be any shortest path from x to u. For
purpose of contradiction, let us assume that Q does not pass through w. Let y be the
last vertex of Q in R (possibly y = x). Therefore, the path Q′ from y to u has all its
vertices (but y) in C. In particular, if y is above u (or in the same row), Q′ enters C
and goes down to u, and if u is above y, Q′ enters C and goes up to u. In all cases, if Q
(and so Q′) does not pass through w, then y must be closer to u than to v, contradicting
that u and v are not distinguished. The same proof holds for any path from x to v. �

The vertex w /∈ R defined in the previous claim is called the last common vertex
(LCV ) of the two undistinguished vertices u and v. Let Q be the set of all vertices

w ∈ V (~Gn,m) \ R such that w is an LCV for two vertices u, v ∈ V (~Gn,m) such that
u ∼R v. Note that one of these vertices w may be an LCV for multiple pairs of vertices
that are not distinguishable; but in these cases, the local modifications the algorithm
makes are sufficient to distinguish all the vertices in all the pairs with the same LCV .
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Figure 6.5: Configurations with two undistinguished vertices u and v. In (a) (resp., in (b), (c)),
black vertices are those in R (resp., in R∗), and white ones are in V (~Gn,m) \ R (resp., in

V (~Gn,m) \ R∗). The vertex w is the LCV of u and v. Figures (b) depict the cases when
z /∈ R∗. Figure (c) is the case when a /∈ R∗.

The algorithm computes R∗ from R as follows. Start with R∗ = R. For every w ∈ Q,
the algorithm proceeds as follows. Let w ∈ Q and let u and v be two undistinguished
vertices such that w is their LCV (u and v exist by definition of w ∈ Q). W.l.o.g.,
let us assume that u is above v. Let zw be the neighbour to the left of w, xw be the
neighbour above w, and yw be the neighbour below w (it may be that xw = u, in which

case yw = v) in the grid underlying ~Gn,m. Also, let aw and bw be the neighbours above
and below zw resp. in the underlying grid. Note that any column with no vertices in
R has two columns on its left, so it is the case for the column of w and so, aw, zw, and
bw exist. Then, the algorithm proceeds to do the following swap between a vertex in R
(either zw or aw) and a vertex not in R (the vertex xw):

• If (aw, zw) or (bw, zw) is an arc, then remove zw from R∗ and add xw to R∗.

• Else, remove aw from R∗ and add xw to R∗.

The remainder of this proof aims at proving that the obtained set R∗ is a resolving
set. For this purpose, we need further notations. Let w ∈ Q be the LCV of two
undistinguished vertices u and v, and let xw, yw, zw, aw, bw be defined relative to w as
above. In addition, let qw be the neighbour to the right of w (if it exists, i.e., if w is not in
the rightmost column) in the underlying grid. Also, let aw` , bw` , and zw` be the neighbours
to the left of aw, bw, and zw resp. (note that any column with no vertices in R has two
columns on its left, so it is the case for the column of w and so, aw` , b

w
` , and zw` exist)

and let awa and bwb be the neighbours above and below aw and bw resp. (if they exist,
that is, they do not surpass the dimensions of the grid) in the underlying grid. Finally,
let Hw = {w, zw, aw, bw, aw` , bw` , zw` , awa , bwb , qw} ∪ {u, v | u ∼R v, w LCV of u and v}. All
superscripts w will be omitted if there is no ambiguity.
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Claim 6.4.13. For any w,w′ ∈ Q, we have (Hw \ {qw})∩ (Hw′ \ {qw
′}) = ∅. In partic-

ular, the modifications done by the algorithm (relative to each w ∈ Q) are independent
of each other.

Proof of the claim. Let u ∼R v with w as their LCV and such that dist(w, u) =
dist(w, v) is maximum. Let C be the column of w, u, and v. As mentioned in the
proof of Claim 6.4.12, there must be a directed (shortest and included in C) path
from w to u and a directed (shortest and included in C) path from w to v. Moreover,
Claim 6.4.12 implies that all the vertices of these paths (but w) have out-degree 3
(since all shortest paths from R to u and v go through w). In particular, u and v have
out-degree 3 (unless they are in the first or last row). It is then easy to see that, if
(Hw \ {qw})∩ (Hw′ \ {qw

′}) 6= ∅ this would contradict the orientations of these arcs (see
Figure 6.5). �

Claim 6.4.14. For any w ∈ Q, any s ∈ Hw, and any t ∈ V (~Gn,m), we have s �R∗ t.

Proof of the claim. For any w ∈ Q, let Hw = {w, z, a, b, a`, b`, z`, aa, bb, q} ∪ {u, v |
u ∼R v, w LCV of u and v} (the superscript w’s are omitted here as there is no
ambiguity). Note that x, q, a`, b`, z` ∈ R∗ due to the algorithm and so x, q, a`, b`, z` ∈ R∗
are distinguishable from all other vertices.

Then, let Pxu be the directed (shortest) path from x to u (with no vertices in R)
which exists by the proof of Claim 6.4.12. Let Sxu be the set of out-neighbours in R∗ of
all the vertices in Pxu. Every vertex r in Pxu is distinguishable from every other vertex
by its distance to x. Indeed, if dist(x, r) = 1, then r can be distinguished from a since
either a ∈ R∗ or a is the single vertex both at distance 1 from x and z. Otherwise, for
any vertex t 6= r at distance dist(x, r) from x, any path from x to t crosses a vertex in
Sxu ⊆ R∗ and so r �R∗ t.

Now, it remains to show that every vertex in Hw \ ({x, q, a`, b`, z`}∪V (Pxu)) can be
distinguished from all other vertices. There are two cases to be considered depending
on whether z or a is not in R∗.

Case z /∈ R∗. Then, by definition of the algorithm, (a, z) or (b, z) is an arc.

• If (a, z) is an arc, then z is distinguishable from all other vertices as it is the
only vertex at distance 1 from a ∈ R∗ that is not in R∗ since (x, a) is an arc
(see proof of Claim 6.4.13), and aa, a` ∈ R∗ (if aa exists) by Claim 6.4.13.

• Else, if (b, z) is an arc, then z is distinguishable from all other vertices as it is
the only vertex at distance 1 from b ∈ R∗ that is not in R∗ since (y, b) is an
arc (see proof of Claim 6.4.13), and bb, b` ∈ R∗ (if bb exists) by Claim 6.4.13.

Therefore, if z /∈ R∗, it is distinguishable.

Now, we will show that all vertices on the directed (shortest) path from w to v
are also distinguishable from every other vertex. Let Pwv be the set of vertices of
the directed (shortest) path from w to v (w, v included) and let Swv be the set of
out-neighbours in R∗ of the vertices in Pwv. Note that x ∈ Swv. Either q exists
and (w, q) or (q, w) is an arc or q does not exist and thus, (z, w) is an arc since
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~Gn,m is strong. Note that aa ∈ R∗ (bb ∈ R∗ resp.) if aa exists (bb exists resp.) by
Claim 6.4.13.

• Let us first assume that (w, q) is an arc or q does not exist. Therefore, (z, w)

is an arc since ~Gn,m is strong.

– Let us first assume that (a, z) is an arc. Let T = {a`, aa, z`, b}∪Swv ⊆ R∗

(or let T = {a`, z`, b}∪Swv if aa does not exist). Note that for any t ∈ T ,
t ∈ R∗. For any vertex r ∈ Pwv and t ∈ T , we have dist(a, r) ≤ dist(t, r)
(since by Claim 6.4.12, all shortest paths from t to r pass through w).

Moreover, for any vertex h ∈ V (~Gn,m) \ (Pwv ∪ {z}), there exists t ∈ T
such that dist(a, h) > dist(t, h) since any shortest path from a to h passes
through a vertex t ∈ T . Thus, all vertices r ∈ Pwv are distinguishable
from every vertex in V (~Gn,m) \Pwv (since it has already been shown that
z is distinguishable from all other vertices). Finally, r is distinguished
from every other vertex of Pwv by their distances from a. Hence, every
vertex r ∈ Pwv can be distinguished by R∗ from all other vertices.

– Let us assume that (b, z) is an arc. Let T = {b`, bb, z`, a} ∪ Swv ⊆ R∗ (or
let T = {b`, z`, a} ∪ Swv if bb does not exist). Note that for any t ∈ T ,
t ∈ R∗. For any vertex r ∈ Pwv and t ∈ T , we have dist(b, r) ≤ dist(t, r)
(since by Claim 6.4.12, all shortest paths from t to r pass through w).

Moreover, for any vertex h ∈ V (~Gn,m) \ (Pwv ∪ {z}), there exists t ∈ T
such that dist(b, h) > dist(t, h) since any shortest path from b to h passes
through a vertex t ∈ T . Thus, all vertices r ∈ Pwv are distinguishable
from every vertex in V (~Gn,m)\Pwv. Finally, r is distinguished from every
other vertex of Pwv by their distances from b. Hence, every vertex r ∈ Pwv
can be distinguished by R∗ from all other vertices.

• Second, let us assume that (q, w) is an arc. Let N = N+(q) \ {w}. Let qr
be the neighbour to the right of q in ~Gn,m. Note that for all p ∈ (N \ {qr}),
p ∈ R∗ due to the algorithm and thus, only qr may not be in R∗, which is the
case if either qr = aw

′
or qr = zw

′
for another LCV w′ ∈ Q.

– Let us assume that N ⊆ R∗. Let T = N ∪ Swv ∪ {a, z`, b}. Note that
T ⊆ R∗. As above, all vertices on the directed (shortest) path Pwv from
w to v (w, v included) are distinguishable from any other vertex by their
distances from q and from the vertices of T .

– Let us assume that qr = aw
′

for another LCV w′ and such that qr /∈ R∗.
Let T = (N \{qr)})∪{aw

′
a , z

w′ , a, z`, b}∪Swv. Note that (xw
′
, aw

′
) is an arc

(by the proof of Claim 6.4.13 applied to w′) and that aw
′

a , z
w′ , a, z`, b ∈ R∗.

Then, as above, all vertices on the directed (shortest) path Pwv from w
to v (w, v included) are distinguishable from any other vertex by their
distances from q and from the vertices of T .

– Let us assume that qr = zw
′

for another LCV w′ and such that qr /∈ R∗.
There are two subcases: either (w′, zw

′
) is an arc or (zw

′
, w′) is an arc.

∗ Let us assume that (w′, zw
′
) is an arc. Let T = (N \ {qr)}) ∪

{aw′ , bw′ , a, z`, b} ∪ Swv. Note that aw
′
, bw

′
, a, z`, b ∈ R∗. Then, as
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above, all vertices on the directed (shortest) path Pwv from w to v
(w, v included) are distinguishable from any other vertex by their
distances from q and from the vertices of T .

∗ Let us assume that (zw
′
, w′) is an arc. By the algorithm, since zw

′
/∈

R∗, either (aw
′
, zw

′
) or (bw

′
, zw

′
) is an arc. W.l.o.g., let (aw

′
, zw

′
) be an

arc. Let T = (N \{qr)})∪{aw
′
, bw

′
, a, z`, b}∪Swv∪Sw′v′ where Sw′v′ is

defined analogously to Swv for w′ and vw
′
. Then, as above, all vertices

on the directed (shortest) path Pwv from w to v (w, v included) are
distinguishable from any other vertex not in Pw′v′ (defined respectively
to w′ and v′) by their distances from q and from the vertices of T .
Note here that zw

′
is distinguished from all other vertices as it is the

only vertex at distance 1 from both q and aw
′

that is not in R∗.
Finally, all the vertices of the directed (shortest) path Pwv from w to v
(w, v included) are distinguishable from all the vertices of the directed
(shortest) path Pw′v′ by their distances from q and aw

′
. Indeed, for any

vertex r ∈ Pwv, dist(q, r) < dist(aw
′
, r) and for any vertex r′ ∈ Pw′v′ ,

dist(q, r′) ≥ dist(aw
′
, r′).

Therefore, for any w ∈ Q, any s ∈ Hw, and any t ∈ V (~Gn,m) such that z /∈ R∗,
we have s �R∗ t.

Case a /∈ R∗. In this case, (z, a) and (z, b) are arcs. Then, a is distinguishable from
all other vertices as it is the only vertex not in R∗ that is at distance 1 from both
z, x ∈ R∗.
The proof that all vertices on the directed (shortest) path from w to v are also
distinguishable from every other vertex is analogous to the one above when z /∈ R∗
with z taking on the role that a had in the other case for distinguishing these
vertices from the rest, and so is omitted.

Therefore, for any w ∈ Q such that a /∈ R∗, any s ∈ Hw, and any t ∈ V (~Gn,m),
we have s �R∗ t.

�

Claim 6.4.15. For all vertices s, t ∈ V (Gn×m) such that s �R t, we have s �R∗ t.

Proof of the claim. Let s ∈ V (~Gn,m)\
⋃
w∈QHw, let us show that s can be distinguished

from every vertex t ∈ V (~Gn,m) \
⋃
w∈QHw (note that, if s and/or t ∈

⋃
w∈QHw, the

result follows from Claim 6.4.14). Note that s �R t and so, there is k ∈ R such that
dist(k, s) 6= dist(k, t). If k ∈ R∗, it is still the case and we are done. Otherwise, there
are two cases to be considered.

• Let us first assume that k = aw for some w ∈ Q such that aw = a /∈ R∗. In that
case, s can still be distinguished from t by one of aa or a`. Indeed, all shortest
paths from a to any other vertex in V (~Gn,m) pass through aa and/or a` that are
in R∗ (recall that, if a /∈ R∗, it implies that there is the arc (z, a)). Therefore, if
dist(a, s) 6= dist(a, t) then dist(aa, s) 6= dist(aa, t) and/or dist(a`, s) 6= dist(a`, t).
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• Second, let us assume that k = zw for some w ∈ Q such that zw = z /∈ R∗.
If all z’s out-neighbours are in R∗, then as above, s and t can still be distinguished
by one of z’s neighbours. So, let us assume that (z, w) is an arc.

There are four remaining cases to be considered.

– First, let us assume that there is a vertex h ∈ R∗ that is both on a shortest
path from z to s and on a shortest path from z to t. This case is trivial as h
distinguishes s and t since z distinguished s and t.

– Second, let us assume that there are two vertices h, p ∈ R∗ where h is on a
shortest path from z to s and p is on a shortest path from z to t where h (p
resp.) is not on a shortest path from z to t (z to s resp.) as otherwise, we are
in the first case. For purpose of contradiction, assume that neither h nor p can
distinguish s and t. Then, dist(h, s) = dist(h, t) and dist(p, s) = dist(p, t).
W.l.o.g., let us assume dist(z, s) < dist(z, t). Then dist(z, s) = dist(z, h) +
dist(h, s) = dist(z, h) + dist(h, t) ≥ dist(z, t), a contradiction. Therefore, h
or p can distinguish s and t.

– Then, let us consider the case when there exist a shortest path from z to s
and a shortest path from z to t, both containing no vertices in R∗. In this
case, both s and t must be in the same column C as w. Moreover, x cannot
be on the path between z and s (resp., t) since then, it would be the first
case. Therefore, both s and t are below w and one of s and t must be below
the other, w.l.o.g., say t is below s, and there must exist a directed (shortest)
path from w to s and from w to t that is entirely contained in C. In this
case, as in Claim 6.4.14, either a or b (depending on which of the arcs (a, z)
or (b, z) exists) can distinguish s and t.

– Finally, let us assume that there is a vertex h ∈ R∗ on every shortest path
from z to s and no shortest path from z to t containing a vertex in R∗ (or
vice versa). Then, t must be in the same column as w (and below w since the
shortest path from z to t does not cross x ∈ R∗) and the directed shortest
path from w to t is entirely contained in C. Let us assume that there is an arc
(a, z) (the case when there is an arc (b, z) is similar and at least one of these
cases must occur since z /∈ R∗). Let us emphasize that no shortest path from
a to t goes through a vertex in R∗ (by the previous cases and since dist(a, t) =
dist(z, t) + 1), therefore, the only shortest path from a to t goes through z
and w and goes down along C until t. If there is a shortest path from a to
s that passes through z, then a distinguishes s and t since z did. Otherwise,
any shortest path from a to s must go through aa or a`. If dist(a, s) =
dist(a, t) (otherwise, a distinguishes s and t), then min{dist(aa, s), (a`, s)} =
dist(a, s)− 1. Since clearly min{dist(aa, t), (a`, t)} > dist(a, t), then at least
one of aa and a` can distinguish s and t.

�
This concludes the proof that R∗ is a resolving set.
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(a) G9,9 (b) A∗ (c) C1 (d) C2

Figure 6.6: The grid G9,9 and the associated graph A∗.

Finally, in the case when m is not divisible by 3, we first add all the vertices of the
last x ∈ {1, 2} columns if m mod 3 = x to our resolving set, and then the remaining
vertices induce a grid with a number of columns that is divisible by 3 on which we
proceed as above.

6.5 Further Work

In this chapter, we have investigated, for a few families of graphs, the worst strong
orientations in terms of metric dimension. In particular settings, such as when consid-
ering strong Eulerian orientations of tori, we managed to identify the worst possible
orientations (Theorem 6.4.1). For other families (graphs with bounded maximum de-
gree and grids), we have exhibited both lower and upper bounds on WOMD that are
more or less distant apart. As further work on this topic, it would be interesting to
lower the gap between our lower and upper bounds, or consider strong orientations of
other graph families.

In particular, two appealing directions could be to improve Corollary 6.3.3 and
Theorem 6.4.8. For graphs with maximum degree 3, we do wonder whether there are
strong orientations for which the metric dimension is more than 2

5
of the vertices. It is

also legitimate to ask whether our upper bound (1
2

of the vertices), which was obtained
from the simple technique described in Corollary 6.2.3, can be lowered further.

In Theorem 6.4.10, we proved that any strong orientation of a grid asymptotically
has metric dimension at most 2

3
of the vertices. Towards improving this upper bound,

one could consider applying Corollary 6.2.3, for instance as follows. For a given oriented
grid D, let A∗ be the graph obtained as follows (where we deal with the vertices of D
using the same terminology as in Section 6.4):

• V (A∗) = V (D).

• We add, in A∗, an edge between two vertices (i, j) and (i′, j′) if they are joined by
a path of length exactly 2 in the grid underlying D. That is, the edge is added
whenever (i′, j′) is of the form (i − 1, j − 1), (i − 2, j), (i − 1, j + 1), (i, j + 2),
(i+ 1, j + 1), (i+ 2, j), (i+ 1, j − 1), or (i, j − 2).

Note that A∗ has two connected components C1, C2 being basically obtained by glueing
K4’s along edges. See Figure 6.6 for an illustration.

143



It can be noticed that for any oriented grid D, its auxiliary graph Daux is a subgraph
of A∗. From Corollary 6.2.3, any upper bound on the size of a minimum vertex cover
of A∗ is thus also an upper bound on MD(D) (assuming D is strong, in which case it
necessarily verifies ∆+(D) ≥ 2). Unfortunately, we have observed that any minimum
vertex cover of A∗ covers 3

4
of the vertices, which is not better than our upper bound

in Theorem 6.4.10.
There is still hope, however, to improve our upper bound using the vertex cover

method. Indeed, under the assumption that D is a strong oriented graph, actually
Daux can be far from having all the edges that A∗ has. For instance, it can easily be
proved that, in Daux, it is not possible that a vertex (i, j) is adjacent to all four vertices
(i−2, j), (i, j+2), (i+2, j), (i, j−2) (if they exist). Using a computer, we were actually
able to check on small grids that, for all strong orientations D, the minimum vertex
cover of Daux has size at most 1

2
of the vertices. This leads us to raising the following

two questions related to our upper bound in Theorem 6.4.10:

Question 6.5.1. For any strong orientation D of a grid Gn×m, do the minimum vertex
covers of Daux have size at most nm

2
?

Question 6.5.2. For any strong orientation D of a grid Gn×m, do we have MD(D) ≤
nm
2

?

Note that if the upper bound in Question 6.5.2 held, then it would be quite close to
the lower bound we have established in Lemma 6.4.9.
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Part IV

Conclusion and Further Work
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Chapter 7

Perspectives

In this thesis, we have mainly studied 2-player pursuit-evasion games in graphs. Specif-
ically, we have studied the eternal domination game and its generalization, the spy
game. We have also investigated the metric dimension of oriented graphs and a sequen-
tial version of the metric dimension of a graph, called the Localization problem. We
studied the complexity of some of these problems, showing the spy game to be NP-hard,
and the Localization and Relative-Localization problems to be NP-complete
even when the number of turns or number of probings per turn are fixed but not both.
Otherwise, our approach has been to study these problems in particular graph classes.

Our most notable results were for trees in the spy game and the Localization
problem. In particular, for the spy game, we proved that the fractional guard num-
ber is equal to the “integral” guard number in trees. This allowed us to use Linear
Programming to determine the guard number and a corresponding strategy in trees in
polynomial time and without this method we were not able to solve the problem in
trees. As mentioned before, this is the first exact algorithm, as far as we know, that
uses a fractional relaxation in combinatorial games to solve the “integral” version of
the game. With this being said, we believe using Linear Programming and fractional
relaxations could be fruitful in terms of solving other combinatorial games.

Our second most notable result was a polynomial-time (+1)-approximation algo-
rithm for the Localization problem in trees. Precisely, we showed that the problem
is NP-complete in trees, but that the “difficulty” of the problem originates from the
first turn of probing vertices. That is, in trees, given any arbitrary first turn of probing
vertices as input, we came up with an exact polynomial-time algorithm that solves the
problem from the second turn on. This result is of particular interest as, as far as we
know, (+1)-approximation algorithms are rare.

In terms of further work, aside from the open problems and directions mentioned in
the conclusions of Chapters 3, 4, 5, and 6 of this thesis, the following problems are of
particular interest and some are stated explicitly below. The exact complexity of the
eternal domination game and the spy game are yet to be determined with both only
known to be NP-hard. It would be interesting if both of these games are EXPTIME-
complete like cops and robbers and it seems likely that they are at least PSPACE-hard
like many games on graphs. It is also of interest to completely resolve the case of
Cartesian grids for both the eternal domination game and the spy game as this class of
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graphs is of particular interest in general but especially for the first game as was shown
in the state of the art. Lastly, as should be mentioned in any thesis related to cops and
robbers, the famed Meyniel’s conjecture still remains wide open. That is, for an n-node
connected graph G and an ε > 0, no one has even been able to manage to prove that
c(G) = O(n1−ε).

Question 7.0.1 (Complexity of the eternal domination game). Given a graph
G and an integer k > 0 as inputs, what is the computational complexity of determining
whether γ∞all(G) ≤ k? It is known to be NP-hard, so is it NP-complete? PSPACE-
complete? EXPTIME-complete?

Question 7.0.2 (Complexity of the spy game). Given a graph G and an integer
k > 0 as inputs and two fixed integers s > 1 and d ≥ 0, what is the computational
complexity of determining whether gns,d(G) ≤ k? It is known to be NP-hard, so is it
NP-complete? PSPACE-complete? EXPTIME-complete?

Question 7.0.3 (Eternal domimation in Cartesian grids). For an n×m Cartesian
grid Gn×m, is it true that γ∞all(Gn×m) = γ(Gn×m) +O(1)?

Conjecture 7.0.4 (Meyniel’s Conjecture). For any n-node connected graph G,
c(G) = O(

√
n).

Apart from the results detailed in this manuscript, I have studied the outcomes
and complexity of a scoring colouring game on graphs called the orthogonal colouring
game [s-13, j-1]. I have studied two different variants of the game of cops and rob-
bers, one called hyperopic cops and robbers [j-2], and the other called wall cops and
robbers [c-7]. Using a different technique than the one presented in Chapter 4, for the
eternal domination game in strong grids, we obtained a better result for “smaller” grids
(but a weaker asymptotic result) in [s-15]. Lastly, I have studied an edge-weighting
problem closely related to the 1-2-3 Conjecture [81] in [s-14].

In the next 5 to 10 years, I see my research continuing in combinatorial games on
graphs but also expanding to other problems in graph theory. In particular, algorithmic
complexity results interest me. Thus, questions like the complexity of the eternal dom-
ination game and the spy game are appealing. Also, the famed Meyniel’s conjecture
is another problem I would like to take some more time to tackle. Although I have
not really done any work on parameterized complexity, I think this will be a future
direction for my research in the coming years as well.
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[37] B. Brešar, S. Klavžar, and D. F. Rall. Domination game and an imagination
strategy. SIAM J. Discrete Mathematics, 24:979–991, 2010.
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