
Lecture on Graphs and Algorithms (Master 1 and 2)

Nicolas Nisse∗

Abstract

These are lecture notes of the course I gave, at Master 1 (Parts I-III) and Master 2 (Parts
IV-VII) level. The main goal of this lecture is to present some ways/techniques/methods
to design efficient algorithms (and their analysis) to solve (NP-hard or not) optimization
problems (mainly in the graph context).

Chapters 1 to 8 are mostly dedicated to the course I give at Master 1 level. Note that
Chapter 8 is (a bit) beyond the scope of this lecture (especially Section 8.5 that is presented
rather in an informal way) but aims at going further into algorithmic graph theory.

Chapters 9 and further are dedicated to the continuation of this course in Master 2.
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Part I

Introduction

1 Informal Introduction

This introduction is only meant to be an intuition of what will be addressed in the lecture (most
of the concepts mentioned here will be more formally defined and examplified later).

Tradeoff between time complexity and quality of the solution. What is an efficient
algorithm? Some problems have a unique solution (e.g., sorting a list of integer), some other
problems have several valid (≈ correct) solutions but only some of them are optimal (e.g. finding
a shortest path between two vertices in a graph: there may be many paths, but only few of
them may be shorter).

Here, we measure the efficiency as a tradeoff between the “time” to get a valid/correct
solution (time-complexity) and the “quality” of a valid solution (how “far” is it from an
optimal solution?).

Difficult vs. Easy Problems. We assume here that readers are familiar with basics on time
complexity of algorithms. If not, see [3] or here (in french, on polynomial-time algorithms) for
prerequisite background.

Very informally, problems may be classified into

P. Class of problems for which we know a Polynomial-time algorithm (polynomial in the size
of the input) to solve them.

NP. Class of problems for which we know a Non-deterministic Polynomial-time algorithm to
solve them. Equivalently, it can be checked in (deterministic) polynomial-time whether a
solution to such problem is valid/correct. (Clearly, P ⊆ NP )

NP-hard. Class of problems that are “as hard as the hardest problems in NP”. I don’t want
to give a formal definition of it here. Informally, you should understand this class of
problems as the ones for which nobody currently knows a deterministic polynomial-
time algorithm to solve them (related to the question whether P = NP , a question that
worths 1.000.000 dollars). Intuitively (not formally correct), the best known algorithms
for solving such problems consist of trying all possibilities...

In what follows, I refer to problems in P as “easy” and to NP -hard problems as “difficult”.
The main question I try to address in this lecture is how to deal with difficult problems. We
probably (unless P = NP ) cannot solve them “efficiently” (in polynomial time)... so, should
we stop trying solving them? NO !!! there are many ways to tackle them and the goal of this
lecture is to present some of these ways. Roughly, we will speak about:

1. Better exponential exact algorithms. “Try all possibilities in a more clever way” [6]

2. Approximation algorithms. Design poly-time algo. for computing solution (not nec-
essarily optimal) with “quality’s guaranty” (“not far from the optimal”) [9]

3. Restricted graph classes. “Use specifities of inputs” [4, 9]

4. Parameterized algorithms. (formal definition will be given later) [4]
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First, I want to give some basics on graph theory. The main reasons for it is that: (1) graphs
are a natural (and nice) mathematical model to describe many real-life problems, and (2), we
will then mainly consider graph problems as examples (so, we need a common background
on graphs structural results and algorithms). Then, this lecture will try to address several
techniques (mentioned above) to deal with difficult problems (mostly in graphs).

2 Basics on Graphs [2, 5]

A graph G is a pair G = (V,E) where V is a set1 of elements and E ⊆ V × V is a relationship
on V . Any element of V is called vertex. Two vertices u, v ∈ V are “linked” by an edge {u, v}
if {u, v} ∈ E, in which case u and v are said adjacent or neighbors. So V is the set of vertices
and E is the set of edges.2

Intuition. It can be useful (actually, IT IS!!) to draw graphs as follows: each vertex can be
depicted by a circle/point, and an edge between two vertices can be drawn as a curve (e.g., a
(straight) line) linking the corresponding circles/points.
Graphs are everywhere. As examples, let us consider a graph where vertices are: cities, pro-
teins, routers in the Internet, people,... and where two vertices are linked if they are: linked by a
road (road networks), by some chemical interaction (biological networks), by optical fiber (com-
puter networks/Internet), by friendship relationship (social networks: Facebook, Twitter...).

Notation. For v ∈ V , let N(v) = {w ∈ V | {v, w} ∈ E} be the neighborhood of v (set of its
neighbors) and N [v] = N(v) ∪ {v} be its closed neighborhood. The degree of a vertex v ∈ V is
the number deg(v) = |N(v)| of its neighbors. Given a graph G, if V and E are not specified,
let E(G) denote its edge-set and let V (G) denote its vertex-set.

Proposition 1 Let G = (V,E) be any simple graph: |E| ≤ |V |(|V |−1)2 and
∑
v∈V

deg(v) = 2|E|.

Proof. We prove that
∑
v∈V

deg(v) = 2|E| by induction on |E|. If |E| = 1, then G must have two

vertices with degree 1, and all other with degree 0. So the result holds. Assume by induction
that the result holds for |E| ≤ k and let assume that |E| = k + 1. Let {a, b} ∈ E and let
G′ = (V,E \ {a, b}) be the graph obtained from G by removing the edge {a, b}. By induction,∑
v∈V

degG′(v) = 2|E(G′)| = 2(|E| − 1). Since
∑
v∈V

degG(v) =
∑
v∈V

degG′(v) + 2 (because the edge

{a, b} contributes for 2 in this sum), the result holds. Let n = |V |.
Since each vertex has degree at most n− 1, 2|E| =

∑
v∈V

deg(v) ≤
∑
v∈V

(n− 1) = n(n− 1).

A Walk in a graph G = (V,E) is a sequence (v1, · · · , vk) of vertices such that two consecutive
vertices are adjacent (i.e., for every 1 ≤ i < k, {vi, vi+1} ∈ E). A Trail is a walk where no edges
are repeated. A trail is a Tour if the first and last vertex are equal. A tour is Eulerian if it uses
each edge of G exactly once.

A Path is a walk with no repeated vertex. Finally, a Cycle is a tour with no repeated vertex
(except that the first and last vertices are equal). A cycle is Hamiltonian if it meets every
vertex of G exactly once.
Note that, a path is a trail, and a trail is a walk (but not all walks are trails, not all trails are
paths). Similarly, a cycle is a tour, and a tour is a walk (not all walks are tours, not all tours
are cycles).

1In what follows, we always assume that V is finite, i.e., |V | is some integer n ∈ N.
2Technical remark. Unless stated otherwise, in what follows, we only consider simple graphs, i.e., there are

no loops (i.e., no vertex is linked with itself, i.e., {v, v} /∈ E for every v ∈ V ) nor parallel edges (i.e., there is at
most one edge between two vertices).
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Exercise 1 Give examples of graphs that are

• Eulerian (that admits a Eulerian tour) AND Hamiltonian (admits an Hamiltonian cycle)3;

• not Eulerian AND Hamiltonian;

• Eulerian AND not Hamiltonian;

• not Eulerian AND not Hamiltonian.

At a first glance, the problem of deciding whether a graph is Eulerian and the problem of
deciding whether a graph is Hamiltonian look very similar. From the complexity point of view
it seems they are quite different.

2.1 P vs. NP -hard, a first example: Eulerian vs. Hamiltonian

A graph G = (V,E) is connected if, for every two vertices u, v ∈ V , there is a path connecting
u to v. Note that, to admit a Eulerian or Hamiltonian cycle, a graph must be connected. So,
in what follows, we only focus on connected graphs. Given v ∈ V , the connected component of
G containing v is the graph (Vv, E ∩ (Vv×Vv)) where Vv is the set of all vertices reachable from
v in G. A vertex is isolated if it has no neighbors (i.e., degree 0).

Before going on, let us give the following interesting result whose proof is nice and simple.

Proposition 2 Let n ≥ 2. Any simple n-node graph G has two vertices with same degree.
There are not-simple graphs (e.g., with 3 vertices) that do not satisfy this statement.

Proof. If G has at most one isolated vertex (otherwise, the result clearly holds), let H be its
largest connected component (2 ≤ |V (H)| ≤ n). Since H is simple, connected and with at
least two vertices, every vertex has degree in {1, · · · , n− 1}. Since there are n vertices, by the
Pigeon-hole principle, at least two of them have same degree.

G = ({u, v, w}, {uv, uv, vw}) is a not simple graph with all vertices with distinct degree.

The following algorithm decides whether a graph is Hamiltonian. For this purpose, it con-
siders one after the other every permutation of V (all possible ordering of the n vertices) and
checks if this permutation corresponds to a cycle.

Algorithm 1 Naive algorithm for Hamiltonicity

Require: A connected graph G = (V,E).
Ensure: Answers Y es is G is Hamiltonian and No otherwise.

1: for each permutation of V do
2: if the permutation corresponds to a cycle then
3: return Y es.
4: end if
5: end for
6: return No

There are n! permutations of V 4 so, in the worst case, there are n! iterations of the for-loop.
At each iteration, the algorithm checks n edges to verify if the current permutation is a cycle.

3Formally, a graph reduced to a single vertex is a pathological case of a graph with both a Eulerian cycle and
an Hamiltonian cycle (both reduced to this single vertex). Try to find examples with more vertices.

4For any set with n elements, there are n! orderings of these elements. Indeed, there are n choices for the first
element, n− 1 for the 2nd one, n− 2 for the 3rd one, and so on, so n(n− 1)(n− 2) · · · 2 · 1 = n! in total.
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Overall, the time-complexity is then O(n · n!). In this course, we will see other (much better)
algorithms for this problem, but all have at least exponential time-complexity. Roughly, the
only way we know is to try all possibilities. Indeed, it can be proved (I will not do it here) that
the problem of deciding whether a graph is Hamiltonian is NP -hard! [7]

The other problem is very different.

Theorem 1 [Euler 1736] A graph admits an Eulerian cycle iff all vertices have even degree.

Before proving this theorem, let us look at its consequence.

Algorithm 2 Algorithm for deciding of a graph is Eulerian

Require: A connected graph G = (V,E).
Ensure: Answers Y es is G is Eulerian and No otherwise.

1: for every v ∈ V do
2: if v has odd degree then
3: return No.
4: end if
5: end for
6: return Y es

There are n iterations and each of them just checks the degree of one vertex. Overall, the
complexity is O(

∑
v∈V deg(v)) which is O(|E|) by proposition above. Therefore, the problem

of deciding whether a graph has an Eulerian cycle is in P .
Proof.[Sketch of proof of Th. 1] Assume that G is Eulerian and let v ∈ V . Each time the cycle
reaches v by some edge, it must leave by another (not used yet) edge. Hence, v has even degree.

Now, let us assume that every vertex has even degree. The proof is constructive (it produces
a Eulerian cycle). Let us sketch a recursive algorithm that computes an Eulerian cycle.

1. First, start from any vertex v and greedily progress along the edges. Each time a new
vertex is reached, it is possible to leave it since its degree is even (and so it remains at
least one non-used edge). Since a graph is finite, eventually, this greedy walk reaches a
vertex that has already been visited and so, we found a cycle C = (v1, · · · , vr).

2. Let G′ be the graph obtained by removing from G every edge of C. Let G′1, · · · , G′k be the
connected components of G′. Removing the edges of C, every vertex of C has its degree
reduced by exactly two. So, for every i ≤ k, every vertex of G′i has even degree and, by
induction on the number of edges, G′i has a Eulerian cycle. By applying recursively the
algorithm on G′i, let C′i be the Eulerian cycle obtained for G′i.

3. A Eulerian cycle of G is obtained by starting from v1, following C and, each time it meets
a vertex vj (j ≤ r), it follows the Eulerian cycle of the connected component of G′ that
contains vj (if not yet met). Prove that it is actually a Eulerian cycle.

Note that this algorithm has roughly time-complexity O(|E||V |) (finding a cycle takes time
O(|V |) and, in the worst case, has size 3 and so decreases by 3 the number of edges).

Note that, previous proof shows that, not only it can be decided if a graph is Eulerian in
polynomial-time, but also an Eulerian cycle (if any) can be found in polynomial-time.

2.2 Trees, subgraphs and spanning trees (Kruskal’s algorithm)

A Tree is any acyclic (with no cycle) connected graph.

7



A Subgraph of G is any graph that can be obtained from G by removing some edges and
some vertices. Hence, a subgraph of G = (V,E) is any graph H = (V ′, E′) with V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′). If V ′ = V , then H is a spanning subgraph. A spanning tree of G is a
spanning subgraph which is a tree.

Exercise 2 Let G = (V,E) be any graph. Show that:

• if G is a tree, there is a unique path between any two vertices of G;

• if G is a tree, then |E| = |V | − 1;

• G admits a spanning tree if and only if G is connected;

• deduce from previous items that, G is connected ⇒ |E| ≥ |V | − 1;

• if G is acyclic and |E| = |V | − 1, then G is a tree;

• if G is connected and |E| = |V | − 1, then G is a tree;

Given X ⊆ V , the subgraph (of G) induced by X is the subgraph G[X] = (X,E ∩ (X ×X)). If
F ⊆ E, the graph induced by F is G[F ] = (

⋃
{u,v}∈F {u, v}, F ).

Let w : E → R∗+ be a weight function on the edges. The weight of a subgraph G[F ] induced
by F ⊆ E is

∑
e∈F w(e). The goal of this section is the computation of a connected spanning

subgraph with minimum weight.

Exercise 3 Let (G,w) be a graph with an edge-weight function. Show that any minimum-weight
spanning connected subgraph is a spanning tree.

Proof. Let H be a minimum spanning connected subgraph. If H contains no cycle, it is
a tree. Otherwise let C be a cycle in H and let e ∈ E(C) be any edge of E. Show that
(V (H), E(H) \ {e}) is a connected spanning subgraph of G. Conclusion?

Above exercise somehow justifies the interest of minimum spanning tree in a practical point
of view. For instance, assume you want to connect some elements of a network (cities connected
by roads, buildings connected by electrical cables, etc.) and that weights on the links represent
the price of building them. Then, a minimum spanning tree will be the cheapest solution.

Let’s compute it!

Algorithm 3 : Kruskal’s Algorithm (1956)

Require: A (non-empty) connected graph G = (V,E) and w : E → R∗+.
Ensure: A minimum spanning tree T of G.

1: Order E in non decreasing order: w(e1) ≤ w(e2) ≤ · · · ≤ w(em).
2: Let v ∈ V and T = ({v}, ∅).
3: for i from 1 to m do
4: if If T is connected and spanning then
5: return T .
6: end if
7: Let ei = {u, v}.
8: if (V (T ) ∪ {u, v}, E(T ) ∪ {ei}) is acyclic then
9: T ← (V (T ) ∪ {u, v}, E(T ) ∪ {ei}).

10: end if
11: end for
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The first step (ordering the edges) takes time O(m logm)5. Then there are at most m
iterations of the for-loop. Each iteration takes time O(1) (by using suitable data structure such
as Union-Find). Overall, the time-complexity of the algorithm of Kruskal is O(m logm).

Theorem 2 The Kruskal’s algorithm returns a minimum spanning tree of G.

Proof. Let T be the spanning tree computed by the algorithm. Let (ei1 , ei2 , · · · , ein−1) be the
edges of T ordered in non-decreasing order of their weights. Let T ∗ be a minimum spanning
tree minimizing |E(T ∗)∩E(T )|. If T ∗ = T , we are done. Otherwise, let j < n be the minimum
index such that eij ∈ E(T ) \ E(T ∗) (why it exists?). Note that E(T ∗) ∩ {e1, e2, · · · , eij} =
{ei1 , ei2 , · · · , eij−1} by def. of j and of the algorithm. Let eij = {u, v} and let P be the unique
path from u to v in T ∗ (why it exists?). Show that P contains an edge f /∈ E(T ) such that
w(f) ≥ w(eij ). Show that (T ∗ \ {f}) ∪ {eij} is a minimum spanning tree of G. Conclusion?

As we will see in the following of the lecture, computing a minimum spanning tree of a graph
is one important basic blocks of many graph algorithms!!

2.3 Matching and Vertex Cover in graphs

Graphs are a very useful tool to deal with allocation problems. For instance, consider a set of
students that have to choose an internship among a set of proposals. Each student and proposal
may be modeled as vertices of a graph and a student is linked to a proposal if it has some interest
for it. How to assign internships to students so that at most one student is assigned to each
proposal and every student gets an internship that interests him/her? Say differently, how to
match internships and students? This is the topic of this subsection.

Let G = (V,E) be a graph. A matching in G is a set M ⊆ E of edges such that e ∩ f = ∅
for every e 6= f ∈M . That is, a matching is a set of edges pairwise disjoint.

A matching M is perfect is all vertices are matched, i.e., for every vertex v, there is an edge
e ∈M such that v ∈ e.

Exercise 4 Show that a graph has a perfect matching only if |V | is even.
Give a connected graph with |V | even but no perfect matching.

Show that, for any matching M , |M | ≤ b |V |2 c.

A matching M in G is maximum if there are no other matching M ′ of G with |M ′| > |M |.
Let µ(G) = |M | be the size of a maximum matching M in G. A matching M in G is maximal
if there is no edge e ∈ E such that M ∪ {e} is a matching.

Exercise 5 Show that every maximum matching is maximal.
Give examples of maximal matchings that are not maximum.

Exercise 6 Prove that above algorithm computes a maximal matching in time O(|E|).

Proof. Three things to be proved: M is a matching, M is maximal, and the time-complexity.

Now, we focus on computing maximUM matchings in graphs. Let G = (V,E) be a graph
and M ⊆ E be a matching in G. A vertex v ∈ V is covered by M if there is e ∈M , v ∈ e (i.e.,
if v “touches” one edge of the matching). Let k ≥ 2. A path P = (v1, · · · , vk) is M -alternating
if, for any two consecutive edges ei−1 = {vi−1, vi} and ei = {vi, vi+1} (1 < i < k), exactly one
of ei−1 and ei is in M . The path P is M -augmenting if P is alternating and v1 and vk are not
covered by M . Note that, in that case, v2, · · · , vk−1 are all covered by M and k is even.

5Recall that ordering a set of n elements takes time O(n logn) (e.g., merge-sort)
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Algorithm 4 Algorithm for Maximal Matching

Require: A graph G = (V,E).
Ensure: A maximAL matching M of G.

1: G′ ← G and M ← ∅.
2: while E(G′) 6= ∅ do
3: Let e = {u, v} ∈ E(G′) // so, e is any (arbitrary) edge of G′

4: M ←M ∪ {e} and G′ ← G′[V (G′) \ {u, v}].
5: end while
6: return M .

Theorem 3 (Berge 1957) Let G = (V,E) be a graph and M ⊆ E be a matching in G. M is
maximum matching if and only if there are no M -augmenting paths.

Proof. First, let us assume that there is an M -augmenting path P . Show that M ′ = (M \
E(P )) ∪ (E(P ) \M) (“switch” the edges in P ) is a matching and that |M ′| = |M |+ 1 and so,
M is not maximum. For this purpose, first show that M ′ is a matching. Then, show that P
has odd length, i.e., 2k + 1 edges, and that k edges of P are in M and k + 1 are not in M .
Conclude.

Now, assume that there are no M -augmenting paths. Recall that the symmetric difference
A∆B between two sets A and B equals (A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A). Let M∗ be a
maximum matching in G and let X = G[M∆M∗]. So, X is the subgraph of G induced by the
edges that are in M or M∗ but not in both.

Show that every vertex has degree at most two (in X) in any connected component of X.
Deduce that the connected components of the graph X consist of paths and cycles (we say that
X is the disjoint union of paths and cycles).

So the connected components of X consist of cycles C1, · · · , Ck and paths P1, · · · , P`.
Show that, for every i ≤ k, Ci has even size. Deduce that |E(Ci) ∩M | = |E(Ci) ∩M∗|.
Let j ≤ `. Show that, because there are no M -augmenting path, |E(Pj) ∩M∗| ≤ |E(Pj) ∩M |.

Therefore, |M∗| = |M ∩M∗|+
k∑
i=1
|E(Ci)∩M∗|+

∑̀
j=1
|E(Pj)∩M∗| ≤ |M ∩M∗|+

k∑
i=1
|E(Ci)∩

M | +
∑̀
j=1
|E(Pj) ∩M | = |M |. So |M∗| ≤ |M | and M is a maximum matching (since M∗ is

maximum).

Theorem 3 suggests (actually proves) that, to compute a maximum matching in a graph, it
is sufficient to follow the following greedy algorithm. The key point is that the order in which
augmenting paths are considered is not relevant! (see [Bensmail et al.’17] for different behavior).

Algorithm 5 Algorithm for Maximum Matching

Require: A graph G = (V,E).
Ensure: A maximUM matching M of G.

1: M ← ∅.
2: while there is an M -augmenting path P do
3: M ← (M \ E(P )) ∪ (E(P ) \M).
4: end while
5: return M .

The time-complexity of previous algorithm relies on the time needed to find anM -augmenting
path (condition in the While-loop). This can actually be done in polynomial-time using the Blos-
som algorithm [Edmonds 1965]. This algorithm has been improved and a maximum matching
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in any graph G = (V,E) can be found in time O(
√
|V ||E|) [Micali,Vazirani 1980]. Computing

matching in graphs is a basic block of many graph algorithms as we will see below.
In what follows, we focus on a restricted graphs’ class, namely bipartite graphs.

2.3.1 Matchings in bipartite graphs (Hall’s theorem, Hungarian’s method)

Given a graph G = (V,E), a set of I ⊆ V is an independent set (or stable set) if, {u, v} /∈ E
for every u, v ∈ I (the vertices of I are pairwise not adjacent in G). A graph G = (V,E) is
bipartite if V can be partitioned into two stable sets A and B.

Exercise 7 Show that any tree is bipartite.
Show that a graph G is bipartite iff G has no cycle of odd size.

Proof. Show that, if there is an odd cycle in G, then it is not bipartite.
Otherwise, let v be any vertex and consider a Breadth First Search (BFS6) from v. Set A

to be the vertices at even distance from v and B = V \A.

Let G = (A∪B,E) be a bipartite graph7. W.l.o.g., |A| ≤ |B|. Clearly (prove it), a maximum
matching M in G is such that |M | ≤ |A|. A set S ⊆ A is saturated by a matching M of G is
all vertices of S are covered by M (in which cas |M | = |A|). For any graph G = (V,E), given
S ⊆ V , let us denote N(S) = {u ∈ V \ S | ∃v ∈ S, {u, v} ∈ E} =

⋃
v∈S(N(v) \ S). That is,

N(S) is the set of vertices not in S that are neighbor of some vertex in S.

Theorem 4 (Hall 1935) Given a bipartite graph G = (A∪B,E), |A| ≤ |B|, there is matching
saturating A iff, for all S ⊆ A, |S| ≤ |N(S)|.

Proof. If there is S ⊆ A such that |S| > |N(S)| then no matching can saturates S. The reverse
implication can be proved by induction on |A|. Algorithm 6 is a constructive proof.

Prove the correctness of this algorithm (In particular, prove that, in the last Else case,
|X| = |N(X)|+ 1).

Note that above algorithm, known as the Hungarian method [Kuhn 1955], can be used to find
augmenting paths in polynomial-time in bipartite graphs (just try every uncovered vertex as
starting point), and so it allows to compute a maximum matching in bipartite graphs.
Understanding why this algorithm requires the graph to be bipartite would be an instructive
exercise.

2.3.2 Vertex Cover in graphs (König’s theorem and 2-approximation)

On the “practical” point of view, consider a city (buildings are vertices that are linked with
streets/edges). We aim at placing, say, as few as possible (because it is expansive) fire-stations
in buildings so that each building it adjacent to at least one fire-station.

This problem is modeled as follows. Given a graph G = (V,E), a set K ⊆ V is a vertex
cover if K ∩ e 6= ∅ for every e ∈ E. Let vc(G) be the smallest size of a vertex cover in G. The
problem of computing a minimum vertex cover in a graph is NP -hard in general graphs [7].

When you are facing an NP -hard problem (or, even, any problem), you must have the
reflex to think to any “naive” algorithm to solve it (e.g., trying all feasible solutions and keep
a best one). Precisely, imagine any feasible solution (e.g., prove that V is a vertex cover for any
graph G = (V,E)) and try to improve it.

6Please see [3] or [5] if you don’t know what a BFS is.
7Implicitly (or say, by notation), A and B are stable sets.
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Algorithm 6 : Hungarian method [Kuhn 1955]

Require: A bipartite graph G = (A ∪B,E).
Ensure: A matching M saturating A or a set S ⊆ A such that |S| > |N(S)|.

1: M ← ∅.
2: while A is not saturated by M do
3: Let a0 ∈ A be any vertex not covered by M . Set X = {a0}.
4: Let Continue = True.
5: while N(X) saturated by M and Continue do
6: Y ← {a0} ∪ {a | ∃b ∈ N(X), {a, b} ∈M}.
7: if X ⊂ Y then
8: X ← Y
9: else

10: Continue = False.
11: end if
12: end while
13: if ∃b0 ∈ N(X) not covered by M then
14: Let P be an M -augmenting path between a0 and b0;
15: M ← (M \ E(P )) ∪ (E(P ) \M).
16: else
17: return X
18: end if
19: end while
20: return M .

In the above algorithm, there are 2|V | iterations of the For-loop (number of subsets of V ),
and each iteration requires to check if a set of vertices is a vertex cover (check if all edges are
touched), i.e., each iteration requires time O(|E|). Overall, for any G = (V,E), the problem of
computing vc(G) can be solved in time O(|E| · 2|V |).

Again, the goal of this lecture is to learn how/when to solve such a problem (that, unless
P = NP , cannot be solved in polynomial-time) in more efficient ways...

Now, we show that the Min. Vertex Cover problem is “easy” (can be solved in polynomial-
time) in bipartite graphs. Then we show that finding a vertex cover that is “not too large” is
not difficult in any graph.

Lemma 1 Let K be any vertex cover and M be any matching of any graph G. Then |M | ≤ |K|.

Proof. For every edge e ∈ M , K ∩ e 6= ∅ by definition of a vertex cover. Moreover, for every

Algorithm 7 Naive Algorithm for Minimum Vertex Cover

Require: A graph G = (V,E).
Ensure: A minimum Vertex Cover of G.

1: K ← V .
2: for every S ⊆ V do
3: if S is a vertex cover of G and |S| < |K| then
4: K ← S.
5: end if
6: end for
7: return K

12



v ∈ K, there is at most one edge e ∈ M such that v ∈ e (by definition of a matching). So
|M | ≤ |K| (each edge of M is touched by at least one vertex of K and each vertex of K touches
at most one edge of M).

Theorem 5 (König-Egerváry 1931) For any bipartite graph G = (A ∪ B,E), the size of a
minimum vertex cover vc(G) equals the size of a maximum matching µ(G).

Proof. The fact that µ(G) ≤ vc(G) follows from Lemma 1.
Let M be a maximum matching of G, i.e., M is a matching of G and |M | = µ(G). If A

is saturated by M then |M | = |A| and, because G is bipartite, A is a vertex cover and the
result follows. Assume A is not saturated by M and let U ⊆ A be the uncovered vertices in
A. Let X be the set of vertices linked to some vertex in U by a M -alternating path. Let
XA = X ∩ A and XB = X ∩ B. Note that XB is saturated (since otherwise, there is a M -
augmenting path contradicting that M is maximum by Th. 3). Moreover, XA = N(XB). Prove
that Y = XB ∪ (A \XA) is a vertex cover of size |M | (take any edge e ∈ E and show that at
least one of its ends is in Y and prove that |Y | = |M |). So, vc(G) ≤ |Y | = |M | = µ(G).

Note that the proof of Theorem 5 is constructive: it allows to compute, from a maximum
matching in a bipartite graph, a minimum vertex cover in polynomial-time.

Theorem 6 Let M be any maximal matching of a graph G. Then, |M | ≤ vc(G) ≤ 2|M |.

Proof. The left inequality follows from Lemma 1.
Let M be a maximal matching. Then Y =

⋃
{u,v}∈M{u, v} is a vertex cover. Indeed, if not,

there is f = {x, y} ∈ E such that Y ∩ {x, y} = ∅, and so M ∪ {f} is a matching, contradicting
that M is maximal. Hence, vc(G) ≤ |Y | = 2|M |.

Recap. on Min. Vertex Cover. Let us consider the problem that takes a graph G = (V,E)
as input and aims at computing a set K ⊆ V , which is a vertex cover of minimum size in G.
As mentioned above the corresponding decision problem is NP -complete in general graphs and
can be (naively) solved in time O(|E| · 2|V |). The goal of this lecture is to explain how/when
we can improve this time-complexity. In the introduction, we mentioned four possible ways to
go through the “P vs. NP barrier”. In the current subsection, we gave two different answers
in the specific case of the Min. Vertex Cover Problem (MVCP):

Restrict inputs: By Th. 5 and algorithm of [Micali,Vazirani 1980], the MVCP can be solved
in time O(

√
|V ||E|) in bipartite graphs, i.e., MVCP is in P when restricted to bipartite

graphs!!

First Approximation Algorithm: Consider the following algorithm: compute M a maximal
matching of G (can be done in time O(|E|) by Alg. Maximal Matching) and return
V (M) = {v | ∃e ∈ M, v ∈ M}. By the proof of Th. 6, V (M) is a vertex cover of
G. Moreover, |V (M)| = 2 · |M | ≤ 2 · vc(G) (because |M | ≤ vc(G) by Th. 6). So, in
polynomial-time O(|E|), it is possible to compute a vertex cover X of any graph G that
is “not too bad” (|X| is at most twice the size of a minimum vertex cover).

Exercise 8 Give an example of graph for which the algorithm of previous paragraph gives a
vertex cover of size twice the optimal.

Note that last proposition relies on the following facts. We are able to compute in polynomial-
time some feasible solution (here M) and to bound on both sides (lower and upper bound) the
size of any optimal solution in the size of M !!
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Roughly, these are the key points of approximation algorithms as we formalize them in next
section.

Part II

Approximation Algorithms [9]

3 Introduction to Approximation Algorithms: Load balancing

In this section, we formally define the notion of approximation algorithm (efficient algorithm
that computes a “not too bad” solution) and exemplify this notion via the Load Balancing
problem. For this problem we design and analyze two approximation algorithms, the second
algorithm improving the first one.

3.1 Definition of an Approximation Algorithm

The following definition is not really formal since I do not want to give the formal definition of
an optimization problem here. I think/hope this will be sufficient for our purpose.

Let us consider an optimization problem Π and let w be the function evaluating the quality
(or cost) of a solution. Let k ≥ 1. An algorithm A is a k-approximation for Π if each of the
following three conditions is satisfied. For any input I of Π:

• A computes an output O in polynomial-time (in the size of I);

• this output O is a valid solution for I, i.e., satisfies the constraints defined by Π, and

• – if Π is a minimization problem (aims at finding a valid solution with minimum cost),
then w(O) ≤ k·w(O∗) where O∗ is an optimal (i.e., with minimum cost) valid solution
for I.

– if Π is a maximization problem (aims at finding a valid solution with maximum cost),
then w(O∗) ≤ k · w(O) where O∗ is an optimal (i.e., with maximum cost) valid
solution for I.

For instance, if Π is the minimum vertex cover studied in previous section, the goal is, given
a graph G = (V,E), to compute a set K ⊆ V with the constraint that it is a vertex cover (i.e.,
every edge is touched by some vertex in K), and the cost function is the size |K| of the set.

Exercise 9 Show that the algorithm that consists in computing a maximal matching M in G
and returning V (M) is a 2-approximation for the minimum vertex cover problem.

Remark. In previous definition, we have assumed that k is a constant. This definition can
be generalized by considering k as a function f of the size of the input. For instance, a f(n)-
approximation is an algorithm that, given an input of size n, computes in polynomial-time a
valid solution of cost at most f(n) times the cost of an optimal solution for a minimization
problem (resp., of cost at least 1

f(n) times the cost of an optimal solution for a maximization

problem).

3.2 The Load Balancing Problem

For once, let us not speak about graphs...
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Let us consider a set of m ∈ N identical processors, and a set of n ∈ N jobs described
by the n-tuple (t1, · · · , tn) where ti is the time required by a processor to execute job i, for
every 1 ≤ i ≤ n. Each processor can treat only one job at a time. Moreover, we assume that
each job is unbreakable, i.e., it cannot be shared between several processors. The goal of the
Load Balancing Problem is to assign each job to one processor in order to minimize the overall
completion time.

More formally, the goal of the Load Balancing problem is to compute a partition S =
{A1, · · · , Am} of the jobs, i.e.,

⋃
1≤i≤m

Ai = {1, · · · , n} and Ai ∩ Aj = ∅ for every 1 ≤ i < j ≤ m

(this corresponds to an assignment of the jobs to the processors. Note that any Ai may be
∅) minimizing max

1≤i≤m

∑
j∈Ai

tj . Given an assignment S = {A1, · · · , Am}, the load Li(S) of the

processor i (1 ≤ i ≤ m) is
∑
j∈Ai

tj and max
1≤i≤m

Li(S) is called the makespan of S. So the Load

Balancing problem consists in finding an assignment minimizing the makespan.

Load Balancing Problem (LBP):

Input: m ∈ N and (t1, · · · , tn) ∈ (R+)n.

Output: A partition {A1, · · · , Am} of {1, · · · , n} such that max
1≤i≤m

∑
j∈Ai

tj is minimum.

The LBP is a classical NP -complete problem [7].
As usual, let us first think to what could be a (naive) algorithm: try all possibilities!! Each

of the n jobs can be assigned to any of the m processors, which give mn possibilities :(
Hence, we aim at designing approximation algorithms for solving it. An approximation

algorithm requires to be able to evaluate the quality of the solution it returns with respect to
the quality OPT of an optimal solution. Since, in general, we don’t know the cost of an optimal
solution, it is important to have reliable lower (in case of minimization problems) bounds on the
cost of an optimal solution (resp., upper bound for maximization problems). Indeed, consider
a minimization problem (the case of a maximization problem is similar, prove it). If we know a
lower bound LB ≤ OPT of the cost of an optimal solution and that we can relate the cost c of
any solution computed by our algorithm to LB (e.g., say c ≤ k · LB for some constant k), this
will be an indirect way to relate c and OPT : LB ≤ OPT ≤ c ≤ k · LB ≤ k ·OPT .

3.2.1 Greedy 2-Approximation (least loaded processor)

For the LBP, there are two easy lower bounds:

Lemma 2 Let (m, (t1, · · · , tn)) be an instance of the LBP and let OPT be the minimum
makespan over all assignments. Then max

1≤i≤n
ti ≤ OPT and 1

m

∑
1≤i≤n

ti ≤ OPT .

Proof. The first statement is obvious. The 2nd statement follows the pigeonhole principle.

Exercise 10 Prove that, if n ≤ m, an optimal solution is to assign each job to exactly one
processor, and that max

1≤i≤n
ti = OPT .

Hence, let us assume that n > m. Let us consider the intuitive simple greedy algorithm8.
Here, let us assign the jobs sequentially (in any order) to a least loaded processor.

8Roughly, an algorithm is greedy if each of its steps is guided by a simple local (i.e., depending on the current
state) rule.
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Algorithm 8 : 2-Approximation for Load Balancing Problem

Require: n > m ∈ N and (t1, · · · , tn) ∈ (R+)n.
Ensure: A partition {A1, · · · , Am} of {1, · · · , n}.

1: {A1, · · · , Am} ← {∅, · · · , ∅}.
2: for i = 1 to n do
3: A1 ← A1 ∪ {i}.
4: Reorder the Ai’s such that

∑
j∈A1

tj ≤
∑
j∈A2

tj ≤ · · · ≤
∑

j∈Am
tj .

5: end for
6: return {A1, · · · , Am}.

Theorem 7 Algorithm 8 is a 2-approximation for the LBP, with time-complexity O(n logm).

Proof. There are 3 properties to be proved! First, it returns a valid solution, i.e., here the
computed solution {A1, · · · , Am} is a partition of {1, · · · , n}. This is obvious (I hope?).

Second, it has polynomial-time complexity. Indeed, there are n iterations of the For-loop,
and each of them requires to re-sort an already sorted list of m elements where only one has
changed, which takes O(logm) time per iteration (see, e.g., [3]).

The third property, i.e., that the makespan L = max
1≤i≤m

∑
j∈Ai

tj of the computed partition

{A1, · · · , Am} is at most twice the optimal makespan OPT , is the most “difficult” to prove.
For any i ≤ m, let Li =

∑
j∈Ai

tj .

Let x ≤ m be such that L = Lx = max
1≤i≤m

Li (i.e., Processor x is one of the most loaded in

the computed solution). Note that OPT ≤ L.
Let j ≤ n be the last job assigned to Ax, i.e., j is the maximum integer in Ax. Note that

tj ≤ OPT by the first statement of Lemma 2.
For every 1 ≤ y ≤ m, let L′i be the load of Processor i when tj is assigned to Px (i.e., after

iteration j − 1 of the For-loop). Then, Lx − tj ≤ L′i for every i ≤ m (indeed, it is obvious
for i = x, and if there is y ∈ {1, · · · ,m} \ {x} with Lx − tj > L′y, the job j would have been
assigned to Processor y by the definition of Algorithm 8). Since, for every 1 ≤ i ≤ m, the load
of Processor i is not decreasing during the algorithm, this implies that Lx − tj ≤ Li for every
i ≤ m.

Therefore, m(Lx− tj) ≤
∑

1≤i≤m
Li =

∑
1≤i≤n

ti. Hence, Lx− tj ≤ 1
m

∑
1≤i≤n

ti ≤ OPT where the

last inequality is given by the second statement of Lemma 2.
Hence, by previous paragraphs, we have tj ≤ OPT and Lx − tj ≤ OPT .
To conclude, L = Lx = (Lx − tj) + tj ≤ OPT +OPT = 2 ·OPT .

Note that, sometimes, the algorithm is better than we can expect from its analysis. For
instance, previous theorem proves that Algorithm 8 is a 2-approximation for the LBP. The next
question is whether Algorithm 8 is a c-approximation for the LBP for some c < 2. Note that
the latter is not true if we can find an instance for which Algorithm 8 computes a solution of
cost exactly twice the optimal.

Exercise 11 Let m ∈ N and n = (m−1)m+1. Apply Algorithm 8 to the input (m, (t1, · · · , tn))
where t1 = · · · ,= tn−1 = 1 and tn = m. Conclusion (let m tend to ∞)?

Hence, to expect a c-Approximation for the LBP with c < 2, we need another algorithm.
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Algorithm 9 : 3
2 -Approximation for Load Balancing Problem

Require: n > m ∈ N and (t1, · · · , tn) ∈ (R+)n.
Ensure: A partition {A1, · · · , Am} of {1, · · · , n}.

1: Order the jobs in non decreasing order of their completion time, i.e. t1 ≥ · · · ≥ tn.
2: {A1, · · · , Am} ← {∅, · · · , ∅}.
3: for i = 1 to n do
4: A1 ← A1 ∪ {i}.
5: Reorder the Ai’s such that

∑
j∈A1

tj ≤
∑
j∈A2

tj ≤ · · · ≤
∑

j∈Am
tj .

6: end for
7: return {A1, · · · , Am}.

3.2.2 Greedy 3
2-Approximation (least loaded processor and ordered tasks)

Note that Algorithm 9 only differs from Algorithm 8 by its first step that consists in ordering
the jobs by non-decreasing completion time. However, it offers us the opportunity to use a new
lower bound (proved by pigeonhole principle).

Lemma 3 Let n > m, (m, (t1, · · · , tn)) be an instance of the LBP with t1 ≥ · · · ≥ tn and let
OPT be the minimum makespan over all assignments. Then OPT ≥ 2 · tm+1.

Theorem 8 Algorithm 9 is a 3
2 -approximation for the LBP, with time-complexity O(n log n).

Proof. Again, Algorithm 9 computes a valid solution (a partition) {A1, · · · , Am}. Moreover,
the bottleneck for the time-complexity is the first step that takes time O(n log n). It only
remains to prove the approximation ratio.

For any i ≤ m, let Li =
∑
j∈Ai

tj and let x ≤ m be such that L = Lx = max
1≤i≤m

Li (i.e.,

Processor x is one of the most loaded in the computed solution). Note that OPT ≤ L.
Let j ≤ n be the last job assigned to Ax, i.e., j is the maximum integer in Ax. Then,

j ≥ m + 1 and 2 · tj ≤ OPT by Lemma 3 and because tj ≤ tm+1. As in the proof of previous
theorem, Lx − tj ≤ OPT . Hence, Lx = (Lx − tj) + tj ≤ OPT +OPT/2 = 3

2 ·OPT .

4 Traveling Salesman Problem (TSP)

4.1 Different variants and exact dynamic programming algorithm

A salesman has to visit several cities but aims at minimizing the length (or cost) of his journey.
The TSP aims at computing a best possible route for the salesman.

More formally, let Kn be the complete graph (or clique) with n vertices, i.e., the graph with
all possible edges between the n vertices. Recall that the weight of a subgraph H is

∑
e∈E(H)

w(e).

Given the clique Kn with edge-weight w : E(Kn)→ R+, the Traveling Salesman Problem (TSP)
aims at computing a Hamiltonian cycle of minimum weight in (Kn, w).

Note that the problem is restricted to complete graphs to ensure that there exists a Hamil-
tonian cycle. However, the TSP is equivalent to the problem of computing a minimum-weight
walk9 passing through all vertices and going back to the initial vertex in any graph. Indeed,
let G = (V,E) be a graph with edge-weight ` : E → R+. The distance between 2 vertices

9The weight of a walk (v1, · · · , vk) is
∑

1≤i<k
w(vi, vi+1), i.e., the multiplicity of edges is taken into account.
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u, v ∈ V , denoted by distG(u, v), is the minimum weight of a path from u to v in (G, `). Let
w : V × V → R+ that assigned to every pair (u, v) of vertices the weight w(u, v) = distG(u, v).

Given (Kn, w) and k ∈ R+, the problem of deciding whether there exists a Hamiltonian cycle
of weight at most k is NP-complete [7]. The algorithm proposed in Section 2.1 to decide if a
graph has a Hamiltonian cycle can be directly adapted to solve the TSP in time O(n ·n!). Here,
we show how to improve the time complexity by presenting a dynamic programming algorithm.

Let v1 ∈ V (Kn) and let S ⊆ V (Kn) \ {v1} be a non-empty set of vertices and v ∈ S. Let
OPT [S, v] denote the minimum weight of a path that starts in v1 and visits exactly all vertices
in S, ending in v. Clearly, for every v 6= v1, OPT [{v}, v] = w(v1, v).

Lemma 4 Let S ⊆ V (Kn) \ {v1} with |S| ≥ 2 and let v ∈ S.

OPT [S, v] = min
u∈S\{v}

OPT [S \ {v}, u] + w(u, v).

Proof. The proof is by double inequalities.
First, let P be a path from v1 to v, with V (P ) = S ∪ {v1} and with weight OPT [S, v]. Let

x be neighbor of v in P and let P ′ be the subpath of P from v1 to x. Then, OPT [S, v] =
w(P ′) + w(x, v) ≥ OPT [S \ {v}, x] + w(x, v) ≥ minu∈S\{v}OPT [S \ {v}, u] + w(u, v).

Conversely, let x ∈ S \ {v1} be such that OPT [S \ {v}, x] + w(x, v) is minimum. Let
P ′ be a path from v1 to x, with V (P ) = (S \ {v}) ∪ {v1} and with weight OPT [S \ {v}, x].
Let P be the path from v1 to v obtained from P ′ by adding to it the edge {x, v}. Then,
minu∈S\{v}OPT [S \ {v}, u] + w(u, v) = OPT [S \ {v}, x] + w(x, v) = w(P ) ≥ OPT [S, v].

Algorithm 10 : Dynamic Programming for TSP [Bellman-Held-Karp 1962]

Require: Complete graph Kn = (V,E) with w : E → R+.
Ensure: The minimum weight of a Hamiltonian cycle.

1: Let v1 ∈ V .
2: for v ∈ V \ {v1} do
3: OPT [{v}, v] = w(v1, v).
4: end for
5: for S ⊆ V \ {v1} with |S| ≥ 2 in non decreasing size order do
6: for v ∈ V \ {v1} do
7: OPT [S, v] = minu∈S\{v}OPT [S \ {v}, u] + w(u, v).
8: end for
9: end for

10: return minv∈V \{v1}OPT [V \ {v1}, v] + w(v, v1).

Theorem 9 (Bellman-Held-Karp 1962) Algorithm 10 computes the minimum weight of a
Hamiltonian cycle (and can be easily adapted to compute a minimum-weight Hamiltonian cycle)
in time O(n2 · 2n).

Proof. The time complexity comes from the fact that there are O(2n) sets S to be considered.
For each set S, and for each of the O(n) vertices in V \{v1}, the algorithm must find a minimum
value among O(n) values, so each iteration of the main For-loop takes time O(n2).

The correctness follows the fact that, after the last “EndFor”, the values OPT [V \ {v1}, v]
are known for every v ∈ V \{v1} (by Lemma 4). To conclude, let C∗ be an optimal Hamiltonian
cycle and let OPT be its weight. The proof is by double inequalities.

18

https://en.wikipedia.org/wiki/Held-Karp_algorithm


Let x be a neighbor of v1 in C∗ and let P be the path obtained from C∗ by removing the edge
{v1, x}. Then, OPT = w(P ) +w(v1, x) ≥ OPT [V \ {v1}, x] +w(x, v1) ≥ minv∈V \{v1}OPT [V \
{v1}, v] + w(v, v1). Finally, let x ∈ V \ {v1} minimizing OPT [V \ {v1}, x] + w(x, v1) and let
P be a spanning path from v1 to x with weight OPT [V \ {v1}, x]. Then adding the edge
{x, v1} to P leads to a Hamiltonian cycle C and so, minv∈V \{v1}OPT [V \ {v1}, v] +w(v, v1) =
OPT [V \ {v1}, x] + w(x, v1) = w(C) ≥ OPT .

No algorithm for solving TSP in time O(cn) is known for any c < 2. Moreover,

Theorem 10 If P 6= NP , there is no c-approximation algorithm for solving TSP, for any
constant c ≥ 1.

So the TSP problem is difficult and it is even difficult to approximate it. To overcome
this difficulty, there may be several options. Here, we discuss two of them: simplifying the
problem and/or restricting the instances. To simplify the problem, we may allow repetitions
of vertices and edges. So, let TSP r be the problem that, given a weighted Kn, must compute
a closed10 walk, passing through all vertices, and with minimum weight. On the other hand,
we may restrict the instances of the TSP. Since considering a complete graph is important
because it ensures the existence of a Hamiltonian cycle, let us restrict the weight function. A
weight function w : V × V → R+ satisfies the triangular inequality if, for every a, b, c ∈ V ,
w(a, b) ≤ w(a, c) + w(c, b).

Exercise 12 Show that, if w satisfies the triangular inequality, there exists a Hamiltonian cycle
in (Kn, w) of weight ≤ k ∈ R+ if and only if there exists a walk passing through all vertices and
going back to the initial vertex, in Kn, with weight ≤ k.

Let TSPti be the problem that, given a weighted (Kn, w) where w satisfies the triangular
inequality, must compute a Hamiltonian cycle with minimum weight. Finally, let TSP rti be
the problem that, given a weighted (Kn, w) where w satisfies the triangular inequality, must
compute a closed walk, passing through all vertices, and with minimum weight.

Lemma 5 Any c-approximation algorithm for one problem in {TSP r, TSPti, TSP rti} can be
turned into a c-approximation algorithm for any problem in {TSP r, TSPti, TSP rti}.

Proof. Any solution for TSPti is a solution for TSP rti (with same weight). Similarly, any
solution for TSP r is a solution for TSP rti (with same weight).

Let W = (v1, · · · , vk) be a solution for TSP rti. If no vertex is repeated, then W is a solution
of TSPti. Otherwise, let us assume that there are 1 ≤ i < j < k such that vi = vj , then
W ′ = (v1, · · · , vj−1, vj+1, · · · , vk) is a solution and the weight of W ′ is not larger than the
weight of W by the triangular inequality. Repeating this process sequentially until no vertex is
repeated leads to a solution of TSPti (without increasing the weight).

Finally, let (Kn = (V,E), w) be an instance of TSP r. Let distKn : E → R+ be the
distance function with respect to w. Prove that distKn satisfies the triangular inequality. Then,
(Kn, distKn) is an instance of TSPti. Following Exercise 12, any solution of (Kn, distKn) for
TSPti leads to a solution (with same weight) of (Kn, w) for TSP r.

Prove that above arguments allow to prove the lemma.

10“Closed” means that the starting and final vertices are the same.
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4.2 2-Approximation (using minimum spanning tree)

Let us now show that these problems (TSP r, TSPti, TSP
r
ti) admit “good” approximation algo-

rithms. Precisely, let us first consider the problem TSP r. Since repetitions of edges/vertices
are allowed, we may consider any connected graph (rather than complete graphs) since closed
walk passing through every vertex always exists in any connected graph. Recall the notion of
Depth First Search (DFS) of a tree [3].

As usual, the design (and analysis) of an approximation algorithm for solving some opti-
mization problem Π requires some lower bound (if possible, that can be computed in polynomial
time) on the quality of an optimal solution of Π.

Lemma 6 Let G = (V,E) be a connected graph and w : E → R+. Let w∗ be the minimum
weight of a closed walk passing through all vertices in V . Let t∗ be the minimum weight of a
spanning tree in G. Then, t∗ ≤ w∗.

Proof. Let W be any closed walk passing through all vertices in V and with minimum weight
w(W ) = w∗. Then, E(W ) induces a connected spanning subgraph H of G with weight w(H) ≤
w(W ) (the difference between w(H) and w(W ) is that, in w(H), each edge is counted only once).
Let T be any minimum spanning tree of G. By Exercise 3, the weight t∗ = w(T ) of T is at most
the weight of any connected spanning subgraph. Hence, t∗ = w(T ) ≤ w(H) ≤ w(W ) = w∗.

Algorithm 11 : 2-approximation for TSP r

Require: A connected graph G = (V,E) with w : E → R+.
Ensure: A closed walk passing through every vertex in V .

1: Let T be a minimum spanning tree of G.
2: return the closed walk defined by any DFS-traversal of T .

Theorem 11 Algorithm 11 is a 2-approximation algorithm for the problem TSP r.

Proof. The fact that Algorithm 11 returns a valid solution is trivial. Its time-complexity
follows from the one of the problem of computing a minimum spanning tree which can be done
in polynomial-time (Th. 2). Finally, the weight of the computed walk W is twice the minimum
weight t∗ of the computed spanning tree T (because W follows a DFS of T , each edge of T is
crossed exactly twice in W ). Hence, w(W ) = 2t∗ ≤ 2w∗ where w∗ is the weight of an optimal
closed spanning walk (by Lemma 6).

4.3 3
2
-Approximation (Christofides’algorithm)

Let us conclude this section by an even better approximation algorithm. To simplify the pre-
sentation, let us consider the TSPit. The next approximation algorithm relies on a new lower
bound.

Lemma 7 Let Kn with w : E → R+ satisfying the triangular inequality, and let w∗ be the
minimum weight of a Hamiltonian cycle. Let V ′ ⊆ V (Kn) with |V ′| even. Finally, let M be a
minimum weight perfect matching of V ′. Then, w(M) ≤ w∗/2.

Proof. Let C be an optimal Hamiltonian cycle of Kn and let C ′ be the cycle spanning V ′

obtained by short-cutting C. By triangular inequality, w(C ′) ≤ w(C) = w∗. Moreover, E(C ′)
can be partitioned into two perfect matchings M1 and M2 of V ′. Since w(C ′) = w(M1)+w(M2),
w.l.o.g., w(M1) ≤ w(C ′)/2. Finally, w(M) ≤ w(M1) ≤ w(C ′)/2 ≤ w(C)/2 = w∗/2.
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Algorithm 12 : 3/2-approximation for TSPti [Christofides 1976]

Require: A complete graph Kn = (V,E) with w : E → R+ satisfying the triangular inequality.
Ensure: A Hamiltonian cycle.

1: Let T ∗ be a minimum spanning tree of G.
2: Let O be the set of vertices with odd degree in T ∗.
3: Let M be a perfect matching, with minimum weight, between the vertices in O.
4: Let H be the graph induced by E(T ∗) ∪M (possibly, H has parallel edges) and C be an

eulerian cycle in H.
5: return the Hamiltonian cycle obtained by considering the vertices in the order they are

met for the first time in C.

Theorem 12 (Christofides 1976) Algorithm 12 is a 3/2-approximation algorithm for the
problem TSPti.

Proof. Note that, by Proposition 1, O has even size and then, it is easy to see that M is well
defined (because |O| is even and we are in a clique) and can be computed in polynomial time. By
construction, every vertex has even degree in H and so C is well defined and can be computed in
polynomial time (Th. 1). Finally, the Hamiltonian cycle returned by the algorithm has weight
at most w(C) by the triangular inequality. Hence, Algorithm 12 computes, in polynomial time,
a Hamiltonian cycle with weight at most w(C) = w(T ∗) + w(M). The result follows from
Lemmas 6 and 7.

5 Set Cover

To continue with approximation algorithms, let us consider that a new problem that is not
(directly) related to graphs.

The Set Cover problem takes as inputs a ground set (a universe) U = {e1, · · · , en} of
elements, a set S = {S1, · · · , Sm} ⊆ 2U of subsets of elements and k ∈ N. The goal is to decide
if there exists a set K ⊆ {1, · · · ,m} such that

⋃
j∈K

Sj = U and |K| ≤ k. In “optimization”

words, the Set Cover problem aims at computing a minimum number of sets in S covering all
elements in U .

As an example, consider a set of persons, each one speaking only its own language (English,
French, Spanish...) and a set of translators, each ones speaking several langages (the first
translator knows French, Chinese and Russian, the second one knows French and Spanish...).
What is the minimum number of translators required to be able to communicate with all
persons?

Exercise 13 Formalize the above paragraph in terms of Set Cover problem (define U and S).
Invent another application of the Set Cover problem.

Without surprise (given the topic of this course), the Set Cover problem is NP-complete [7].

5.1 Relationship with Graphs: Dominating Set and Vertex Cover

Before trying to solve the Set Cover problem, let us discuss its relationship with graphs. This
subsection aims at getting a better understanding of Set Cover problem by considering it by
different points of view (related to graphs).
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Given a graph G = (V,E), a dominating set D ⊆ V is a set of vertices such that N [D]11 = V .
The minimum size of a dominating set in G is denoted by γ(G).

Exercise 14 Show that, for any graph G = (V,E), γ(G) ≤ vc(G) (recall that vc(G) is the
minimum size of a vertex cover in G). That is, prove that any vertex cover is a dominating set.

Give a graph G in which γ(G) < vc(G).

The minimum Dominating Set (MDS) problem takes a graph G = (V,E) and k ∈ N as
inputs, and asks whether γ(G) ≤ k. The MDS problem is actually “related” to the Set Cover
problem. Precisely, we show below that, any polynomial-time algorithm solving the MDS
problem in bipartite graphs may be used to solve the Set Cover problem in polynomial-time.

Let (U = {e1, · · · , en},S = {S1, · · · , Sm}, k) be an instance of the Set Cover problem. Let us
define the bipartite graph G(U,S) = (A∪B,E) as follows. Let A = U ∪ {r} and B = S ∪ {r′}.
Let us add an edge between r and every vertex in B, and an edge {r, r′}. Then, for every
u ∈ U = A \ {r} and s ∈ B = S, there is an edge {u, s} ∈ E if and only if u ∈ s.

Lemma 8 Let k ∈ N. There exists a Set Cover of (U,S) of size ≤ k iff there exists a dominating
set of G(U,S) of size ≤ k + 1.

Proof. Let K ⊆ S be a set cover of (U,S). Then, it is easy to check that K ∪ {r} is a
dominating set in G(U,S).

Let D ⊆ V (G(U,S)) be a dominating set in G(U,S). Prove that either r or r′ belongs to
D, and that, if r′ ∈ D, then (D \ {r′}) ∪ {r} is a dominating set with size no larger than |D|.
Hence, we may assume that r ∈ D and r′ /∈ D. Now, if there is u ∈ D ∩ U , let s ∈ S such that
{u, s} ∈ E(G(U,S)) (i.e., u ∈ s). Show that (D \ {u}) ∪ {s} is a dominating set with size no
larger than |D|. Hence, we may assume that r ∈ D and D ⊆ S∪{r}. Finally, show that D \{r}
is a set cover of (U,S).

On the other hand, Set Cover is “related” to the Vertex Cover problem. Precisely, any
polynomial-time algorithm solving the Set Cover problem can be used to solve the Vertex
Cover problem in polynomial-time. For every graph G = (V,E) and, for every v ∈ V , let
Ev = {uv ∈ E | u ∈ V } be the set of edges adjacent to v.

Exercise 15 Let G = (V,E) be a graph. For any K ⊆ V , {Ev | v ∈ K} is a Set Cover of
(E, {Ev | v ∈ V }) if and only if K is a vertex cover of G.

Remark. The following goes beyond this course (since, I voluntary do not want to go into
more details about NP-hardness). However, let us mention that above paragraphs actually
consist of reductions leading to hardness proofs. If you already know what it is about, there is
no need for more details, otherwise let us just state the following consequence.

Since the Set Cover problem is NP-hard and, since buildingG(U,S) can be done in polynomial-
time, Lemma 8 leads to the following corollary.

Corollary 1 The Minimum Dominating Set problem is NP-hard even if the input graphs are
restricted to the class of bipartite graphs.

Similarly, since the Vertex Cover problem is NP-hard and, since building (E, {Ev | v ∈ V })
can be done in polynomial-time, Exercise 15 leads to the following corollary.

Corollary 2 The Set Cover problem is NP-hard even if the input (U,S) is such that every
element of U is in at most 2 sets in S.

11In a graph G = (V,E) and given X ⊆ V , N(X) = {u ∈ V \X | ∃v ∈ X, {u, v} ∈ E} and N [X] = N(X)∪X.
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5.2 Greedy O(log n)-approximation

Let (U = {e1, · · · , en},S = {S1, · · · , Sm} ⊆ 2U ) be an instance of the Set Cover problem.
Moreover, we consider a cost function c : S → R+ over the sets. This section is devoted to the
computation of a minimum-cost solution.

Exercise 16 Give a “naive” algorithm that computes a set K ⊆ {1, · · · ,m} such that
⋃
j∈K

Sj =

U and of minimum cost in time O∗(2m)12.

Next, let us present a greedy algorithm for the Set Cover problem that, while very simple,
appears to be an approximation algorithm with best asymptotic approximation ratio. More
precisely, the greedy algorithm sequentially adds to the set cover, while the set cover does
not cover all elements, a new set with minimum effective cost defined as follows. Given F ⊆
{1, · · · ,m}, XF =

⋃
i∈F

Si and j ∈ {1, · · · ,m} \ F such that Sj \XF 6= ∅, let the effective cost

of Sj , denoted by ceff (Sj , F ), be
c(Sj)
|Sj\XF | (i.e., the cost of Sj is shared among the elements that

are not covered by F ). Note that, if c(Si) = 1 for all i ≤ m, a set Sj has minimum effective cost
with respect to F iff Sj is a set covering the maximum number of elements uncovered by F .

Algorithm 13 : Greedy O(log n)-approximation for Set Cover. [Chvátal 1979]

Require: (U,S = {S1, · · · , Sm} ⊆ 2U ).
Ensure: K ⊆ {1, · · · ,m} such that

⋃
j∈K

Sj = U .

1: Let K = ∅.
2: while

⋃
j∈K

Sj 6= U do

3: Let i ∈ {1, · · · ,m} \K such that

• Si \
⋃
j∈K

Sj 6= ∅, and

• ceff (Si,
⋃
j∈K

Sj) = c(Si)
|Si\

⋃
j∈K

Sj | is minimum.

4: K ← K ∪ {i}.
5: end while
6: return K.

The intuition behind this algorithm can be stated as follows. At each iteration, when a new
set Si is added in the solution, its effective cost is equally distributed to each element that Si
allows to cover. Precisely, for every element e ∈ U , let us assume that e is covered for the first
time when a set Si is added to the current solution K (i.e., consider the value of K before Si
is added to it). Let us say that this element e receives price(e) = ceff (Si,

⋃
j∈K

Sj) = c(Si)
|Si\

⋃
j∈K

Sj | .

Claim 1 Let K be the solution computed by Algorithm 13.
Then,

∑
e∈U

price(e) =
∑
j∈K

c(Sj).

Let us now prove the main theorem of this section.

12A function f(n) = O∗(g(n)) if there exists c > 0 such that f(n) = O(g(n)nc), i.e., O∗ omits polynomial
factors.
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Theorem 13 (Chvátal 1979) Algorithm 13 is a O(log n)-approximation algorithm for the Set
Cover problem (with n being the size of the ground-set/universe U).

Proof.Algorithm 13 clearly returns a valid solution in polynomial-time. Let us focus on the
approximation ratio.

Let K = {j1, · · · , jk} ⊆ {1, · · · ,m} be a solution returned by above algorithm. For every
1 ≤ i ≤ k, let Xi =

⋃̀
<i

Sj` be the set of elements already covered before the ith iteration of the

While-loop.
Let K∗ be an optimal solution for the Set Cover problem and let OPT =

∑
j∈K∗

c(Sj). For

every 1 ≤ i ≤ k, let Fi ⊆ K∗ such that, for every j ∈ Fi, Sj is needed to cover some vertex in
E \Xi (i.e., for all j ∈ Fi,

⋃
`∈Fi\{j}

S` does not cover U \Xi). By the pigeonhole principle:

Claim 2 For every 1 ≤ i ≤ k, there is j ∈ Fi such that ceff (Sj , Xi) ≤ OPT
n−|Xi| .

Proof of Claim. First, let us show that the total cost
∑
j∈Fi

c(Sj) ≤ OPT of the sets in Fi is

distributed to the elements in U \ Xi (by considering the effective costs of these sets and the
prices of elements in U \Xi as in above claim).

Precisely, let us set {Sj | j ∈ Fi} = {S∗1 , · · · , S∗|Fi|} and assume that these sets are “added” to

the optimal solution in this order. Hence, for all j ≤ |Fi|, the effective cost ceff (S∗j , Xi∪
⋃
`<j

S∗` ) =

c(S∗j )

|S∗j \(Xi∪
⋃
`<j

S∗` )|
(Note that, because K∗ is an optimal solution, for every j ∈ Fi, there is at least

one element covered only by Sj , and so this effective cost is well defined) is equally distributed
among the elements in S∗j \ (Xi ∪

⋃
`<j

S∗` ). Hence, the total cost
∑
j∈Fi

c(Sj) =
∑

j≤|Fi|
c(S∗j ) ≤ OPT

is distributed over the elements of U \Xi.

By the pigeonhole principle, some element must receive a price at most

∑
j∈Fi

c(Sj)

|U\Xi| ≤
OPT
|U\Xi| .

Hence, the set S∗j , j ≤ |Fi|, associated to this element has effective cost at most OPT
|U\Xi| = OPT

n−|Xi| .
�

Let us go back to the solution computed by Algorithm 13. Let us assume that all elements
of U are covered in the following order (e1, · · · , en).

Let j ≤ n and assume that the element ej ∈ U is covered when the set Sji (for some i ≤ k)
is added to the solution. By claim above, there is t ∈ Fi such that ceff (St, Xi) ≤ OPT

n−|Xi| . By the

definition of the algorithm, this implies that ceff (Sji , Xi) ≤ ceff (St, Xi) ≤ OPT
n−|Xi| . Moreover,

Xi ⊆ {e1, · · · , ej−1} (since ej is not covered before Sji is added and so ej , · · · , en /∈ Xi) and,
therefore, |Xi| ≤ j − 1 and so, price(ej) = ceff (Sj , Xi) ≤ OPT

n−j+1 .

It follows that
∑
j∈K

c(Sj) =
∑

1≤j≤n
price(ej) ≤

∑
1≤j≤n

OPT
n−j+1 = OPT ·

∑
1≤j≤n

1
j = O(log n)·OPT .

It can be proved that no o(log n)-approximation algorithm exists (unless P = NP ) for the Set
Cover problem [9]. That is, Algorithm 13 is asymptotically optimal in terms of approximation
ratio (as a function of n). However, if the input (U,S) is such that every element of U appears
in at most f ≥ 2 sets in S, better performances may be achieved (e.g., Vertex Cover, where
f = 2). For instance, rounding of linear programming relaxation allows the design of a O(f)-
approximation (e.g., see here).
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6 Knapsack and (F)PTAS

The Knapsack problem takes a set of integers S = {w1, · · · , wn} and an integer b as inputs.

The objective is to compute a subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b and
∑
i∈T

wi is

maximum. That is, we want to fill our knapsack without exceeding its capacity b and putting
the maximum total weight in it.

6.1 (Pseudo-polynomial) Exact Algorithm via dynamic programming
Recall that Dynamic Programming is a generic algorithmic method that consists in solving a
problem by combining the solutions of sub-problems.

As an example, the Simple Knapsack Problem consists in computing an optimal solution
for an instance S = {w1, · · · , wn} and an integer b. Let OPT (S, b) denote such a solution. We
will compute it using solutions for sub-problems with inputs Si = {w1, · · · , wi} and b′ ∈ N, for
any i ≤ n and b′ < b. That is, we will compute OPT (S, b) from all solutions OPT (Si, b′) for
i ≤ n and b′ < b.

Algorithm 14 Dynamic programming algorithm for Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset OPT ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b

1: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let OPT [i, b′] = ∅;
2: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let opt cost[i, b′] = 0;
3: for i = 1 to n do
4: for b′ = 1 to b do
5: if max{opt cost[i− 1, b′ − wi] + wi, opt cost[i− 1, b′]} = opt cost[i− 1, b′] then
6: OPT [i, b′] = OPT [i− 1, b′]
7: opt cost[i, b′] = opt cost[i− 1, b′]
8: else
9: OPT [i, b′] = OPT [i− 1, b′ − wi] ∪ {i}

10: opt cost[i, b′] = opt cost[i− 1, b′ − wi] + wi
11: end if
12: end for
13: end for
14: return OPT = OPT [n, b]

Theorem 14 Algorithm 14 computes a optimal solution for the Knapsack problem in time
O(n · b).

Proof. Algorithm 14 consists in two imbricated loops, the first one with O(n) iterations and
the second one with O(b) iterations. “Inside” the second loop, there are a constant number of
operations (tests, comparisons, arithmetical operations). Hence, its time-complexity is O(nb).

To prove the correctness of Algorithm 14, let us first understand the meaning of OPT (Si, b′)
(i ≤ n, b′ ≤ b). The set OPT (Si, b′) is a combination (a choice/a subset) of elements in
{1, · · · , i} that maximizes the weight of the chosen elements such that it does not exceed b′.
That is OPT (Si, b′) ⊆ {1, · · · , i} is such that opt(Si, b′) =

∑
j∈OPT (Si,b′)

wj ≤ b′ and, for every

T ⊆ {1, · · · , i} with w(T ) =
∑
j∈T

wj ≤ b′, then w(T ) ≤ opt(Si, b′). The key point is that,
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Claim 3 For every 1 ≤ i ≤ n and b′ ≤ b, opt(Si, b′) = max{opt(Si−1, b′), wi+opt(Si−1, b′−wi)}.

Proof of Claim. Clearly, OPT (Si, b′) is obtained either by not taking the ith element, in which
case a solution is OPT (Si−1, b′), or by taking the ith element (with weight wi) and adding to it
OPT (Si−1, b′ − wi). Formally prove this claim by “mimicking” the proof of Theorem 4. �

Then, the correctness easily follows by induction. Indeed, by Lines 1-2, OPT [0, b′] =
OPT (S0, b′) = ∅ and opt cost[0, b′] = opt(S0, b′) = 0 for every b′ ≤ b (setting S0 = ∅). Then,
by induction on i ≤ n, let us assume that, for every b′ ≤ b, OPT [i, b′] = OPT (Si, b′) and
opt cost[i, b′] = opt(Si, b′). Then, by Lines 5-10, opt cost[i + 1, b′] = max{opt cost[i, b′], wi +
opt cost[i, b′ − wi]}. By the induction hypothesis, opt cost[i, b′] = opt(Si, b

′) and opt cost[i, b′ −
wi] = opt(Si, b

′−wi). By the claim, opt(Si+1, b
′) = max{opt(Si, b′), wi+opt(Si, b′−wi)}. Hence,

opt cost[i+ 1, b′] = opt(Si+1, b
′) and similarly, OPT [i+ 1, b′] = OPT (Si+1, b

′).
So, the algorithm returns OPT [n, b] = OPT (Sn, b) which is, by definition, an optimal solu-

tion.

Exercise 17 Explain that we may assume that maxiwi ≤ b and b ≤
∑

iwi since, otherwise,
the instance may be simplified.

Prove that, if maxiwi ≤ b ≤
∑

iwi, Algorithm 14 proceed in polynomial-time if maxiwi is
polynomial in n but exponential if maxiwi is exponential in n.

Actually, the Knapsack Problem is an example of Weakly NP-hard (roughly, it can be
solved in polynomial-time if the weights are polynomial). Typically (informally), a weakly
NP-hard problem takes a set of n integers as inputs and can be solved in time polynomial in
the number of integers (n) and in the maximum value of the integers (pseudo-polynomial
algorithm) but, if the values of the integers are exponential in the number n of integers, we do
not know any polynomial-time (in n) algorithm to solve it.

6.2 Greedy 2-Approximation and PTAS

Algorithm 15 Greedy 2-approximation for Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: T = ∅
2: total weight = 0
3: Sort S such that w1 ≥ w2 ≥ · · · ≥ wn.
4: for i = 1 to n do
5: if total weight+ wi ≤ b then
6: Add i to T
7: Add wi to total weight
8: end if
9: end for

10: return T

Note that Algorithm 15 proceeds in a greedy way: it takes one by one the possible items (in
non increasing order of their weights) and simply add them if they fit in the sack.

Theorem 15 Algorithm 15 is a 2-approximation algorithm for the Knapsack problem.
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Proof. In line 3, there is a sorting of n integers (time O(n log n)), then there is a loop with
n iterations with, for each iteration, a constant number of operations. Hence, the algorithm
has complexity O(n log n). Moreover, it clearly computes a valid solution. Hence, it only
remains to prove the approximation ratio. Let OPT =

∑
i∈S∗

wi be the value of an optimal

solution S∗ ⊆ {1, · · · , n}. Note that, in contrast with previous examples, this is a maximization
problem. Hence, we aim at proving that OPT

2 ≤ V alueOfComputedSolution ≤ OPT .
To prove the approximation ratio, let T ⊆ {1, · · · , n} be the computed solution and let∑

i∈T
wi = SOL be its value. Let j ≥ 1 be the smallest integer such that j+1 is NOT in T . Clearly,∑

1≤i≤j
wi ≤ SOL ≤ OPT ≤ b. By definition of the algorithm,

∑
1≤i≤j+1

wi = wj+1 +
∑

1≤i≤j
wi > b

and, because the wi’s are ordered, wj+1 ≤ min
1≤i≤j

wi = wj . Finally, min
1≤i≤j

wi ≤

∑
1≤i≤j

wi

j (because

the average of w1, · · · , wj cannot be less than the minimum wi).
It follows that

∑
1≤i≤j

wi ≤ SOL ≤ OPT ≤ b < wj+1 +
∑

1≤i≤j
wi ≤ (1 + 1/j)

∑
1≤i≤j

wi ≤

(1 + 1/j)SOL ≤ 2SOL (because j ≥ 1) and obviously 2SOL ≤ 2OPT .
Summing up, OPT ≤ 2SOL ≤ 2OPT , i.e., OPT

2 ≤ SOL ≤ OPT .

A polynomial-time approximation scheme (PTAS) is a family of algorithms which
take an instance of an optimization problem and a parameter ε > 0 and, in polynomial time in
the size of the instance (not necessarily in ε), produces a solution that is within a factor 1 + ε
of being optimal.

That is, when ε tends to 0, the solution tends to an optimal one, while the complexity
increases (generally, the complexity is of the form O(nf(1/ε)) for some function f).

We now present a PTAS algorithm for the Knapsack Problem. Algorithm 16 generalizes
the previous greedy algorithm. Instead of computing a greedy solution “from scratch”, Al-
gorithm 16 depends on some fixed integer k = d1/εe. For every subset X of size at most k,
Algorithm 16 starts from X and uses the greedy algorithm to complete (try to improve) X.
Then, Algorithm 16 keeps the best solution that it met in this way. Intuitively, Algorithm 16
aims at using the greedy algorithm but starting from a “best” partial solution (since it checks
all subsets of size ≤ k, in particular, there is one iteration for which it will consider the heaviest
k elements of an optimal solution, and it will only need to improve this “already good” partial
solution “not too badly”). Hence, the larger k (the smaller ε), the best will be the obtained
solution (the approximation ratio) but the higher will be the time-complexity (since we need at
least to check all subsets of size at most k).

Theorem 16 Algorithm 16 is a PTAS for the Knapsack problem.

Proof. Algorithm 16 computes a valid solution in time-complexity O(nd1/εe+1). Indeed, there
are O(nk) subsets of size at most k in a ground-set with n elements.

Then, Algorithm 16 is a (1+ε)-approximation algorithm for the Knapsack problem. Indeed,
consider an optimal solution OPT and let X∗ = {i1, · · · , ik} be the k items with largest weight
in OPT (show that, if OPT consists of less than k items, then Algorithm 16 computes an
optimal solution). Consider the iteration of Algorithm 16 when it considers X∗. The proof is a
(not difficult) adaptation of the proof of Theorem 15.

Actually, we can do better. Indeed, the Knapsack Problem admits a fully polynomial-
time approximation scheme (FPTAS) algorithm, that is an algorithm that computes a
solution that is within a factor 1 + ε of being optimal in time polynomial both in the size
of the instance AND in 1/ε.
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Algorithm 16 PTAS for the Knapsack Problem

Require: A set of integers S = {w1, · · · , wn}, b ∈ N and a real ε > 0.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: best = ∅
2: best cost = 0
3: k = d1/εe
4: Sort S such that w1 ≥ w2 ≥ · · · ≥ wn.
5: for Any subset X ⊆ S of size at most k do
6: //Complete X using the Greedy Algorithm. That is:
7: Let T = X and let total weight =

∑
i∈X wi

8: if total weight ≤ b then
9: Let j = max{i | i ∈ X}.

10: for i = j + 1 to n do
11: if total weight+ wi ≤ b then
12: Add i to T
13: Add wi to total weight
14: end if
15: end for
16: if total weight > best cost then
17: Replace best by T
18: end if
19: end if
20: end for
21: return T

Part III

Parameterized Algorithms [4]

7 Introduction to Parameterized Algorithms (with Vertex Cover as

toy example)

Until now, we have evaluated the “quality/efficiency” of algorithms (resp., the “difficulty” of
problems we have met) in function of the size s (generally, in graph’s problems, the number of
vertices and/or edges) of the instances. Very roughly, a problem is considered as “easy” if there
exists an algorithm for solving it in time polynomial in s. If no such algorithm is known (all
known algorithms are exponential in s), the problem is said “difficult” (NP -hard).

On the other hand, we have seen that problems that are “difficult” in general may be “easy”
in some particular classes of instances. For instance, the Vertex Cover problem is NP-hard
in general graphs but can be solved in polynomial-time when restricted to bipartite graphs
(Theorem 5).

Very roughly, the Parameterized Complexity aims at evaluating the complexity (here we
only focus on time-complexity) of an algorithm/a problem not only as a function of the size
of the input but also as a function of other parameters of the instance/problem. For instance,
in graphs, appropriated parameters may be the diameter, the maximum degree, the minimum
vertex cover (i.e., in the case of the Vertex Cover problem, the size of the solution itself),
etc.
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7.1 First Approach: deciding if vc(G) ≤ k?

Recall that a vertex cover K ⊆ V of a graph G = (V,E) is a subset of vertices such that
K ∩ e 6= ∅ for all e ∈ E. Moreover, recall that vc(G) denotes the minimum size of a Vertex
Cover in G. In Section 2.3, we have already seen that the following algorithm computes a
minimum-size Vertex Cover in time O∗(2|V |).

Algorithm 7 Naive Algorithm for Minimum Vertex Cover (reminder)

Require: A graph G = (V,E).
Ensure: A minimum Vertex Cover of G.

1: K ← V .
2: for every S ⊆ V do
3: if S is a vertex cover of G and |S| < |K| then
4: K ← S.
5: end if
6: end for
7: return K

Let us (slightly) simplify the question. Let k ∈ N be a fixed parameter. Instead of looking
for vc(G) (or a Vertex Cover of minimum size), let us “only” ask whether G has some Vertex
Cover of size ≤ k (we may also ask to compute a minimum Vertex Cover of G given that we
already know that vc(G) ≤ k).

Algorithm 17 1st Algorithm to decide if vc(G) ≤ k, where k ∈ N is a fixed parameter.

Require: A graph G = (V,E).
Ensure: A minimum Vertex Cover of G (if vc(G) ≤ k) or V (if vc(G) > k).

1: K ← V .
2: for every S ⊆ V , |S| ≤ k do
3: if S is a vertex cover of G and |S| < |K| then
4: K ← S.
5: end if
6: end for
7: return K

Exercise 18 Show that Algorithm 17 has time-complexity O∗(|V |k).
Compare O∗(|V |k) and O∗(2|V |) when, for instance, |V | = 104 and k = 10.

Hence, if we a priori know that the graph into consideration has “small” vertex cover (at
most k), the above algorithm is much more efficient than the previous one. We show below that
even better algorithm can be designed. For this purpose, we need the following lemma:

Lemma 9 Let G = (V,E) be a graph and {x, y} ∈ E. vc(G) = min{vc(G \ x), vc(G \ y)}+ 1
Intuition: for any edge xy, any minimum vertex cover contains at least one of x or y

Proof. Let S ⊆ V be any vertex cover of G \ x. Then S ∪ {x} is a vertex cover of G. Hence
vc(G) ≤ vc(G \ x) + 1 (symmetrically for G \ y)

Let S ⊆ V be any vertex cover of G. At least one of x or y is in S. If x ∈ S then S \ x
vertex cover of G \x. Hence vc(G \x) ≤ vc(G)− 1. Otherwise, if y ∈ S, then S \ y vertex cover
of G \ y and vc(G \ y) ≤ vc(G)− 1.

29



Algorithm 18 Branch & Bound Algo. to decide if vc(G) ≤ k, where k ∈ N is a fixed parameter.

Require: A graph G = (V,E) and an integer `≤ k.
Ensure: The minimum size of a Vertex Cover of G if vc(G) ≤ ` or ∞ otherwise.

1: if ` = 0 and |E| > 0 then
2: return ∞
3: else
4: if |E| = 0 then
5: return 0
6: else
7: Let {u, v} ∈ E be any edge
8: Let x = Algorithm 18(G \ u, `− 1) and y = Algorithm 18(G \ v, `− 1)
9: return min{x, y}+ 1

10: end if
11: end if

Exercise 19 Using Lemma 9, prove the correctness of Algorithm 18.
Show that the recursive depth is at most k. Deduce that Algorithm 18 has time-complexity
O(2k|E|).

Adapt Algorithm 18 to return a minimum vertex cover of G if vc(G) ≤ k.

Lemma 10 Let G = (V,E) be any simple graph. If vc(G) ≤ k, then |E| ≤ k(|V | − 1).

Proof. Let K ⊆ V be a vertex cover with |K| ≤ k. Note that G − K induces a stable set.
Hence, every edge of G is incident to a vertex in K (it is the definition of a vertex cover).
Finally, each vertex in K is adjacent to at most |V | − 1 edges.

It follows that:

Corollary 3 Algorithm 18 has time-complexity O(k2k · |V |).

Hence, Algorithm 18 is linear in the order of the graph! Note that Vertex Cover is NP-hard,
but we proved that the combinatorial complexity does not come from the order of the graph
but from its structure. That is, the Vertex Cover problem can be solved in linear time (in
the size of the input) in the class of graphs with bounded (fixed) minimum size of a vertex
cover. Compare the complexity of Algorithm 18 with the complexity of Algorithm 17 when, for
instance, |V | = 104 and k = 10.

The key difference between the time-complexity of Algorithm 17, O(|E||V |k), and the one
of Algorithm 18, O(k2k · |V |), that are both polynomial in |V | and exponential in k, is that,
in the latter case, the polynomial on |V | does not depend on k. That is, in Algorithm 18,
the dependencies in k and |V | are “separated”. Such an algorithm is called a Fixed Parameter
Tractable (FPT) algorithm, parameterized by the size of the solution (the size of the vertex
cover).

7.2 Fixed Parameter Tractable (FPT) Algorithms and Kernelization

We don’t aim at giving a formal definition of parameterized complexity and refer to, e.g., [4]
for more precise definition. As usual, we moreover focus on graphs.

Let G be the set of all graphs. A graph parameter is any function p : G → N (e.g., diameter,
maximum degree, minimum size of a vertex cover, minimum size of a dominating set, etc.).

Roughly, a parameterized problem (Π, p) is defined by a problem Π (here on graphs) and
a parameter p. The key point is to understand the behaviour of the time-complexity of an
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algorithm for solving Π not only as a function of n, the size of the instance, but also as a
function of the value of the parameter p.

An algorithm A for solving (Π, p) is said Fixed Parameter Tractable (FPT) if there exists
a computable function f : N → N, such that the time-complexity of A can be expressed as
O(f(p(G))nO(1)), where n is the size of the input graph G. Note that the polynomial in n is
independent on p(G) and f depends only on the parameter p(G). A parameterized problem
(Π, p) is FPT if it admits a FPT algorithm, parameterized by p, for solving it.

For instance, Algorithm 18 shows that the Vertex Cover problem is FPT when parameterized
by the size of the solution. Another example is any FPTAS algorithm, that can be seen as a
FPT (approximation) algorithm parameterized by 1/ε.

To conclude this subsection, let us present a particular kind of FPT algorithms called Ker-
nelization algorithms. A natural way to tackle difficult problems is to try to reduce the size of
the input (e.g., in the case of graphs, to “limit” the problem to the connected components of a
graph, or to its 2-connected components...).

Precisely, given a parameterized problem (Π, p), a kernelization algorithm replaces an in-
stance (I, p(I)) by a “reduced” instance (I ′, p′(I ′)) (called problem kernel) such that

1. p′(I ′) ≤ g(p(I)) , |I ′| ≤ f(p(I)) for some computable functions f and g only depending
on p(I) (not on |I|)13,

2. (I, p(I)) ∈ Π if and only if (I ′, p′(I ′)) ∈ Π, and

3. reduction from (I, p(I)) to (I ′, p′(I ′)) has to be computable in polynomial time (in |I| +
p(I)).

Hence, if a parameterized problem (Π, p) admits a Kernelization algorithm that transforms
a n-node graph G and parameter p(G) = k into an equivalent graph G′ with size f(n) (for
some computable function f) and parameter k′ = p′(G′) ≤ g(k) (for some computable func-
tion g) in time (n + p(G))O(1), then (Π, k) admits a FPT algorithm with time complexity
nO(1) +O(2f(g(k))): first reduce G to G′ and then exhaustive search in G′ with parameter
k′ ≤ g(k). Note the difference between this complexity and the one of Algorithm 18 (also
FPT): in the latter one, the terms depending on k and n are multiplied, while here it is a sum.
More generally, it is easy to prove (while a bit counter-intuitive) that:

Theorem 17 (Bodlaender et al. 2009) A parameterized problem is FPT if and only if it is
decidable and has a kernelization algorithm.

7.3 A first Kernelization Algorithm for Vertex Cover

We aim at improving Algorithm 18.

Lemma 11 Let G = (V,E) be a graph and v ∈ V with degree > k. Then v belongs to every
vertex cover K of size at most k

Proof. Indeed, if v /∈ K, all its neighbors must belong to it and |K| > k.

Lemma 12 Let G = (V,E) be a graph. If vc(G) ≤ k and no vertex of G has degree > k. Then
|E| ≤ k2

13A kernel G′ is said linear (resp., quadratic, single exponential...) if |G′| = O(k) (resp., |G′| = O(k2),
|G′| = O(2k),...).

31

https://www.sciencedirect.com/science/article/pii/S0022000009000282


Proof. Each of the ≤ k vertices of a Vertex Cover covers ≤ k edges (see proof of Lem. 9).

The following algorithm to decide if vc(G) ≤ k proceeds as follows. While there is a “high”
degree node, add it to the solution. When there are no such nodes, either it remains too much
edges to have a small vertex cover. Otherwise, apply brute force algorithm (e.g., Algorithm 18)
to the remaining “small” graph.

Algorithm 19 Kernelization Alg. to decide if vc(G) ≤ k, where k ∈ N is a fixed parameter.

Require: A graph G = (V,E) and an integer `≤ k.
Ensure: The minimum size of a Vertex Cover of G if vc(G) ≤ ` or ∞ otherwise.

1: Let I ⊆ V be the set of isolated vertices in G. Remove I from G
2: if |E| = 0 then
3: return 0
4: else
5: if ` = 0 then
6: return ∞
7: else
8: if G has no vertex of degree > ` and |E| > `2 then
9: return ∞

10: else
11: if G has no vertex of degree > ` then
12: return Algorithm 18(G, `)
13: else
14: Let v be a vertex of degree > `
15: return Algorithm 19(G \ v, `− 1) + 1
16: end if
17: end if
18: end if
19: end if

Exercise 20 Using Lemmas 11 and 12, prove the correctness of Algorithm 19.
Show that Algorithm 19 has time-complexity O(2kk2 + k|V |). Adapt Algorithm 19 to return a
minimum vertex cover of G if vc(G) ≤ k.

Note that previous algorithm relies on a quadratic kernel. Compare the complexity of
Algorithm 19 with the complexity of Algorithm 18 when, for instance, |V | = 104 and k = 10.

7.4 Iterative Compression technique: example of Vertex Cover

This subsection is devoted to present a classical technique for designing FPT algorithms, namely
Iterative Compression. Roughly, a Compression Routine is an algorithm that, given a problem
instance and an initial feasible solution (not necessarily optimal), either calculates a smaller
solution or proves that the given solution is of minimum size. The main idea of the Iterative
Compression method is to repeatedly use a compression Routine: finding an optimal solution
to the problem by iteratively building up the structure of the instance and compressing inter-
mediate solutions.

As usual, we illustrate this technique with Minimum Vertex Cover Problem as example. Let
k ∈ N be a fixed integer.
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Routine Compression. The Compression Routine takes any Vertex Cover Q ≥ V of a graph
G = (V,E) as inputs, and it aims at using Q to find a solution of size at most k (if any). For
this purpose, it will “check” all possible ways a vertex cover of size at most k can intersect Q.
More precisely, let Y ⊆ Q be any subset of Q. We want to decide if there is a Vertex Cover X
such that X ∩Q = Y and |X| ≤ k. Let N(Q \ Y ) be the set of vertices that have a neighbor in
Q \ Y .

Algorithm 20 Compression Routine for k-Vertex Cover

Require: A graph G = (V,E) and any vertex cover Q ⊆ V .
Ensure: A vertex cover of size ≤ k if it exists, and No otherwise

1: for every Y ⊆ Q do
2: if there are no edges in G[Q \ Y ] and |Y ∪N(Q \ Y )| ≤ k then
3: return Y ∪N(Q \ Y )
4: end if
5: end for
6: return No

Lemma 13 If G admits a vertex cover of size at most k, then Algorithm 20 (Compression
Routine) returns a vertex cover of G of size ≤ k in time O(|E|2|Q|).

Proof. The time-complexity should be obvious (at most 2|Q| iterations of the For-loop, each
one checking O(|E|) edges). Let us prove the correctness.

First, let Y ⊆ Q. Let us show that, if E(G[Q \ Y ]) = ∅, then Y ∪ N(Q \ Y ) is a vertex
cover of G. For purpose of contradiction, let us assume that uv ∈ E is not covered, i.e.,
u, v /∈ Y ∪N(Q\Y ). By assumption, it is not possible that both u, v ∈ Q\Y since E(G[Q\Y ] = ∅.
Moreover, it is not possible that one vertex in {u, v}, say v, belongs to Q \ Y , since otherwise
u ∈ N(Q \ Y ). Hence, u, v /∈ Q \ Y . Since Q is a vertex cover of G, then at least one of u and
v belongs to Y , a contradiction.

Hence, if Algorithm 20 does not return No, then it returns a vertex cover of G with size at
most k.

Second, let us assume that G admits a vertex cover X ⊆ V with |X| ≤ k. Let Y0 = Q∩X ⊆
Q. Let us show that E(G[Q \ Y0]) = ∅. For purpose of contradiction, let us assume that there
exist uv ∈ E(G[Q \ Y0]). But, neither u nor v belong to X, contradicting the fact that X is a
vertex cover of G. Hence, G[Q \ Y0] has no edges. Moreover, let us show that N(Q \ Y0) ⊆ X.
Let v ∈ N(Q \ Y0) and let u ∈ Q \ Y0 such that uv ∈ E. Since u /∈ X, then v must be in X
otherwise the edge uv would not be covered, contradicting that X is a vertex cover of G. Hence,
Y0 ∪N(Q \ Y0) ⊆ X and so |Y0 ∪N(Q \ Y0)| ≤ |X| ≤ k.

Hence, if G has a vertex cover of size at most k, Algorithm 20 will return Y ∪N(Q \ Y ) for
some Y ⊆ Q (at least during the iteration considering Y = Y0), i.e., it returns a vertex cover of
size at most k.

Theorem 18 [4] If G admits a vertex cover of size at most k, then Algorithm 21 returns a
vertex cover of G of size ≤ k in time O(|E||V |2k+1).

Proof. The correctness is obvious if |V | ≤ k + 1 since, for every graph G = (V,E) and any
vertex v ∈ V , then V \ {v} is a vertex cover (Prove it). Let us assume that n > k + 1 and that
G admits a vertex cover of size at most k.

Let us prove by induction on i ∈ {k, · · · , n} that Qi is a vertex cover of Gi = G[{v1, · · · , vi}]
of size at most k. It is obvious for i = k since Qk = V (Gk). Assume the induction hypothesis
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Algorithm 21 FPT algorithm for k-Vertex Cover using Iterative Compression

Require: A graph G = (V,E) with V = {v1, · · · , vn}.
Ensure: A vertex cover of G of size ≤ k if it exists, and No otherwise

1: if n ≤ k + 1 then
2: return V \ {vn}
3: end if
4: Qk ← {v1, · · · , vk}
5: for i = k + 1 to n do
6: Qi =Algorithm20(G[{v1, · · · , vi}], Qi−1 ∪ {vi})
7: if Qi = No then
8: return No
9: end if

10: end for
11: return Q

holds for i− 1 ∈ {k, · · · , n− 1}. Then, Qi−1 ∪ {vi} is a vertex cover of Gi of size at most k + 1
(Prove it). By Lemma 13, then either Qi is a vertex cover of Gi of size at most k, or Gi has no
vertex cover of size at most k. In the latter case, Qi = No and Algorithm 21 returns No but,
if Gi has no vertex cover of size at most k, then G neither (Prove it), a contradiction. Hence,
after the iteration i, Qi is a vertex cover of Gi of size at most k.

Since each of the O(|V |) iterations of the For-loop applies Algorithm 20 with a vertex cover
Q = Qi−1 ∪ {vi} (of Gi) of size at most k + 1, it takes time O(|E|2k+1) by Lemma 13.

8 Toward tree-decompositions, Graph Minor Theory and be-
yond

In this last section, we focus on particular graph classes. Precisely, we will start with trees,
then generalize the proposed method to k-trees and then to graphs with bounded treewidth. We
will then conclude with planar graphs and beyond. Along the way, we will continue to use our
favorite problem, namely Vertex Cover, as an illustrative example.

8.1 Minimum (weighted) Vertex Cover in trees

Let us start with the problem of computing a minimum-size vertex cover (as it has been studied
many times above). That is, given a tree T = (V,E), the goal is to compute a set K ⊆ V ,
such that ∀e ∈ E, e ∩K 6= ∅, and |K| is minimum subject to this property. Recall that vc(T )
denotes the minimum size of a vertex cover in T .

Prove that any tree is a bipartite graph (e.g., use a BFS). So, by König’s theorem (Th. 5)
and, e.g., the Hungarian method (Th. 4), vc(T ) can be computed in polynomial time in any tree
T . We aim at giving here a simpler algorithm in the case of trees. It is based on the following
lemma whose proof is left to the reader.

Lemma 14 Let G = (V,E) be any graph with a vertex v of degree 1. Let u be the unique
neighbor of v and let K be a vertex cover of G.
Then, K ∩ {u, v} 6= ∅, and K ′ = (K \ {v}) ∪ {u} is a vertex cover of G such that |K ′| ≤ |K|.

Notation. Let T = (V,E) be a tree and r ∈ V be any vertex. Let us denote by Tr the tree T
rooted in r. For any v ∈ V , the children of v in Tr are the neighbors of v whose distance to r
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is greater than dist(r, v). The parent of v in Tr (if v is not the root r) is the unique neighbor
of v that is not a children of v. The descendants of v in Tr are all vertices w such that v is an
internal vertex of the path between r and w in T (such a path is unique by Exercise 2). Finally,
the subtree Tv rooted at v in Tr is the subtree induced by v and its descendants. A leaf in a
rooted tree is any vertex v 6= r with degree 1.

Algorithm 22 Greedy Algorithm for Minimum Vertex Cover in trees

Require: A tree T = (V,E) rooted in any arbitrary vertex r ∈ V .
Ensure: A minimum Vertex Cover of T .

1: if E = ∅ then
2: return ∅
3: else
4: Let v ∈ V be any non-leaf vertex maximizing the distance with r (possibly r = v).
5: Let T ′ be the tree (rooted in r) obtained from T by removing v and all its children.

// Prove that children of v are leaves and so that T ′ is a tree (rooted in r)
6: return {v} ∪Algorithm 22(T ′).
7: end if

Theorem 19 Algorithm 22 computes a minimum Vertex Cover of any tree T in linear time.

Proof. Let us first prove its correctness. Let Tr be a rooted tree, v be a non-leaf maximizing
the distance with r (possibly v = r) and T ′ be defined as in Algorithm 22 (i.e., T ′ is the
tree rooted in r obtained from T by removing v and all its leaves neighbors). We claim that
vc(T ) = 1 + vc(T ′). Indeed, if K ′ is a minimum vertex cover of T ′, then K ′ ∪ {v} is a vertex
cover of T of size |K ′|+1 = vc(T ′)+1 ≥ vc(T ). On the other hand, let K be a minimum vertex
cover of T . By Lemma 14, we may assume that v ∈ K. Hence, K ′ = K \ {v} is a vertex cover
of T ′ and so |K ′| = vc(T )− 1 ≥ vc(T ′). By induction on |V (T )|, Algorithm 22 returns a vertex
cover of size 1 + vc(T ′). By the claim, it is then an optimal vertex cover of size vc(T ). Hence,
Algorithm 22 is correct.

For the time-complexity, there at most |V (T )| recursive calls (since |V (T ′)| < |V (T )|). The
main (most time consuming) step at each call consists in finding the vertex v. It can be done
in constant time by, for instance (without more details), using a pre-processing that orders the
vertices of Tr by non-increasing distance from r, e.g., by a “BFS-like” ordering: first the leaves,
then the parents of only leaves, then the parents of only parents of only leaves and so on (this
is called a topological ordering of the vertices of Tr).

Hence, minimum (size) Vertex Cover is almost trivial in trees, so let us “complexify” a bit
the problem.

Minimum weighted Vertex Cover in trees. Given a tree T = (V,E) with weight function
w : V → R+ on the vertices, the goal is to compute a set K ⊆ V , such that ∀e ∈ E, e ∩K 6= ∅,
and w(K) =

∑
v∈K

w(v) is minimum subject to this property. Let vc(T,w) denote the minimum

weight of a vertex cover in (T,w).

Exercise 21 Give an example of a weighted tree (you may restrict your example to be a star,
i.e., a tree with at most one vertex with degree > 1) such that vc(T ) = 1 (minimum size) and
the number of vertices in a minimum weighted Vertex Cover is arbitrary large.
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In what follows, we present a linear-time dynamic programming algorithm to compute
vc(T,w) and a vertex cover with this weight.

Let (Tr, w) be a weighted rooted tree (not reduced to a single vertex) and let r1, · · · , rd be
the children of r. For every 1 ≤ i ≤ d, let Ti be the subtree of Tr rooted in ri. The proof of the
next lemma is left to the reader.

Lemma 15 Let K be any vertex cover of Tr. Either r ∈ K and then, for every 1 ≤ i ≤ d,
K ∩ V (Ti) is a vertex cover of Ti. Or r /∈ K and then, for every 1 ≤ i ≤ d, K ∩ V (Ti) is a
vertex cover of Ti with ri ∈ K ∩ V (Ti).

Previous lemma suggests that, given a weighted rooted tree (Tr = (V,E), w), our dynamic
programming algorithm will proceed bottom-up (from leaves to root) by, for every vertex v ∈ V ,
keeping track of vc(Tv, w) (the minimum weight of a vertex cover of (Tv, w)) but also of vc′(Tv, w)
defined as the minimum weight of a vertex cover of Tv containing v (i.e., vc′(Tv, w) is the
minimum weight of any vertex cover among all vertex covers of (Tv, w) containing v).

From Lemma 15 and by induction on |V (T )|, the proof of next theorem easily follows.

Algorithm 23 Dynamic Programming Algorithm for Minimum weight Vertex Cover in trees

Require: A weighted tree (Tr = (V,E), w : V → R+) rooted in any arbitrary vertex r ∈ V 6= ∅.
Ensure: (K,K ′) where K is a minimum Vertex Cover of (Tr, w) (of weight vc(T,w)) and K ′

is a minimum Vertex Cover of (Tr, w) containing r (of weight vc′(Tr, w))
1: if V = {r} then
2: return (∅, {r}) // of weight respectively 0 and w(r)
3: else
4: Let r1, · · · , rd be the children of r and, for every 1 ≤ i ≤ d, let Ti be the subtree of Tr

rooted in ri.
5: for i = 1 to d do
6: Let (Ki,K

′
i) = Algorithm 23(Ti, w|V (Ti))
//Ki is a minimum weight vertex cover of Ti, i.e., of weight vc(Ti, w|V (Ti))
//K ′i is a minimum weight vertex cover of Ti containing ri, i.e., of weight

vc′(Ti, w|V (Ti))
7: end for
8: Let K ′ = {r} ∪

⋃
1≤i≤d

Ki. // Show it is a min. weight VC of (T,w) containing r

9: Let K ′′ =
⋃

1≤i≤d
K ′i. // Show it is a min. weight VC of (T,w) not containing r

10: Let K ∈ {K ′,K ′′} such that w(K) = min{w(K ′), w(K ′′)}.
// Show it is a min. weight VC of (T,w)

11: return (K,K ′).
12: end if

Theorem 20 Algorithm 23 computes a minimum weight Vertex Cover of any vertex-weighted
tree (T,w) in linear time.

8.2 2-trees

In the sequels, we will extend Algorithm 23 to some graph class generalizing trees (graphs with
bounded treewidth). To make the next algorithms easier to understand, let us first go one step
further. For this purpose, a key notion is the one of separators in graphs. Given a graph
G = (V,E) and X,Y ⊆ V , X ∩ Y = ∅, a set S ⊆ V \ (X ∪ Y ) is a (X,Y )-separator in G if, for
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every u ∈ X and v ∈ Y , every u, v-path goes through a vertex in S (equivalently, u and v are
in distinct connected components of G[V \ S]). A set S ⊂ V is a separator in G if there exist
u, v ∈ V \ S such that S is a ({u}, {v})-separator (or u, v-separator).

The class of 2-trees is defined recursively as follows. A complete graph (clique) K3 with 3
vertices (triangle) is a 2-tree. Given any 2-tree H with some edge {u, v} ∈ E(H), the graph
obtained from H by adding a new vertex x adjacent to u and v is a new 2-tree. The recursive
construction of a 2-tree naturally leads to the definition of a corresponding “building tree”.

Given a 2-tree G = (V,E), a tree-decomposition (T,X = {Xt | t ∈ V (T )}) of G is defined
recursively as follows. If G = K3 is reduced to a clique with vertices u, v and w, its corresponding
tree-decomposition consists of a tree T reduced to a single node t0 and X = {Xt0 = {u, v, w} ⊆
V }. If G is obtained from a 2-tree H, with {u, v} ∈ E(H), by adding a vertex x adjacent
to u and v, a tree-decomposition (TG,XG = {XG

t | t ∈ V (TG)}) of G is obtained from any
tree-decomposition (TH ,XH = {XH

t | t ∈ V (TH)}) of H by considering any node s ∈ V (TH)
such that u, v ∈ XH

s (show that such a node exists by induction on |V |) and build TG from TH
by adding a new node nx adjacent to s, and XG = XH ∪ {Xnx = {u, v, x} ⊆ V }. Note that a
2-tree may admit several decompositions.

Intuitively, each node of TG corresponds to a subset of vertices of G inducing a maximal
clique (triangle) of G. Hence, (TG,XG) “organizes” the triangles of G in a tree-like fashion while
satisfying some “connectivity properties” as described by the first 2 items of Lemma 16.

Lemma 16 Let G = (V,E) be a 2-tree, (T,X ) be a tree-decomposition of G and e = {u, v} ∈
E(T ). Let Tu (resp. Tv) be the subtree of T \ e = (V (T ), E(T ) \ {e}) containing u (resp., v)
and Gu = G[

⋃
t∈V (Tu)

Xt] and Gv = G[
⋃

t∈V (Tv)

Xt]. Then,

• S = Xu ∩Xv = {x, y} where {x, y} ∈ E(G);

• S separates V (Gu) \S from V (Gv) \S (every path from a vertex in V (Gu) \S to a vertex
in V (Gv) \ S goes through S);

// in particular, there are no edges between V (Gu) \ S and V (Gv) \ S.

Moreover, let Q ⊆ S \ {∅}. Prove that, because S is a (V (Gu) \ S, V (Gv) \ S)-separator:

• If K is a vertex cover of G with K ∩ S = Q, then K ′ = K ∩ V (Gu) is a vertex cover of
Gu with K ′ ∩ S = Q.

• If K is a vertex cover of Gu with K ∩ S = Q, then there exists a vertex cover K ′ of G
such that K = K ′ ∩ V (Gu) (and, in particular, K ′ ∩ S = Q).

The key points are that Vertex Cover is a “local” problem and that 2-trees have small-size
separators. Intuitively, extending a vertex cover K of Gu to some vertex cover of G does not
depend on the whole K but only on K∩S where S is a separator between Gu and the reminding
of G. When |S| is “small”, this can be done efficiently.

Theorem 21 Algorithm 24 is correct and has time-complexity O(n) where n is the number of
vertices of G.

Proof. The proof of correctness is by induction on the number of nodes of T . It is clearly true
if |V (T )| = 1 by lines 1-3 of the algorithm. If |V (T )| > 1 then r has d ≥ 1 children and, by the
induction hypothesis, for every 1 ≤ i ≤ d and Q′ ⊆ Xri , K

i
Q′ is a minimum vertex cover of Gi

containing Q′ (or Ki
Q′ =∞ if Q′ is not a vertex cover of G[Xri ]).
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Algorithm 24 Dynamic Programming Algorithm for Minimum size Vertex Cover in 2-trees

Require: A 2-tree G = (V,E) and a tree-decomposition (Tr,X ) of G rooted in some vertex
r ∈ V (Tr).

Ensure: For every Q ⊆ Xr, a minimum-size Vertex Cover KQ of G such that KQ ∩ Xr = Q
and KQ =∞ if no vertex cover K of G is such that K ∩Xr = Q.

1: if V (Tr) = {r} and Xr = {u, v, w} then
2: return (KQ)Q⊆Xr with KQ = Q if |Q| > 1 and KQ =∞ otherwise.
3: else
4: Let r1, · · · , rd be the children of r and, for every 1 ≤ i ≤ d, let Ti be the subtree of Tr

rooted in ri. Let Xi = {Xt ∈ X | t ∈ V (Ti)} and let Gi = G[
⋃

X∈Xi
X] be the subgraph

induced by the vertices in the sets in Xi.
5: for i = 1 to d do
6: Let (Ki

Q′)Q′⊆Xri = Algorithm 24(Gi, (Ti,Xi))
7: end for
8: for Q ⊆ Xr do
9: if |Q| ≤ 1 then

10: Let KQ =∞
11: else
12: for i = 1 to d do
13: Let Qi ⊆ Xri be such that Qi ∩ Xr = Q ∩ Xri and, among such sets, |Ki

Qi
| is

minimum. //abusing notations, |K| =∞ if K =∞
14: end for

15: Let KQ = Q ∪
d⋃
i=1

Ki
Qi

.

16: end if
17: end for
18: return (KQ)Q⊆Xr .
19: end if
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If Q ⊆ Xr is such that |Q| ≤ 1, then Q cannot cover all edges of Xr and so, there are no
vertex cover K of G with K ∩Xr = Q, and so KQ =∞ (lines 9-10).

Otherwise, Q is a vertex cover of Xr and so there are vertex cover K of G such that
K ∩ Xr = Q (e.g., (V \ Xr) ∪ Q). Let K∗Q be any minimum vertex cover of G such that
K∗Q ∩ Xr = Q. For every 1 ≤ i ≤ d, by Lemma 16, K∗ ∩ V (Gi) is a minimum vertex cover
(containing Q ∩ Xri) of Gi. Lines 12-15 precisely consider such sets and so, the set KQ is a
minimum vertex cover of G such that K∗Q ∩Xr = Q.

For the complexity, Lines 5-7 needs (by induction)
d∑
i=1

O(|E(Ti)|) operations. Then, because

|Xt| = 3 for all t ∈ V (T ), then the number of sets Q ⊆ Xr is 23 = O(1), and then the loop in
Line 8 has O(1) iterations and the computation of the minima in Line 13 takes constant time.
Overall, the complexity is then O(|E(T )|).

Since any tree-decomposition (T,X ) of a 2-tree G with n vertices has O(n) nodes/edges
(prove it), this leads to an overall complexity of O(n).

From previous Theorem and Algorithm, we easily get the linear-time Algorithm 25 that
computes a minimum vertex cover in any 2-tree.

Algorithm 25 Minimum size Vertex Cover in 2-trees

Require: A 2-tree G = (V,E) and a tree-decomposition (Tr,X ) of G rooted in some vertex
r ∈ V (Tr).

Ensure: A minimum-size vertex cover K of G
1: (KQ)Q⊆Xr = Algorithm 24(G, (Tr,X )).
2: K = V
3: for Q ⊆ Xr do
4: if |KQ| ≤ |K| then
5: K ← KQ //abusing notations, |K| =∞ if K =∞
6: end if
7: end for
8: return K

8.3 k-trees

Let us go a step further. Let k be any integer ≥ 1.
The class of k-trees is defined recursively as follows. A complete graph (clique) Kk+1 with

k + 1 vertices is a k-tree. Given any k-tree H with some clique Q of size k in H, the graph
obtained from H by adding a new vertex x adjacent to every vertex in Q is a new k-tree.

Given a k-tree G = (V,E), a tree-decomposition (T,X = {Xt | t ∈ V (T )}) of G is de-
fined recursively as follows. If G = Kk+1 is reduced to one clique Q, its corresponding tree-
decomposition consists of a tree T reduced to a single node t0 and X = {Xt0 = Q ⊆ V }. If G
is obtained from a k-tree H, with a clique Q of size k in H, by adding a vertex x adjacent to
all vertices in Q, a tree-decomposition (TG,XG = {XG

t | t ∈ V (TG)}) of G is obtained from any
tree-decomposition (TH ,XH = {XH

t | t ∈ V (TH)}) of H by considering any node s ∈ V (TH)
such that V (Q) ⊆ XH

s (show that such a node exists by induction on |V |) and build TG from
TH by adding a new node nx adjacent to s, and XG = XH ∪ {Xnx = Q ∪ {x} ⊆ V }. Note that
a k-tree may admit several decompositions.

Intuitively, each node of TG corresponds to a subset of vertices of G inducing a maximal
clique of G. Hence, (TG,XG) “organizes” the maximal cliques of G in a tree-like fashion while
satisfying some “connectivity properties” as described by the first 2 items of Lemma 17.
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Lemma 17 Let G = (V,E) be a k-tree, (T,X ) be a tree-decomposition of G and e = {u, v} ∈
E(T ). Let Tu (resp. Tv) be the subtree of T \ e = (V (T ), E(T ) \ {e}) containing u (resp., v)
and Gu = G[

⋃
t∈V (Tu)

Xt] and Gv = G[
⋃

t∈V (Tv)

Xt]. Then,

• S = Xu ∩Xv is a clique of size k in G;

• S separates V (Gu) \S from V (Gv) \S (every path from a vertex in V (Gu) \S to a vertex
in V (Gv) \ S goes through S);

// in particular, there are no edges between V (Gu) \ S and V (Gv) \ S.

Moreover, let Q ⊆ S \ {∅}. Prove that, because S is a (V (Gu) \ S, V (Gv) \ S)-separator:

• If K is a vertex cover of G with K ∩ S = Q, then K ′ = K ∩ V (Gu) is a vertex cover of
Gu with K ′ ∩ S = Q.

• If K is a vertex cover of Gu with K ∩ S = Q, then there exists a vertex cover K ′ of G
such that K = K ′ ∩ V (Gu) (and, in particular, K ′ ∩ S = Q).

The key points are that Vertex Cover is a “local” problem and that k-trees have small-size
separators (of size k). Intuitively, extending a vertex cover K of Gu to some vertex cover of G
does not depend on the whole K but only on K ∩S where S is a separator between Gu and the
reminding of G. When |S| is “small”, this can be done efficiently.

Theorem 22 Algorithm 26 is correct and has time-complexity O(2kn) where n is the number
of vertices of any k-tree G.

Proof. The proof of correctness is similar to the one of Algorithm 24.

For the complexity, Lines 5-7 needs (by induction)
d∑
i=1

O(|E(Ti)|) operations. Then, because

|Xt| = k + 1 for all t ∈ V (T ), then the number of sets Q ⊆ Xr is 2k+1 = O(2k), and then the
loop in Line 8 has O(2k) iterations and the computation of the minima in Line 13 takes time
O(2k). Overall, the complexity is then O(2k|E(T )|).

Since any tree-decomposition (T,X ) of a k-tree G with n vertices has O(n) nodes/edges
(prove it), this leads to an overall complexity of O(2kn).

From previous Theorem and Algorithm, we easily get the Algorithm 27 that computes, in
time O(2kn) a minimum vertex cover in any n-node k-tree.

8.4 Brief introduction to treewidth and tree-decompositions

Hopping to lead to a better intuition, we first give a definition of the treewidth (and tree-
decomposition) following the previous sub-sections. Then, we will give an equivalent but more
technical (?) definition that is (maybe) easier to work with.

Let k ∈ N. A graph is a partial k-tree iff it is a subgraph of a k-tree. The treewidth of a
graph G = (V,E), denoted by tw(G), equals the minimum integer k such that G is a partial
k-tree (note that any n-node graph is a partial (n − 1)-tree as subgraph of Kn and so this
parameter is well defined).

Following previous sub-sections, a first way to define a tree-decomposition of a graph is as
follows. Let G = (V,E) be a partial k-tree, i.e., a subgraph of a k-tree H = (VH , EH). Let
(T,X = (Xt)t∈V (T )) be a tree-decomposition of H (as defined in previous sub-section). Then,
(T,X ∩ V = (Xt ∩ V )t∈V (T )) is a tree-decomposition of G of width at most k. Roughly, the
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Algorithm 26 Dynamic Programming Algorithm for Minimum size Vertex Cover in k-trees

Require: A k-tree G = (V,E) and a tree-decomposition (Tr,X ) of G rooted in some vertex
r ∈ V (Tr).

Ensure: For every Q ⊆ Xr, a minimum-size Vertex Cover KQ of G such that KQ ∩ Xr = Q
and KQ =∞ if no vertex cover K of G is such that K ∩Xr = Q.

1: if V (Tr) = {r} and Xr = {u, v, w} then
2: return (KQ)Q⊆Xr with KQ = Q if |Q| > k − 1 and KQ =∞ otherwise.
3: else
4: Let r1, · · · , rd be the children of r and, for every 1 ≤ i ≤ d, let Ti be the subtree of Tr

rooted in ri. Let Xi = {Xt ∈ X | t ∈ V (Ti)} and let Gi = G[
⋃

X∈Xi
X] be the subgraph

induced by the vertices in the sets in Xi.
5: for i = 1 to d do
6: Let (Ki

Q′)Q′⊆Xri = Algorithm 24(Gi, (Ti,Xi))
7: end for
8: for Q ⊆ Xr do
9: if |Q| ≤ k − 1 then

10: Let KQ =∞
11: else
12: for i = 1 to d do
13: Let Qi ⊆ Xri be such that Qi ∩ Xr = Q ∩ Xri and, among such sets, |Ki

Qi
| is

minimum. //abusing notations, |K| =∞ if K =∞
14: end for

15: Let KQ = Q ∪
d⋃
i=1

Ki
Qi

.

16: end if
17: end for
18: return (KQ)Q⊆Xr .
19: end if

Algorithm 27 Minimum size Vertex Cover in k-trees

Require: A k-tree G = (V,E) and a tree-decomposition (Tr,X ) of G rooted in some vertex
r ∈ V (Tr).

Ensure: A minimum-size vertex cover K of G
1: (KQ)Q⊆Xr = Algorithm 26(G, (Tr,X )).
2: K = V
3: for Q ⊆ Xr do
4: if |KQ| ≤ |K| then
5: K ← KQ //abusing notations, |K| =∞ if K =∞
6: end if
7: end for
8: return K
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difference with tree-decompositions of k-trees is that, in a tree-decomposition of a k-tree, the
sets Xt (called bags) consist of cliques of size k+ 1, while, in the case of partial k-trees, they are
subgraphs of size at most k+1. However, as we will see below they share the same connectedness
properties. First, let us mention the algorithmic applications of tree-decompositions.

Theorem 23 There exists an algorithm that, given any n-node graph G of treewidth tw(G) and
a tree-decomposition of G of width at most tw(G), computes a minimum vertex cover of G in
time O(2tw(G) · n).

Proof. Such an algorithm (almost) directly follows Algorithm 27 by modifying the Algorithm 26
in the following way. In Line 2, |Q| > k − 1 is replaced by “Q is a vertex cover of Xr”, and in
Line 9, |Q| ≤ k − 1 is replaced by “Q is not a vertex cover of Xr”.

The algorithm described in the proof of Theorem 23 is an FPT algorithm to compute a
minimum Vertex Cover when the parameter is the treewidth (in contrast with previous FPT
algorithms we have seen so far where the parameter was always the size of the solution, namely,
the size k of a vertex cover).

To further exemplify the algorithmic applications of tree-decompositions, let us mention
(without any explanation) the celebrated Courcelle’s meta theorem.

Theorem 24 (Courcelle 1990) Every graph property P definable in the monadic second-
order logic14 of graphs can be decided in linear time on graphs of bounded treewidth. That
is, there is a function fP such that P can be decided in time O(fP (k) ·n) in the class of n-node
graphs with treewidth at most k.

Complexity of treewidth. Theorem 23 (and most of the dynamic programming algorithms
using tree-decompositions) explicitly requires a “good” (with small width) tree-decomposition
as input (Theorem 24 actually requires it implicitly). Unfortunately, the problem of deciding
whether tw(G) ≤ k is NP-complete15. On the positive side, this problem is FPT (with parameter
the width itself)16 and there exists a

√
log k-approximation algorithm for the problem17. On

a practical point of view, it is an important research topic to design efficient approximation
algorithms or heuristics that compute “good” tree-decompositions of graphs. The problem can
be solved more “efficiently” in particular graphs classes. For instance, there is a cubic 3/2-
approximation algorithm in planar graphs18, however, the complexity of the problem in planar
graphs is still open...

Second definition of treewidth and tree-decomposition. So far, we have given a first
definition of tree-decomposition and treewidth in terms of partial k-trees because we hope that
it is a bit more intuitive. Let us now give a more technical definition that does not rely on a
k-tree supergraph. Let G = (V,E) be a graph. A tree-decomposition19 of G is a pair (T,X )

14See Chapter 7.4 of [4] for an intuitive definition of MSOL. Examples of such problems include Vertex Cover,
Dominating Set, 3-Colouring...

15Stefan Arnborg, Derek G. Corneil, Andrzej Proskurowski: Complexity of finding embeddings in a k-tree.
SIAM J. of Discrete Maths 8(2): 277-284 (1987)

16Hans L. Bodlaender, Ton Kloks: Efficient and Constructive Algorithms for the Pathwidth and Treewidth of
Graphs. J. Algorithms 21(2): 358-402 (1996)

17Uriel Feige, Mohammad Taghi Hajiaghayi, James R. Lee: Improved Approximation Algorithms for Minimum
Weight Vertex Separators. SIAM J. Comput. 38(2): 629-657 (2008)

18Paul D. Seymour, Robin Thomas: Call Routing and the Ratcatcher. Combinatorica 14(2): 217-241 (1994)
19Neil Robertson, Paul D. Seymour: Graph minors. IV. Tree-width and well-quasi-ordering. J. Comb. Theory,

Ser. B 48(2): 227-254 (1990)
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where T = (V (T ), E(T )) is a tree and X = {Xt | t ∈ V (T )} is a family of subsets (called bags)
of V such that:

1.
⋃

t∈V (T )

Xt = V ;

2. for every e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;

3. for every v ∈ V , the set {t ∈ V (T ) | v ∈ Xt} induces a subtree of T .

The width of (T,X ) equals max
t∈V (T )

|Xt| − 1 and the treewidth, tw(G), of G is the mini-

mum width of a tree-decomposition of G (Note that, for any graph G, there is a trivial tree-
decomposition consisting of a tree with a single note t such that Xt = V ). The −1 in the
definition of the width is only there to ensure that tw(G) = 1 if and only if G is a forest (i.e.,
all connected components of G are trees).

Exercise 22 Prove that the above definitions of tree-decomposition and treewidth are equivalent
to the ones given in terms of partial k-tree.

Let us note that, if a graph G = (V,E) admits a tree-decomposition (T,X ) of width k,
then G has an infinity of such decompositions. Indeed, for any t ∈ V (T ), let T ′ be the tree
obtained from T by adding a (leaf) vertex t′ adjacent to t and X ′ = X ∪{Xt′ = Xt}, then prove
that (T ′,X ′) is a tree-decomposition of G with width k. To avoid this pathological cases (and
simplify next proofs), let us first show that we can always restrict ourself to tree-decomposition
(T,X ) such that, for every t, t′ ∈ V (T ), Xt \Xt′ 6= ∅.

Given a graph G = (V,E) and an edge uv ∈ E, let G/uv be the graph obtained by contract-
ing the edge uv defined as V (G/uv) = (V \ {u, v}) ∪ {x} and E(G/uv) = (E \ {e ∈ E | e ∩ u 6=
∅ or e ∩ v 6= ∅}) ∪ {xw | w ∈ N(u) ∪N(v)} (roughly, u and v are identified).

Exercise 23 Let G = (V,E) be a graph and (T,X ) be tree-decomposition of G with width k.
Let tt′ ∈ E(T ) such that Xt′ ⊆ Xt. Let T ′ = T/tt′ (with x being the new vertex resulting from
the identification of t and t′) and X ′ = (X \ {Xt, Xt′}) ∪ {Xx = Xt}. Show that (T ′,X ′) is a
tree-decomposition of G with width k.

From now on, every considered tree-decomposition (T,X ) will be assumed to satisfy that
for every t, t′ ∈ V (T ), Xt \Xt′ 6= ∅. Note that, for such a tree-decomposition (T,X ) of a graph
G = (V,E), for every t ∈ V (T ) leaf of T , there exists v ∈ V such that v ∈ Xt and v /∈ Xt′ for
every t′ ∈ V (T ) \ {t}.

The next exercise probably describes the main property of tree-decompositions.

Exercise 24 Let G = (V,E) be a graph and (T,X ) be tree-decomposition of G.

• Let t ∈ V (T ) and let T1, · · · , Td be the components of T \ {t}. For every 1 ≤ i < j ≤ d,
Xt separates

⋃
t′∈Ti

Xt′ \Xt and
⋃

t′∈Tj
Xt′ \Xt in G.

• Let e = tt′ ∈ E(T ) and let T1 (resp., T2) be the component of T \ {e} containing t (resp.,
containing t′). Xt ∩Xt′ is a (

⋃
h∈T1

Xh \ (Xt ∩Xt′),
⋃
h∈T2

Xh \ (Xt ∩Xt′)) separator.

Before going further, let us define an important notion. A graph H is a minor of a graph
G, denoted by H � G, if H is a subgraph of a graph G′ that is obtained from G by a sequence
of contraction(s) of edges. In other words, H is a minor of G if it can be obtained from G by
sequentially removing vertices, edges and/or contracting edges.
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Exercise 25 Prove that,

• if H � G, then tw(H) ≤ tw(G); // treewidth is minor-closed

• tw(C) = 2 for any cycle C;

• tw(G) = 1 if and only if G is a forest;

• tw(Kn) = n− 1 for any n ≥ 1;

• Let G be a graph containing a clique K as subgraph. Then, for every tree-decomposition
(T,X ) of G, there exists t ∈ V (T ) with K ⊆ Xt, and so tw(G) ≥ |K| − 1;

• Let Gn×m be the n×m grid. Then, tw(Gn×m) ≤ min{n,m}.

Above, we tried to make it clear that graphs with bounded treewidth have “simple” structure
that can be efficiently used for algorithmic purposes. Several “real-life” graphs have bounded
treewidth20, but, unfortunately, it is not true in many important fields of applications (Internet,
road networks...). Therefore, it is natural to ask what is the structure of graphs with large
treewidth. Such a “dual” structure for graphs with large treewidth would also be useful for
proving lower bounds for the treewidth of graphs (e.g., we will use it to give the exact value
of treewidth for grids). One important result of Robertson and Seymour in their Graph Minor
theory (see below for more details) is the characterization of such an obstruction for small
treewidth.

Given a graph G = (V,E) and X,Y ⊆ V , X and Y are touching if X ∩ Y 6= ∅ or if there
are x ∈ X and y ∈ Y such that xy ∈ E. A bramble B in G is a family of subsets of V pairwise
touching (i.e., for every B,B′ ∈ B, B and B′ are touching). The order of B is the minimum size
of a transversal of B, i.e., the minimum size of a set T ⊆ V such that T ∩B 6= ∅ for all B ∈ B.
The bramble number, BN(G), of a graph G is the maximum order of a bramble in G.

Theorem 25 (Seymour and Thomas 1993) 21 For any graph G, tw(G) = BN(G)− 1.

An intuitive way to understand (and prove) the above theorem is by considering the equiv-
alence between tree-decompositions and graph searching games22.

As a consequence of previous theorem, let us show the following lemma.

Lemma 18 Let Gn×m be the n×m grid. Then, tw(Gn×m) = min{n,m}.

Proof. Let us assume that n ≤ m. The upper bound follows from Exercise 25. For the lower
bound, by Theorem 25, let us exhibit a bramble of order n+ 1. Given a grid, a cross consists of
the union of any row plus any column. Let G′ be the subgrid obtained from Gn×m by removing
its first row and its first column. The desired bramble consists of the first row, the first column
minus its vertex in the first row, and all crosses of G′.

Intuitively, a bramble with large order in a graph G may be seen as a large grid or as a large
clique minor in G. The following result shows that any planar graph23 has a large treewidth if
and only if it admits a large grid as minor.

20e.g., Mikkel Thorup: All Structured Programs have Small Tree-Width and Good Register Allocation. Inf.
Comput. 142(2): 159-181 (1998)

21Paul D. Seymour, Robin Thomas: Graph Searching and a Min-Max Theorem for Tree-Width. J. Comb.
Theory, Ser. B 58(1): 22-33 (1993)

22See Section 4.1 in Nicolas Nisse: Network Decontamination. Distributed Computing by Mobile Entities 2019:
516-548

23A graph is planar if it can be drawn on the sphere without crossing edges.
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Theorem 26 (Grid Theorems) [Robertson and Seymour 198624, Kawarabayashi and Kobayashi
201225, Chuzhoy and Tan 201926]
Any planar graph G with treewidth Ω(k) has an k × k grid as minor.
Any graph G with treewidth Ω(k9poly log(k)) has an k × k grid as minor.
There are graphs with treewidth Ω(k2 log(k)) without any k × k grid as minor.

One first interesting application of previous theorem is the framework of bidimensionality
theory that we present with an example below.

Bidimensionality. Let us consider a function fP : {graphs} → N and consider the problem
P that, given a graph G and an integer k, aims at deciding whether fP (G) ≤ k ≤ |V (G)|. Let
us assume that P is closed under taking minor, i.e., fP (H) ≤ fP (G) for every H � G, that the
problem can be decided in time O(2tw(G)n) and that fP (Gn×n) = Ω(n2) where Gn×n is the grid
of side n. The Vertex Cover problem is an example of such a problem.

Theorem 27 (Demaine and Hajiaghayi 2008) 27 Such a problem P can be solved in sub-
exponential time O(2

√
npoly(n)) in the class of n-node planar graphs.

Proof. (Sketch) Consider the following algorithm to decide whether fP (G) ≤ k. First, if
tw(G) = O(

√
k), which can be decided (and a corresponding tree-decomposition can be com-

puted) in time O(2
√
kn) 28, then by the second property of P , then the solution can be computed

in time O(2
√
kn). Otherwise, by the Grid theorem, G has a

√
k ×
√
k-grid H as minor. Since

fP (H) = Ω(k) and P is closed under taking minor, then fP (G) = Ω(k).
Finally, since k ≤ n, the result follows.

The above theorem has been generalized for larger classes of sparse graphs such as bounded
genus graphs and even graphs excluding some fixed graph as minor.

A third definition of treewidth. For completeness (and to conclude this brief introduction
to treewidth), let us give another definition of treewidth. A graph is chordal if it has no induced
cycle of length at least 4 as subgraph. Equivalently, a graph is chordal if it is the intersection
graph of a family of subtrees of a tree. Given a graph G, let ω(G) be the maximum size of a
clique in G. The treewidth of a graph G can be defined as the minimum ω(H) − 1 among all
chordal supergraphs H of G. Note that there is a close relationship between tree-decompositions
of a graph G and the clique trees of its chordal supergraphs29.

24Neil Robertson, Paul D. Seymour: Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B
41(1): 92-114 (1986)

25Ken-ichi Kawarabayashi, Yusuke Kobayashi: Linear min-max relation between the treewidth of H-minor-free
graphs and its largest grid. STACS 2012: 278-289

26Julia Chuzhoy, Zihan Tan: Towards Tight(er) Bounds for the Excluded Grid Theorem. SODA 2019: 1445-
1464

27Erik D. Demaine, MohammadTaghi Hajiaghayi: The Bidimensionality Theory and Its Algorithmic Applica-
tions. Comput. J. 51(3): 292-302 (2008)

28e.g., Hans L. Bodlaender, Pâl Gronas Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, Michal
Pilipczuk: A ck n 5-Approximation Algorithm for Treewidth. SIAM J. Comput. 45(2): 317-378 (2016),
Hans L. Bodlaender: A linear time algorithm for finding tree-decompositions of small treewidth. STOC 1993:
226-234

29Philippe Galinier, Michel Habib, Christophe Paul: Chordal Graphs and Their Clique Graphs. WG 1995:
358-371
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8.5 Graph Minor theory

To conclude this section, let us try to sketch the main reason why Robertson and Seymour
introduced tree-decompositions and treewidth. Note that there are very nice surveys on this
topic30. Recall that a partial order is called Well Quasi Ordered (WQO) if it admits no infinite
antichain (i.e., no infinite sequence of elements that are pairwise incomparable). The Wagner’s
conjecture (1970) asked whether the minor ordering is WQO over the set of graphs. Along a serie
of 20 papers (with overall about 500 pages) from 1983 to 2004, Robertson and Seymour answered
this question (and many fundamental others) through what is now called the Graph Minor
theory (interestingly, the order of publication of these papers does not necessarily corresponds
to the order of the results).

Theorem 28 (Robertson and Seymour 2004) 31 The minor relationship is WQO.

Before giving a very rough idea of its proof, let us show the algorithmic consequences of the
above theorem. A class of graph G is minor-closed if, for every H � G, G ∈ G implies that
H ∈ G. Given a graph class G, let the set of obstructions Obs(G) be the set of minor-minimal
graphs not in G, i.e., the set of graphs H such that H /∈ G and H ′ ∈ G for all H ′ ≺ H.

Corollary 4 Let G be a minor-closed class of graphs. Then Obs(G) is finite.

Proof. Otherwise, by Theorem 28, there would be two graphs G,G′ in Obs(G) such that
G ≺ G′, a contradiction.

As an example, note first that any minor of a planar is also planar. Hence, the class P of
planar graphs is minor-closed.

Theorem 29 [Wagner 1937] A graph is planar if and only if it has no K5 nor K3,3 (the
complete bipartite graph with 3 vertices in each part) as minor, i.e., Obs(P) = {K5,K3,3}.

To understand the importance of Corollary 4, let us do a short detour to vertex-disjoint
paths in graphs. Given a graph G = (V,E) and two disjoint subsets X,Y ⊂ V with |X| =
|Y | = k, the problem of deciding whether there are k vertex-disjoint paths between X and Y
(and compute such paths) can be solved in polynomial-time (e.g., using flow algorithm or the
proof of Menger’s theorem). In contrast, given a graph G = (V,E) and two disjoint subsets
X = {s1, · · · , sk}, Y = {t1, · · · , tk} ⊂ V with |X| = |Y | = k, the problem of deciding whether
there are k vertex-disjoint paths P1, · · · , Pk, where Pi is a path between si and ti for all i ≤ k,
(and compute such paths) is NP-complete [7]. To see the difference between the two problems,
consider a cycle with vertices (s1, s2, t1, t2) (in this order): clearly, there are 2 vertex-disjoint
paths from X = {s1, s2} to Y = {t1, t2}, but 2 vertex-disjoint paths P1 from s1 to t1 and P2

from s2 to t2 do not exist.
One of the numerous fundamental contributions of Robertson and Seymour along their

Graph Minor serie is the proof that, when k is fixed, the latter problem (k-linkage), is FPT
in k32. This allowed them to show that, given a fixed graph H, the problem that takes an
n-node graph G as input and asks whether H � G (G admits H as minor) can be solved in
time O(n3) where the “big O” hides a constant depending on H (this result has been improved
to an O(n2)-time algorithm since then).

30See the survey of Lovász here and the survey of Robertson and Seymour themselves (1985) here.
31Neil Robertson, Paul D. Seymour: Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2):

325-357 (2004)
32Neil Robertson, Paul D. Seymour: Graph Minors XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser.

B 63(1): 65-110 (1995)
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Theorem 30 (Kawarabayashi, Kobayashi and Reed 2012) Let H be a fixed graph. The
problem that takes an n-node graph G as input and decides if H � G can be solved in time
O(n2).

To give an intuition of the relationship between the minor containment problem and the k-
linkage problem, let us give the very sketchy following process (whose time-complexity is much
worst than the one announced in previous theorem but still polynomial for fixed H). First,
we can “guess” the vertices of G that correspond to vertices of H (by trying the O(n|V (H)|)
possibilities). For each choice of |V (H)| vertices in G, then, we have to recover the |E(H)|
edges of H as |E(H)| vertex-disjoint paths in G (with sources and terminal the vertices we have
guessed).

Now, we are ready to give the main algorithmic consequence of Robertson and Seymour’s
theorem.

Theorem 31 Let G be any minor-closed graph class. The problem that takes a graph G as
input and asks whether G ∈ G is in P .

Proof. The algorithm is as follows. For each H ∈ Obs(G) (there are a finite number of such
graph by Corollary 4), decide if H � G (can be done in polynomial-time by Theorem 30). If
H � G for some H ∈ Obs(G) then G /∈ G, else G ∈ G.

Note that previous theorem is only an existential result since it requires the knowledge of
Obs(G) for the considered graph class G. Unfortunately, as far as I know, the set of obstructions
is known for very few graph classes. For instance, the full set of obstructions of the class of
graphs with genus 1 (that can be embedded without crossing edges on a “doughnut”) is still
unknown.

“Proof” of Robertson and Seymour’s theorem. To conclude this section, let us give
a very very very sketchy (and probably a bit wrong, sorry) idea of the proof of Theorem 28.
Roughly, the guideline is to prove that the minor relationship is WQO in graph classes that are
more and more large.

Theorem 32 (Kruskal 1960) The minor relationship is WQO in the class of trees.

The next step is naturally the class of graphs with bounded treewidth.

Theorem 33 (Robertson and Seymour 1990) 33 The minor relationship is WQO in the
class of graphs with bounded treewidth.

Intuitively, let (G1, · · · ) be an infinite sequence of graphs with treewidth at most k, and let
(Ti,Xi) be a tree-decomposition of width k of Gi. The sequence (T1, · · · ) is an infinite sequence
of trees and, by Threorem 32, we can extract an infinite sequence (Ti1 � Ti2 � · · · ). Because
the graphs (Gi1 , Gi2 , · · · ) have bounded treewidth, the trees (Ti1 , Ti2 , · · · ) can be seen as trees
with labels of bounded length on their vertices. The result follows (after some work).

Next, the case of planar graphs arises.

Theorem 34 (Robertson and Seymour 1986) 34 The minor relationship is WQO in the
class of planar graphs.

33Neil Robertson, Paul D. Seymour: Graph minors. IV. Tree-width and well-quasi-ordering. J. Comb. Theory,
Ser. B 48(2): 227-254 (1990)

34Neil Robertson, Paul D. Seymour: Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B
41(1): 92-114 (1986)
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Indeed, very intuitively, let us consider an infinite sequence S of planar graphs. If infinitely
of them have bounded treewidth, then the result follows previous theorem. Otherwise, by the
grid Theorem 26, they have arbitrary large grids as minors. Note that, for any planar graph G,
there exists a grid Gr such that G � Gr. Overall, it is possible to find G,G′ ∈ S such that G′

has a sufficiently large grid Gr as minor such that G � Gr. Hence, G � Gr � G′.
Previous result can then be extended to bounded genus graphs. Roughly, a surface has

(orientable) genus at most g if it can be obtained from a sphere by adding to it g handles. A
graph has genus g if it can be embedded without crossing edges on a surface with genus g (planar
graphs are graphs with genus 0, graphs with genus ≤ 1 are the ones that can be embedded on
a doughnut...). See [1] for more formal definitions.

Theorem 35 (Robertson and Seymour 1990) 35 The minor relationship is WQO in the
class of graphs with bounded genus.

We now can “conclude”. Let (G1, · · · ) be an infinite sequence of graphs. For every k ≥ 2,
G1 � Gk (since otherwise we are done). Hence, the graphs G2, · · · are all excluding G1 as
minor. A key contribution of Robertson and Seymour is the structural characterization of the
graphs excluding a fixed graph H as minor. Namely, given a fixed graph H, they show that
any H-minor free graph (i.e., excluding H as minor) admits a particular decomposition36 that
we try to sketch below.

Very very very roughly (sorry again), a H-minor free graph G admits a tree-decomposition
(T,X ) such that

• for every uv ∈ E(T ), |Xu ∩Xv| ≤ 3 (this bound is actually due to Demaine et al.);

• for every v ∈ V (T ), the bag Xv induces a graph Gv that is obtained from: a graph G′v
that has bounded (in terms of |H|) genus, to which it can be added a bounded (in terms
of |H|) number of vortices (subgraphs of bounded (in terms of |H|) “pathwidth” that may
be “glued” along non-contractible cycles of G′v) and then a bounded (in terms of |H|)
number of apices can be added (vertices that can be adjacent to any vertex).

The proof of Theorem 28 then follows from Robertson and Seymour’s decomposition and
previous theorems (bounded treewidth, bounded genus...).

Part IV

Linear Programming for graphs

This part is devoted to introduced an important tool for handling many graph problems (NP-
hard or not), namely Linear Programming (LP). It is important to note that this tool is widely
used in practice. From the theoretical point of view related to previous part, the last section of
this part gives an example where LP may be used for the design of FPT algorithms.

9 Linear Programming in a nutshell [8]

This section is NOT a lecture on linear programming, we only try to give you the necessary
background to use this very powerful tool for modeling and solving graph problems. See, e.g., [8]

35Neil Robertson, Paul D. Seymour: Graph minors. VIII. A kuratowski theorem for general surfaces. J. Comb.
Theory, Ser. B 48(2): 255-288 (1990)

36Neil Robertson, Paul D. Seymour: Graph Minors. XVI. Excluding a non-planar graph. J. Comb. Theory,
Ser. B 89(1): 43-76 (2003)
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for a real course on Linear Programming.

9.1 Definition of a Linear Programme

Consider a set of n non negative real variables x1, · · · , xn. Moreover, these variables must
satisfy a set of m constraints which all are linear combinations of the variables. That is, for
every 1 ≤ j ≤ m, the constraint Cj is of the form

∑
1≤i≤n

ai,jxi ≤ bj or
∑

1≤i≤n
ai,jxi ≥ bj where

ai,j ∈ R and bj ∈ R are (given) real constants, for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. Finally,
the goal of the problem is to assign values (from the domain) to each variable, satisfying all
(subject to) the constraints C1, · · · , Cm, and optimizing some objective function which consists
of maximizing or minimizing some linear combination

∑
1≤i≤n

cixi of the variables (ci ∈ R for

every 1 ≤ i ≤ n).
Note that a constraint

∑
1≤i≤n

ai,jxi ≤ bj can be equivalently replaced by the constraint∑
1≤i≤n

(−ai,j)xi ≥ −bj . Similarly, the objective function “maximize
∑

1≤i≤n
cixi” is equivalent to

the one of minimizing
∑

1≤i≤n
(−ci)xi. Hence, we may only consider maximization problem with

constraints of the form
∑

1≤i≤n
ai,jxi ≤ bj .

To sum up, a linear programme37 has the following canonical form:

maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n

Then, the goal is to assign, for each variable xi, 1 ≤ i ≤ n, a non negative real value, such
that all constraints Cj are satisfied, and optimizing the objective function. Note that, ai,j , bj
and cj are given real constants (part of the input of the problem) for every 1 ≤ i ≤ n and
1 ≤ j ≤ m.

Let us emphasis that, since constraints and the objective function are restricted to be linear
combinations of the variables, it is forbidden to multiply two (or more) variables38.

For completeness, let us mention a matricial way to present a Linear Programme:

max. CT ·X
subject to AX ≤ B

X ≥ 0

where X = [x1, · · · , xn], C = [c1, · · · , cn] and B = [b1, · · · , bm] are column vectors and
A = [aj,i]1≤i≤n,1≤j≤m is a matrix with m rows and n columns (and W · U is the scalar product
between W and U ; and W = [wi]1≤i≤q ≤ U = [ui]1≤i≤q iff wi ≤ ui for all 1 ≤ i ≤ q).

A feasible solution for a Linear Programme (LP) is an assignment of some values to the
variables that satisfies all constraints (including the one that variables must be assigned non

37The terminology is due to Dantzig (1947) who formalized it and used it for planning problems in the US Air
Force. In this context, “programme” must be understood as “planification” and not as having any relationship
with programming languages.

38For more general programmes, let us refer to the areas of Constraints Satisfiability Programmes (CSP),
quadratic programmes (where it is allowed to multiply two variables but no more) and semi-definite programming
(SDP)...
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negative real39). An optimal solution is any feasible solution that maximizes the objective
function.

9.2 A few words on how to solve a Linear Programme

First, let us notice that a Linear Programme (LP) may be of three kinds. First, a LP may admit
no feasible solution, as it can easily be checked for the following example with two variables
(note that the two constraints are not compatible):

max. x1 + 3x2
subject to −x1 ≤ −3

x1 ≤ 2
x1, x2 ≥ 0

Second, a LP may admit feasible solutions but no optimal solutions (i.e., the value the
objective function may be arbitrary large) as in the following example:

max. x1 + 3x2
subject to x2 ≤ 3

x1, x2 ≥ 0

Finally, a LP may admit optimal solutions. In this latter case, there may be an infinite
number of optimal solutions (see next example) or a single optimal solution (as shown in the
last example).

max. x1 + 3x2
subject to x1 + 3x2 ≤ 3

x1, x2 ≥ 0

Indeed, the above LP admits the set {(x1 = x, x2 = (3 − x)/3) | 0 ≤ x ≤ 3}, as optimal
solutions (with maximum value 3 for the objective function).

max. x1 + 3x2
subject to x1 ≤ 3

x2 ≤ 7
x1, x2 ≥ 0

Indeed, it is easy to see that the above LP admits one unique optimal solution (x1 = 3, x2 = 7)
(with maximum value 24 for the objective function).

Again, this section does not pretend to be a course on Linear Programming. We only aim
at giving some intuition of what “happens”. For purpose of illustration, let us consider the
following general LP:

maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n
39Note that the fact that a variable must be non negative is not a strong constraint. Indeed, assume that a

variable x may be any real, then it can be “simulated” by two non negative real variables y and z adding the
constraint that x = y − z.
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Each constraint Cj corresponds to an hyperplane (in Rn) with equation
∑

1≤i≤n
aj,ixi = bj

(i.e., a line if n = 2) and so implies that any feasible solution is constrained to belong to the
half-space with

∑
1≤i≤n

aj,ixi ≤ bj (a half plane in the case n = 2). Similarly, the non negativity

constraint defined a half-space for each variable. Altogether, taking the intersection of the half-
spaces defined by each constraint, the feasible domain (i.e., the set of feasible solutions) is the
intersection of a set of half-spaces (each defined by some hyperplane) which is, by definition, a
polytope (a polygone in the case n = 2). On the other hand, the objective function corresponds
to a family of hyperplanes, the ones with equations

∑
1≤i≤n

cixi = s, for s ∈ R (for instance, a

set of parallel lines if n = 2). A key point is that a polytope is convex40. Therefore, it can
be proved that, if the polytope P defining the feasible solutions is not empty (otherwise there
are no feasible solutions) and bounded (otherwise there is no bounded optimal solution), then
the optimal solutions either correspond to a corner of P (in which case the optimal solution is
unique) or corresponds to a face of P (infinite number of optimal solutions).

To have a better (more concrete) understanding of previous paragraph, the reader is en-
couraged to consider the two-dimensional case (i.e., with only two variables) and to learn how
to solve it using the graphical method (see, e.g., here). More generally, the above properties
allow the simplex method [Dantzig 1949] to compute an optimal solution by, roughly, going
from corner to corner, each time by improving the value of the objective function (the simplex
method is actually similar to Gaussian elimination). The simplex method has exponential-time
complexity in worst case and it has been a breakthrough when it was proved that solving a LP
can be done in polynomial time (in the number of variables and constraints):

Theorem 36 (Ellipsoid method [Khachiyan 1979], Interior-point method [Karmarkar 1984])
Given a LP, an optimal solution can be computed in time polynomial in the number of variables
and in the number of constraints.

Note that, in practice, the simplex method (while exponential in worst case) is generally
very efficient.

9.3 Integer Linear Programming

While being very powerful and being solvable in polynomial time, LP cannot express problems
whose solutions must have discrete values. An Integer Linear Programme (ILP) is defined as
a LP with the difference that its variables must have integral values (or sometimes boolean
values). For instance, ILPs have the following possible forms:

maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ∈ N ∀1 ≤ i ≤ n
40Recall that a set X ⊆ Rn is convex iff, for every u, v ∈ X, and for every 0 ≤ λ ≤ 1 (λ ∈ R), λx+(1−λ)y ∈ X,

i.e., every “point” of the “segment” between u ∈ X and v ∈ X also belongs to X.
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or
maximize

∑
1≤i≤n

cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ∈ {0, 1} ∀1 ≤ i ≤ n
Contrary to the LP case, solving an ILP is an NP-hard problem [7] and so, no polynomial-

time algorithm is known to solve them. One reason for that is that the set of feasible solutions
is not convex anymore.

Given an ILP, a fractional relaxation of it is a LP obtained from the ILP by allowing its
variables to have real values. For instance, fractional relaxations of both the above ILPs are:

maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n

and
maximize

∑
1≤i≤n

cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

0 ≤ xi ≤ 1 ∀1 ≤ i ≤ n
Since a feasible solution of an ILP is also a feasible solution for its fractional relaxation, we

get

Lemma 19 The optimal value of the objective function of a maximization (resp., minimization)
ILP is upper (resp., lower) bounded by the optimal value of the objective function of its fractional
relaxation.

Consider any problem that can be modeled by an ILP and let us denote by OPT the
optimal value of the objective function of this ILP. Moreover, let OPTf be the optimal value
of the objective function of the fractional relaxation of the ILP. For a maximization (resp.,
minimization) problem, the ratio OPT/OPTf (resp., OPTf/OPT ) is called the integrality gap
(always ≥ 1). If the integrality gap of a problem equals 1, this means that there exists an integral
optimal solution for the fractional relaxation of the ILP. In that case, by previous subsection,
the problem can be solved in polynomial time (we will see examples below). More generally,

Lemma 20 If the integrality gap of some problem can be bounded, say by c (a constant or a
function of the size of the input), then solving the fractional relaxation of the problem gives a
c-approximation algorithm for the initial problem.

9.4 Duality

In this section, we briefly present a fundamental result widely used in practice.
Let n,m ∈ N. Let x1, · · · , xn be n non-negative real variables and, for every 1 ≤ i ≤ n

and 1 ≤ j ≤ m, let aj,i and ci ∈ R be given constants. Let us consider the following Linear
Program.
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maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n

The solution of the LP, denoted by OPT , is the optimal value of its objective function. A
feasible assignement is any assignment (x1, · · · , xn) of the variables that satisfies all constraints
Cj and such that xi ≥ 0 for all 1 ≤ i ≤ n. The goal of this section is to find a “good” upper
bound on OPT .

Lemma 21 Let 1 ≤ j ≤ m and let β = max
1≤i≤n

ci
aj,i

(assuming that aj,i 6= 0 for all 1 ≤ i ≤ n). If

the above LP admits a solution OPT , then OPT ≤ β · bj.

Proof. Let (x′1, · · · , x′n) be an optimal solution of the LP. Then, OPT =
∑

1≤i≤n
cix
′
i =∑

1≤i≤n

ci
aj,i
aj,ix

′
i ≤ β

∑
1≤i≤n

aj,ix
′
i ≤ βbj .

Above, we gave an upper bound on OPT by using a single constraint (Cj). To obtain a
better (i.e., smaller) upper bound, let us consider a linear combination of all the constraints.

Lemma 22 Let (y1, · · · , ym) ∈ (R+)n be such that, for every 1 ≤ i ≤ n,
∑

1≤j≤m
yjaj,i ≥ ci. If

the above LP admits a solution OPT , then OPT ≤
∑

1≤j≤m
yjbj.

Proof. Let (x′1, · · · , x′n) be an optimal solution of the LP. Then, OPT =
∑

1≤i≤n
cix
′
i ≤∑

1≤i≤n
x′i(

∑
1≤j≤m

yjaj,i) =
∑

1≤j≤m
yj(

∑
1≤i≤n

aj,ix
′
i) ≤

∑
1≤j≤m

yjbj .

Let us consider the following LP with variables y1, · · · , ym which is called the dual of the
above LP (which is called the primal)

minimize
∑

1≤j≤m
bjyj

subject to

(constraint C∗i :)
∑

1≤j≤m
aj,iyj ≥ ci ∀1 ≤ i ≤ n

yj ≥ 0 ∀1 ≤ j ≤ m

Exercise 26 Show that the dual of the dual of a LP is the primal LP.

Lemma 23 Assume that the above primal LP and dual LP admit bounded solutions, respectively
OPT and OPT ′. Then, OPT ≤ OPT ′ (Weak duality).

If x∗ = (x1, · · · , xn) is a feasible assignment of the primal LP and y∗ = (y1, · · · , ym) is a
feasible assignment of the dual LP such that

∑
1≤j≤m

cjyj =
∑

1≤i≤n
cixi = OPT ∗, then OPT ∗ is

an optimal solution of both the primal and the dual.

Proof. The first statement directly follows from Lemma 22 and the second statement directly
follows from the first statement.
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We will state the following fundamental theorem without proof (it can be proved, e.g., using
the simplex method and previous lemma)41.

Theorem 37 (Strong duality, Dantzig 1963) A primal LP has a bounded solution OPT if
and only if its dual has a bounded solution OPT ′. Moreover, in that case, OPT = OPT ′.

10 Model graph problems using ILP

This is the main section of this part where we learn how to express various graph problems as
Integer Linear Programmes. Note that the main difficulty is to model (graph) problems as ILP.
By experience, an ILP looks rather obvious once it has been defined. Hence, I should advice
you to think about how to model the following problems before to see the proposed solutions.
Also (especially for the first problem below), we try to detail “good” ways to proceed/reflexes
that you must think about/have in order to model graph problems as ILP (unfortunately, there
is no systematical/magical recipe for this purpose).

Roughly, the main step consists of defining (the meaning of) the variables. Then, the
objective function is (generally) rather obvious. Finally, the definition of the constraints follows
from a good understanding of the given problem.

10.1 Minimum Vertex Cover

Recall that this problem consists in, given a graph G = (V,E), computing a smallest subset
Q ⊆ V of vertices that “touch” all edges of E.

Since we aim at computing a subset of vertices, it is “natural” to define one variable xv per
vertex v ∈ V such that xv = 1 will mean that v belongs to the computed solution (subset of
vertices) and xv = 0 otherwise. Note that, each variable will have value in {0, 1}.

The size of the computed vertex-set is then
∑
v∈V

xv which is then the objective function to

be minimize.
Now, the problem asks that, for every edge uv ∈ E, at least one of u or v is taken in

our solution (our subset of vertices touching all edges). That is, we would like that, for every
uv ∈ E, either xu = 1 or xv = 1 (or both). Since the variables have values in {0, 1}, it is
equivalent to say that xu + xv ≥ 1 for every uv ∈ E (prove it).

Overall, the minimum Vertex Cover problem on a graph G = (V,E) can be modeled by the
following ILP:

minimize
∑
v∈V

xv

subject to xv + xu ≥ 1 ∀uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Exercise 27 Give the canonical form of the above ILP.

Exercise 28 Prove that there is a one-to-one mapping between any (optimal) solution of the
above ILP and (minimum) vertex covers of G.

Proof. Let (xv1 , · · · , xvn) be a feasible solution of the ILP, and let Q = {v ∈ V | xv = 1}, then
Q is a vertex cover (prove it). On the other hand, let Q be a vertex cover and let (xv1 , · · · , xvn)
be defined such that xv = 1 if v ∈ Q and xv = 0 otherwise, then prove that (xv1 , · · · , xvn) is a
feasible solution for the ILP.

41Dantzig, George B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton University Press.
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You should now know (I hope) that the minimum Vertex Cover problem is NP-hard in
general graphs [7]. This problem is NP-hard in general graphs. Therefore (it also comes from
previous section), solving the corresponding ILP is an NP-hard problem. However, the following
fractional relaxation of the above ILP can be solved in polynomial time (by Theorem 36).

minimize
∑
v∈V

xv

subject to xv + xu ≥ 1 ∀uv ∈ E
xv ≥ 0 ∀v ∈ V

The following exercise is dedicated to see the difference between an optimal solution of an
ILP and an optimal solution of its fractional relaxation.

Exercise 29 Let G be the graph consisting of a triangle uvw. Solve the ILP for the minimum
Vertex Cover in G and then solve its fractional relaxation.

Proof. For the ILP, there are three optimal solutions: xu = xv = 1 and xw = 0, or xu = xw = 1
and xv = 0, or xw = xv = 1 and xu = 0, all with objective function’s value 2. On the other
hand, the optimal solution of the fractional relaxation of the ILP is xu = xv = xw = 1/2 with
objective function’s value 3/2.

10.2 Maximum Independent Set

This problem consists in, given a graph G = (V,E), computing a largest subset Q ⊆ V of
vertices that are pairwise not adjacent (i.e., for all x, y ∈ Q, xy /∈ E). This problem is NP-hard
in general graphs [7].

Since we aim at computing a subset of vertices, it is “natural” to define one variable xv per
vertex v ∈ V such that xv = 1 will mean that v belongs to the computed solution (subset of
vertices) and xv = 0 otherwise. Note that, each variable will have value in {0, 1}.

The size of the computed vertex-set is then
∑
v∈V

xv which is then the objective function to

be maximize.
Now, the problem asks that, for every edge uv ∈ E, at most one of u or v is taken in our

solution (our subset of vertices does not contain two adjacent vertices). That is, we would like
that, for every uv ∈ E, at most one of xu or xv equals one. Since the variables have values in
{0, 1}, it is equivalent to say that xu + xv ≤ 1 for every uv ∈ E (prove it).

Overall, the maximum Independent Set problem on a graph G = (V,E) can be modeled by
the following ILP:

maximize
∑
v∈V

xv

subject to xv + xu ≤ 1 ∀uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Exercise 30 Prove that there is a one-to-one mapping between any (optimal) solution of the
above ILP and (maximum) independent sets of G.

10.3 Maximum Clique

This problem consists in, given a graph G = (V,E), computing a largest subset Q ⊆ V of
vertices that are pairwise adjacent (i.e., for all x, y ∈ Q, xy ∈ E). This problem is NP-hard in
general graphs [7].
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Since we aim at computing a subset of vertices, it is “natural” to define one variable xv per
vertex v ∈ V such that xv = 1 will mean that v belongs to the computed solution (subset of
vertices) and xv = 0 otherwise. Note that, each variable will have value in {0, 1}.

The size of the computed vertex-set is then
∑
v∈V

xv which is then the objective function to

be maximize.
Now, the problem asks that, for every non edge uv /∈ E, at most one of u or v is taken in

our solution. It may be instructive to see that a maximum clique in a graph G is equivalent to
a maximum independent set in the graph Ḡ, i.e., the complementary of G, obtained from the
same vertex-set of G by having an edge uv in Ḡ when uv is not an edge of G and vice-versa.

Hence, the maximum Clique problem on a graph G = (V,E) can be modeled by the following
ILP:

maximize
∑
v∈V

xv

subject to xv + xu ≤ 1 ∀uv /∈ E
xv ∈ {0, 1} ∀v ∈ V

Exercise 31 Prove that there is a one-to-one mapping between any (optimal) solution of the
above ILP and (maximum) cliques in G.

10.4 Proper 3-coloring

Given a graph G = (V,E) and k ∈ N, a k-coloring c : V → {1, · · · , k} is proper if c(u) 6= c(v) for
every uv ∈ E (i.e., two adjacent vertices cannot receive the same color). The chromatic number
χ(G) of a graph G is the minimum k such that G admits a proper k-coloring.

Exercise 32 Prove that χ(G) ≤ 2 if and only if G is bipartite.

Clearly, χ(G) ≤ n for any n-node graph G (simply give a different color to each vertex).
Moreover, a greedy algorithm allows to prove that χ(G) ≤ ∆+1 for any graph G with maximum
degree ∆ (simple proof by induction on |V G)|). The Brooks’ theorem (1941) states that χ(G) =
∆ + 1 if and only if G is a complete graph or an odd cycle. The celebrated four-color theorem
states that χ(G) ≤ 4 for any planar graph G [Appel and Haken 1976, Robertson, Sanders,
Seymour, and Thomas 1997]42. In general, computing χ(G) is an NP-hard problem [7] and
deciding if χ(G) ≤ 3 is even NP-hard in the class of cubic planar graphs [7]. The proper
coloring problem is a widely studied graph problem that has many applications such as the
assignment of frequencies to antennas in order to avoid interferences.

In this section, let us present an ILP aiming at deciding if a graph G admits a 3-coloring,
i.e., if χ(G) ≤ 3.

For every vertex v ∈ V and y ∈ {1, 2, 3}, let xyv be the variable whose meaning is that xyv = 1
if vertex v has color y and xyv = 0 otherwise. The first set of constraints expresses the fact that
each vertex receives exactly one color in {1, 2, 3}, and the second set of constraints reflects the
fact that the coloring is proper. Note that, here, the objective function has no real meaning
since we are considering a decision problem (the question is to know whether a solution exists
or not, not to optimize some function).

42Note that, while the proof of the 4-color theorem is quite complicated, it is easy to prove that χ(G) ≤ 6 for
any planar graph G, by noticing that any planar graph G has degeneracy at most 6 (by Euler’s formula) and
using a greedy algorithm. Moreover, the proof of Heawood (1890) that χ(G) ≤ 5 for any planar graph G is much
easier than the one of the 4-color theorem.
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maximize 1
subject to x1v + x2v + x3v = 1 ∀v ∈ V

xiv + xiu ≤ 1 ∀i ∈ {1, 2, 3}, uv ∈ E
xiv ∈ {0, 1} ∀v ∈ V, i ∈ {1, 2, 3}

Exercise 33 Let k ∈ N. Give an ILP that models the decision problem χ(G) ≤ k? What is the
number of variables and constraints?

10.5 Minimum Spanning Tree

This problem consists in, given a connected edge-weighted graph G = (V,E), w : E → R+,
computing a minimum weight spanning connected subgraph of G. This problem can be solved
in polynomial-time as shown in Algorithm 3.

Since we aim at computing a subset of edges (the ones of the subgraph to be computed), it
is “natural” to define one variable xe per edge e ∈ E such that xe = 1 will mean that the edge
e belongs to the computed solution and xe = 0 otherwise. Note that, each variable will have
value in {0, 1}.

The weight of the computed vertex-set is then
∑
e∈E

w(e)xe which is then the objective function

to be minimize.
Moreover, the desired solution must be a spanning tree of G, i.e., a tree on |V | vertices. By

Exercise 2, a tree on x vertices must have x − 1 edges. Therefore, let us add the constraint∑
e∈E

xe = |V | − 1.

Now, let us give two different ways to describe our solution as a tree (and so, two corre-
sponding ILPs).

First, a graph H on n vertices and with n − 1 edges is a tree if and only if H is acyclic
(see Exercise 2). Therefore, a possible way to model the current problem is to ensure that any
feasible solution is acyclic, which can be ensured by imposing that any subgraph of the computed
solution is acyclic, i.e., for any subset of vertices X, the number of taken edges induced by X
is at most |X| − 1.

minimize
∑
e∈E

w(e)xe

subject to
∑
e∈E

xe = |V | − 1∑
u∈X,v∈X,uv∈E

xe ≤ |X| − 1 ∀X ⊆ V

xe ∈ {0, 1} ∀e ∈ E

Second, a graph H on n vertices and with n− 1 edges is a tree if and only if H is connected
(see Exercise 2). Therefore, another possible way to model the current problem is to ensure
that any feasible solution is connected, which can be ensured by imposing that, for any cut
(X,V \ X), X ⊆ V , there is an edge of the solution between a vertex of X and a vertex of
V \X.

minimize
∑
e∈E

w(e)xe

subject to
∑
e∈E

xe = |V | − 1∑
u∈X,v/∈X,uv∈E

xe ≥ 1 ∀X ⊆ V

xe ∈ {0, 1} ∀e ∈ E
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The above two ILPs present at least two important drawbacks. First, there are ILP and
so, a priori, no efficient (polynomial in the number of variables and constraints) algorithms are
known to solve them. Even worst, the number of constraints equals the number of subsets of V ,
i.e., exponential in the size of the input graph. Therefore, these programmes are generally not
appropriate to solve the minimum spanning tree problem (recall it can be solved in polynomial
time). We mostly present them for giving examples of how to model problems as (I)LP and
we will see later a “better” (polynomial-time solvable) ILP that models the minimum spanning
tree problem.

Note however that the first of the above ILP has integrality gap 1 []. Moreover, using methods
such as constraint generation [] may allow to deal with the second drawback in practice.

10.6 Shortest path

Consider a connected graph G = (V,E) with length function w : E → R+ and s, t ∈ V
(a source s and a target or destination t). The problem consists in computing a s-t-path
(s = v1, v2, · · · , v` = t) (i.e., vivi+1 ∈ E for all 1 ≤ i < `) minimizing the length

∑
1≤i<`

w(vivi+1)

of the path. Note that, this problem can be solved in polynomial time by using, for instance,
the Dijkstra’s algorithm [Dijkstra 1959]. Let us consider the following ILP:

minimize
∑
e∈E

w(e)xe

subject to
∑

u∈X,v/∈X,uv∈E
xe ≥ 1 ∀X ⊆ V, s ∈ X, t /∈ X

xe ∈ {0, 1} ∀e ∈ E

Exercise 34 Explain the meaning of the variables, constraints and objective function of this
ILP. Show that the optimal value of the objective function of the above ILP is the length of a
shortest s-t-path. Why is this ILP not an efficient model for the shortest path problem?

10.7 Minimum Hamiltonian cycle

Consider a connected graph G = (V,E) with weight function w : E → R+. Recall that this
NP-hard problem [7] consists in computing a cycle passing exactly once per each vertex and
with minimum weight. Let us consider the following ILP:

minimize
∑
e∈E

w(e)xe

subject to
∑

u∈N(v)

xuv = 2 ∀v ∈ V∑
u∈X,v/∈X,uv∈E

xe ≥ 2 ∀X ⊆ V

xe ∈ {0, 1} ∀e ∈ E

Exercise 35 Explain the meaning of the variables, constraints and objective function of this
ILP. Show that there is a one-to-one mapping between any (optimal) solution of the above ILP
and minimum Hamiltonian cycles of G.

10.8 Maximum flow

The maximum flow problem is a classical graph problem with many practical applications such
as Vehicle Routing Problem, TSP, shortest paths, matchings... In this section, we only present
basics on the flow problem. For more details, the reader is referred to, e.g., here.
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Contrary to what precedes, let us consider directed graphs (digraphs), that is D = (V,A)
is a pair that consists of a set of vertices V and a set A of ordered pairs of vertices, called
arcs. Precisely, an arc (u, v) ∈ V × V has a direction (contrary to an edge {u, v} which is
not oriented) and will be depicted by an arrow from u to v. In particular, the arcs (u, v)
and (v, u) are distinct. For every v ∈ V , let N−(v) be the set of in-neighbors of v defined
as N−(v) = {u ∈ V | (u, v) ∈ A} and N+(v) be the set of out-neighbors of v defined as
N+(v) = {u ∈ V | (v, u) ∈ A}.

Let us consider a digraph D = (V,A) with capacity function c : A → R+ (note that c(uv)
may be different from c(vu) for any u, v ∈ V ) and two specified vertices s ∈ V (the source)
and t ∈ V (the target). A flow f in (D, c, s, t) is a function f : A → R+ such that f(a) ≤ c(a)
for all a ∈ A (capacity constraint) and, for every v ∈ V \ {s, t},

∑
u∈N−(v)

f(uv) =
∑

u∈N+(v)

f(vu)

(flow conservation constraint). That is, a flow defines, for each arc a, an amount of units of flow
circulating along the arc a, such that the flow along the arc a does not exceed the capacity c(a)
of the arc a, and for every vertex v except the source and the target, the amount of in-coming
flow in the vertex v equals the amount of out-coming flow out of v (nothing is created nor
disappear from any vertex except the source or the target). The value v(f) of a flow f is the
amount v(f) =

∑
u∈N+(s)

f(su) of flow created by the source.

The maximum flow problem consists in, given a network flow (D = (V,A), c : A→ R+, s, t ∈
V ), computing a flow f : A→ R+ with maximum value v(f).

Let us give (without proof) some basic properties of flows in graphs. For more details, the
reader is referred to, e.g., here and to Part V of this lecture note.

Using the flow conservation constraint, it can be proved that:

Lemma 24 For any network flow (D = (V,A), c : A → R+, s, t ∈ V ), and any flow f : A →
R+, v(f) =

∑
u∈N−(t)

f(ut). That is, what leaves the source equals what arrives in the target.

Given a network flow (D = (V,A), c : A→ R+, s, t ∈ V ), a s-t-cut is any bipartition (S, T )
of V (i.e., V ∩ T = ∅ and S ∪ T = V ) such that s ∈ S and t ∈ T . The capacity δ(S, T ) of the
cut (S, T ) is the sum of the capacity of the arcs from S to T , i.e., δ(S, T ) =

∑
x∈S,y∈T

c(xy).

Using (again) the flow conservation constraint, it can be proved that:

Lemma 25 For any network flow (D = (V,A), c : A→ R+, s, t ∈ V ), for any flow f : A→ R+

and any s-t-cut (S, T ), v(f) ≤ δ(S, T ). Informally, any s-t-cut is a bottleneck for any flow from
s to t.

Solving the maximum flow problem can be (under some conditions) done in polynomial time
by using, e.g., the Ford-Fulkerson algorithm (1956).

Theorem 38 (Ford, Fulkerson 1956) Let (D = (V,A), c : A → Q+, s, t ∈ V ) be a network
flow (with rational capacities), then computing a flow f : A → R+ with maximum value v(f)
can be done in polynomial time.

Note that the Ford-Fulkerson algorithm may actually compute an optimal flow even if c :
A → R+ but, in the latter case, the algorithm may not converge (i.e., it may not terminate).
By analyzing the Ford-Fulkerson algorithm, it may be proved that:

Theorem 39 (Minimun Cut-Maximum Flow duality theorem) For any network flow (D =
(V,A), c : A→ R+, s, t ∈ V ), the maximum value of a s-t-flow f : A→ R+ equals the minimum
capacity of an s-t-cut.
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That is, the upper bound of Lemma 25 is actually tight.
Moreover,

Lemma 26 (Integrality gap of maximum flow) For any network flow (D = (V,A), c :
A → N, s, t ∈ V ), there is a s-t-flow f : A → R+ with maximum value such that f(a) ∈ N for
every a ∈ A.

To conclude this section, we present a LP (which is our main motivation for describing the
flow problem) that models the maximum flow problem. Let (D = (V,A), c : A→ R+, s, t ∈ V )
be any network flow. Let us consider a variable fa that represents the amount of flow along a
for every a ∈ A. The first set of constraints represents the capacity constraints and the second
set of constraints represents the flow conservation constraints.

maximize
∑

u∈N+(s)

fsu

subject to fa ≤ c(a) ∀a ∈ A∑
u∈N−(v)

fuv =
∑

u∈N+(v)

fvu ∀v ∈ V \ {s, t}

fa ≥ 0 ∀a ∈ A

10.9 Back to Shortest paths and Minimum spanning trees

To conclude this section, let us present (I)LP models for Shortest paths and Minimum spanning
trees using our knowledge on flows. For this purpose, let us consider any graph G = (V,E)
(with weight function w : E → R+) as a weighted directed graph D = (V,A) such that, for
every e = uv ∈ E in G, there are arcs uv and vu in D, each with same weight w(e) (that is, let
us consider any graph G as a symmetric directed graph D).

First, let us see any path from a source s to a target t in G as a flow (of value 1) from s to
t in D.

minimize
∑
a∈A

w(a)fa

subject to
∑

u∈N+(s)

fsu ≥ 1∑
u∈N−(t)

fut ≥ 1∑
u∈N−(v)

fuv =
∑

u∈N+(v)

fvu ∀v ∈ V \ {s, t}

fa ∈ {0, 1} ∀a ∈ A

Exercise 36 Show that there is a one-to-one mapping between any optimal solution of the above
ILP and shortest s-t-paths. Show that the integrality gap of the above ILP is 1. Conclusion?

For the minimum spanning tree problem, let v0 ∈ V and let us see any spanning tree as a
flow where s sends one unit of flow to each vertex.

minimize
∑
a∈A

w(a)fa

subject to
∑

u∈N+(v0)

fv0u = n− 1∑
u∈N−(v)

fuv = −1 +
∑

u∈N+(v)

fvu ∀v ∈ V \ {v0}

fa ∈ {0, 1} ∀a ∈ A
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Exercise 37 Show that there is a one-to-one mapping between any optimal solution of the
above ILP and minimum spanning tree. Show that the integrality gap of the above ILP is 1.
Conclusion?

The problems of computing a shortest path or a minimum spanning tree in a graph admit ef-
ficient combinatorial polynomial-time algorithms and it is natural to ask why the above LP may
be interesting. Actually, these problems are often subproblems of more general problems that
might be efficiently solved with (I)LP part of it including the above ILPs as sub-programmes.

11 A second Kernelization Algorithm for Vertex Cover (using
LP)

Recall that, given a graph G = (V,E), a vertex cover is a set Q ⊆ V such that every edge is
“touched” by some vertex in Q, i.e, e ∩Q 6= ∅ for all e ∈ E. The question is then to compute
a vertex cover in G with minimum size. As shown above, this problem can be modeled by the
following ILP:

minimize
∑
v∈V

xv

subject to xv + xu ≥ 1 ∀uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Solving this ILP being NP-hard, it may be helpful to consider the following fractional re-
laxation:

minimize
∑
v∈V

xv

subject to xv + xu ≥ 1 ∀uv ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

Given a graph G = (V,E) and an optimal fractional solution (that can be computed in
polynomial time) {xv | v ∈ V } of the above LP, let V<1/2 = {v ∈ V | 0 ≤ xv < 1/2},
V=1/2 = {v ∈ V | xv = 1/2} and V>1/2 = {v ∈ V | 1/2 < xv ≤ 1}.

Lemma 27 Let {xv | v ∈ V } be an optimal fractional solution of the above LP. There exists a
minimum vertex cover Q of G such that V>1/2 ⊆ Q ⊆ V>1/2 ∪ V=1/2.

Proof. Let {xv | v ∈ V } be an optimal fractional solution of the above LP and let Q∗ ⊆ V
be a minimum vertex cover of G. Let Q = (Q∗ \ V<1/2) ∪ V>1/2 = (Q∗ \ {v ∈ V | 0 ≤ xv <
1/2}) ∪ {v ∈ V | 1/2 < xv ≤ 1}.

First, let us first show that Q is a vertex cover. Indeed, let uv ∈ E, then xu + xv ≥ 1
and either u ∈ Q∗ or v ∈ Q∗ (or both). If u /∈ Q, then, it implies (by definition of Q) that
xu ∈ V<1/2 ∪ V=1/2. If xu = 1/2, then xv = 1/2 and u /∈ Q∗ and v ∈ Q∗ ∩Q, or xu < 1/2 and
then xv > 1/2 and so v ∈ Q.

We will now show that |Q| = |Q∗|, i.e., Q is a minimum vertex cover satisfying the statement
of the lemma. For purpose of contradiction, let us assume that |Q| > |Q∗|. Since, |Q| =
|Q∗| − |Q∗ ∩ V<1/2| + |V>1/2 \ Q∗|, this implies that |Q∗ ∩ V<1/2| < |V>1/2 \ Q∗|. Let ε =

min
v∈V<1/2∪V>1/2

|xv − 1/2|. Consider the following assignment (yv)v∈V of the variables defined by

yv = xv − ε for all v ∈ V>1/2 \ Q∗, yv = xv + ε for all v ∈ Q∗ ∩ V<1/2 and yv = xv otherwise.
Therefore for every uv ∈ E, since xv +xv ≥ 1 and not both v and u are in V<1/2 (since (xv)v∈V
is a solution of the above LP), yv + yu ≥ 1 (by checking all possible cases) and so, (yv)v∈V
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is a solution of the above LP. But
∑
v∈V

yv =
∑
v∈V

xv − ε(|V>1/2 \ Q∗| − |Q∗ ∩ V<1/2|) <
∑
v∈V

xv,

contradicting the optimality of (xv)v∈V .

The next lemma is not difficult and its proof is left as an exercise to the reader.

Lemma 28 Let {xv | v ∈ V } be an optimal fractional solution of the above LP. If vc(G) ≤ k
and |V>1/2| = 0, then |V | = |V=1/2| ≤ 2k.

We are now ready to present the algorithm whose correctness can be proved using previous
lemmas.

Algorithm 28 2nd Kernelization Alg. to decide if vc(G) ≤ k, where k ∈ N is a fixed parameter.

Require: A graph G = (V,E) and an integer `≤ k.
Ensure: The minimum size of a Vertex Cover of G if vc(G) ≤ ` or ∞ otherwise.

1: Let I ⊆ V be the set of isolated vertices in G. Remove I from G
2: Let (xv)v∈V be an optimal fractional solution of the above LP.
3: if

∑
v∈V

xv > ` or |V>1/2| > ` then

4: return ∞
5: else
6: if |V=1/2| = |V | then
7: return Algorithm 18(G, `)
8: else
9: return Algorithm 28(G \ V>1/2, `− |V>1/2|) + |V>1/2|

10: end if
11: end if

Exercise 38 Prove the correctness of Algorithm 28 and give its time-complexity (in function
of n, k and f(n) = nO(1), the time-complexity of solving the above LP with n variables).

Part V

Flows

This part is devoted to prove and go further into the details of several important concepts and
results presented briefly in Section 10.8.

12 Introduction

The flow problem is one of the most fundamental problem in graph theory and algorithmic since
it arrises in many real-world applications and can be used as basic tool in many problems.

Consider a city modeled by a directed graph D = (V,A) with some capacity c : A → R+

on the arcs. A manufacturer owns factories and shops located in the vertices. Every vertex
v ∈ V has a maximum possible production prodmax(v) (i.e., a vertex v with prodmax(v) > 0 is
the location of a factory that can produce at most prodmax(v) items) and a maximum possible
consumption consmax(v) (i.e., a vertex v with consmax(v) > 0 is the location of a shop that
can sell at most consmax(v) items). A network flow is then defined by (D = (V,A), c : A →
R+, prodmax : V → R+, consmax : V → R+).
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The goal of the manufacturer is to decide the actual production of the factories, the actual
consumption of the shops and how the produced items will transit from production sites to
consumption sites (note that an item produced at some vertex v may be consumed at this
vertex if v is also a consumption site, i.e., if consmax(v) > 0).

More formally, we aim at computing a function prod : V → R+ such that prod(v) ≤
prodmax(v) for all v ∈ V (prod(v) is the actual production of factory in v and it cannot exceed
the maximum production of v), a consumption function cons : V → R+ such that cons(v) ≤
consmax(v) for all v ∈ V (cons(v) is the actual consumption of shop in v and it cannot exceed
the maximum consumption of v) and a flow function f : A → R+ that describes the way
the items transit through the network. Since no item can be created or consumed except in
production or consumption sites, the flow function must satisfy: for all v ∈ V , prod(v) +∑
w∈N−(v)

f(wv) = cons(v) +
∑

w∈N+(v)

f(vw). Moreover, the number of items transiting along

an arc a cannot exceed its capacity, i.e., f(a) ≤ c(a) for all a ∈ A. Finally, as usual, the
manufacturer want to produce (and sell) as much as possible. The goal is then to compute the
functions (prod : V → R+, cons : V → R+, f : A → R+) satisfying the above constraints and
such that

∑
v∈V

prod(v) is maximum.

Before studying the problem in detail, we will simplify it as follows. Let N = (D =
(V,A), c : A→ R+, prodmax : V → R+, consmax : V → R+) be a network flow. Let us define the
corresponding elementary network flow N e = (De = (V e, Ae), ce : Ae → R+, prodemax : V e →
R+, consemax : V e → R+) as follows. Let V e = V ∪ {s, t} and Ae = A ∪ {sw,wt | w ∈ V }. Let
ce(uv) = c(uv) for all u, v ∈ V , ce(sv) = prodmax(v) for all v ∈ V and ce(vt) = consmax(v) for all
v ∈ V . Finally, let prodemax(v) = consemax(v) = 0 for all v ∈ V , prodemax(s) = consemax(t) = ∞
and prodemax(t) = consemax(s) = 0. Since the functions prodemax and consemax are implicit, an
elementary network flow can be simply defined as N e = (De = (V e, Ae), s, t, ce : Ae → R+).

Lemma 29 Let N = (D = (V,A), c : A → R+, prodmax : V → R+, consmax : V → R+) be a
network flow and let k ∈ R+.

There exist functions (prod : V → R+, cons : V → R+, f : A → R+), satisfying the
constraints in N , such that

∑
v∈V

prod(v) = k if and only if there is a function fe : Ae → R+

such that fe(a) ≤ ce(a) for all a ∈ Ae,
∑

w∈N−De (v)
fe(wv) =

∑
w∈N+

De (v)

fe(vw) for all v ∈ V e in De

and
∑
v∈V

fe(sv) = k.

Proof. Let us first assume that there exist functions (prod : V → R+, cons : V → R+, f :
A → R+), satisfying the constraints in N . Let fe : Ae → R+ be defined as fe(a) = f(a) for
all a ∈ A, fe(sv) = prod(v) and fe(vt) = cons(v) for all v ∈ V . Then, fe satisfies the desired
requirements and is such that

∑
v∈V

prod(v) =
∑
v∈V

fe(sv) (prove it).

Second, let us assume that there exists a function fe : Ae → R+ satisfying the constraints
required in the lemma. Then, let f : A → R+ be such that f(a) = fe(a) for all a ∈ A,
cons : V → R+ and prod : V → R+ such that cons(v) = fe(vt) and prod(v) = fe(sv) for all
v ∈ V . Then, (f, prod, cons) satisfies the constraints in N and

∑
v∈V

prod(v) =
∑
v∈V

fe(sv) (prove

it).

Previous lemma implies that we can restrict our study to elementary network flows. This is
what is done below.
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13 Elementary Flow in graphs

An (elementary) network flow N = (D = (V,A), s, t, c : A→ R+) is defined by a directed graph
D = (V,A), with a source s ∈ V (no arc has s as head), a target (or sink) t ∈ V (no arc has t
as tail) and a capacity function c : A → R+ over the arcs. To simplify the forthcoming proofs,
let us assume that (u, v) /∈ A corresponds to an arc with null capacity.

A s-t flow in N is any function f : A→ R+ satisfying:

Capacity: f(a) ≤ c(a) for all a ∈ A; (so, assume that f(uv) = 0 if (u, v) /∈ A)

Flow conservation:
∑

w∈N−(v)
f(wv) =

∑
w∈N+(v)

f(vw) for all v ∈ V \ {s, t}.

Clearly, any network flow admits a s-t flow since the null-flow function f0 : A → R+ such
that f0(a) = 0 for all a ∈ A satisfies all constraints. In what follow, we aim at computing a flow
with maximum value, where the value of a flow f : A→ R+ is defined as v(f) =

∑
w∈N+(s)

f(sw)

(So the value of the null-flow is 0). Let us first show that the amount of flow leaving s (which
is v(f) by definition) equals the amount of flow entering into t.

Lemma 30 Let f be any s-t flow in N = (D, s, t, c : A→ R+), then v(f) =
∑

v∈N−(t)
f(vt).

Proof. By definition, for every v ∈ V \ {s, t},
∑

w∈N−(v)
f(wv) −

∑
w∈N+(v)

f(vw) = 0. Therefore,

X =
∑

v∈V \{s,t}
(

∑
w∈N−(v)

f(wv) −
∑

w∈N+(v)

f(vw)) = 0. By rearranging the sum, we get 0 = X =∑
v∈V \{s,t}

f(sv) −
∑

v∈V \{s,t}
f(vt) +

∑
v∈V \{s,t}

(
∑

w∈N−(v)\{s}
f(wv) −

∑
w∈N+(v)\{t}

f(vw)). In the last

term of the sum, for all u, v ∈ V \ {s, t}, f(uv) appears positively exactly once and negatively
exactly once. Hence,

∑
v∈V \{s,t}

(
∑

w∈N−(v)\{s}
f(wv) −

∑
w∈N+(v)\{t}

f(vw)) = 0. It follows that

0 = X =
∑

v∈V \{s,t}
f(sv)−

∑
v∈V \{s,t}

f(vt) =
∑

v∈N+(s)

f(sv)−
∑

v∈N−(t)
f(vt) = v(f)−

∑
v∈N−(t)

f(vt).

The problem considered here is, given a network flow N = (D, s, t, c), to compute a s-t flow
f : A→ R+ with maximum value v(f). First, let us show some easy upper bound on the value
of any flow in N .

A s-t cut in N is defined as any bipartition (Vs, Vt) of V (i.e., Vs ∪ Vt = V and Vs ∩ Vt = ∅)
such that s ∈ Vs and t ∈ Vt. The capacity of a s-t cut (Vs, Vt) is δ(Vs, Vt) =

∑
u∈Vs,v∈Vt

c(uv) (with

the convention that, if uv /∈ A, then c(u, v) = 0).

Lemma 31 Let f be any s-t flow in N and (Vs, Vt) be any s-t cut. Then, v(f) ≤ δ(Vs, Vt).
Let v∗ be the maximum value of a s-t flow in N and δ∗ be the minimum capacity of a s-t

cut. Then, v∗ ≤ δ∗.

Proof. Let us prove the first statement.
By definition, for every v ∈ Vs \ {s},

∑
w∈N−(v)

f(wv) −
∑

w∈N+(v)

f(vw) = 0. Therefore,

X =
∑

v∈Vs\{s}
(

∑
w∈N−(v)

f(wv) −
∑

w∈N+(v)

f(vw)) = 0. By rearranging the sum, we get 0 = X =∑
v∈Vs\{s}

f(sv)+
∑

v∈Vs\{s}

∑
w∈N−(v)∩Vt

f(wv)−
∑

v∈Vs\{s}

∑
w∈N+(v)∩Vt

f(vw)+
∑

v∈Vs\{s}
(

∑
w∈(N−(v)∩Vs)\{s}

f(wv)−
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∑
w∈N+(v)∩Vs

f(vw)). In the last term of the sum, for all u, v ∈ Vs \ {s}, f(uv) appears pos-

itively exactly once and negatively exactly once. Hence,
∑

v∈Vs\{s}
(

∑
w∈(N−(v)∩Vs)\{s}

f(wv) −∑
w∈N+(v)∩Vs

f(vw)) = 0. It follows that 0 = X =
∑

v∈Vs\{s}
f(sv) +

∑
v∈Vs\{s}

∑
w∈N−(v)∩Vt

f(wv) −∑
v∈Vs\{s}

∑
w∈N+(v)∩Vt

f(vw) ≤
∑

v∈Vs\{s}
f(sv)−

∑
v∈Vs\{s}

∑
w∈N+(v)∩Vt

f(vw) = v(f)−
∑

v∈Vs\{s}

∑
w∈N+(v)∩Vt

f(vw) ≥

v(f)−
∑

v∈Vs\{s}

∑
w∈N+(v)∩Vt

c(vw) ≥ v(f)−
∑

v∈Vs,t∈Vt
c(uv) = v(f)− δ(Vs, Vt).

The second statement directly follows from the first one.

Previous question aims at showing that a minimum s-t cut in N is a bottleneck for a
maximum s-t flow in N . We will show a tighter relationship in what follows.

13.1 Ford-Fulkerson algorithm

Let N = (D = (V,A), s, t, c : A→ R+) be a flow network and let f : A→ R+ be a s-t flow.
The auxiliary digraph Naux with respect to (N , f) is the digraph with auxiliary arc capacity

caux defined as follows. Naux has vertex set V and, for every (u, v) ∈ V × V , add an arc uv
with capacity caux(uv) = c(uv)− f(uv) + f(vu) in Naux. Note that uv ∈ V × V may be an arc
(with positive auxiliary capacity, i.e., caux(uv) > 0) of Naux even if uv /∈ A.

s a

e

c t

b

3 33
4 2

2 7

s a

e

c t

b

3 33

Network flow
(capacity in blue)

Initial flow f from s to t
(amount of flow on each arc in red)

Figure 1: (left) Network flow N with arcs’ capacity in blue. (right) A s-t flow f : a red number
on an arc indicates the amount of flow along it. Arcs that are represented in grey have no flow.

Let N = (D = (V,A), s, t, c : A → R+) be a flow network, f : A → R+ be a s-t flow and
Naux be the auxiliary digraph with respect to (N , f). Assume that there is a directed path P
from s to t in Naux with ε = min

a∈A(P )
caux(a) > 0. Let f ′ : A→ R be defined as follows:

• For every arc a ∈ A \A(P ), let f ′(a) = f(a);

• For every arc a ∈ A ∩A(P ) with f(a) + ε ≤ c(a), then f ′(a) = f(a) + ε;

• Else, if a = uv ∈ A ∩ A(P ) and f(a) + ε > c(a), let f ′(a) = c(a) and f ′(vu) = f(vu) −
(ε− (c(a)− f(a))).

By performing the above operation, we say that f ′ is obtained from f by pushing ε amount
of flow along the (not necessarily directed) path P in N .

Lemma 32 f ′ is a s-t flow in N with v(f ′) = v(f) + ε > v(f).
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s a

e

c t

b

3 33
4 2

2 7

s a

e

c t

b

3 31

Auxiliary network 
with respect to initial flow f

and st-path P with epsilon=2

New flow from s to t
(after "pushing" epsilon=2 units of flow 

along P)

2 2

2 2

Figure 2: (left) Auxiliary network flow with respect to N and initial flow f (see Figure 1), the
integers describe the auxiliary capacities (an arc not depicted represents an auxiliary capacity
of 0-. (right) A new s-t flow in the ‘real network” f after pushing 2 units of flow along the path
P = (s, e, c, a, b, t) in the auxiliary graph : a red number on an arc indicates the amount of flow
along it.

Proof. Note that f is a flow, so f(a) ≤ c(a) for all a ∈ A and
∑

w∈N−(v)
f(wv) =

∑
w∈N+(v)

f(vw)

for all v ∈ V \ {s, t}.
Let a ∈ A. If a /∈ A(P ), then f ′(a) = f(a) ≤ c(a). Otherwise, if a ∈ A(P ) and f(a)+ε ≤ c(a)

then f ′(a) = f(a) + ε ≤ c(a). Finally, if a ∈ A(P ) and f(a) + ε > c(a) then f ′(a) = c(a). In all
cases, f ′(a) ≤ c(a) so f ′ satisfies the capacity constraint.

Let v ∈ V \ {s, t}. If v /∈ V (P ),
∑

w∈N−(v)
f ′(wv) =

∑
w∈N−(v)

f(wv) =
∑

w∈N+(v)

f(vw) =∑
w∈N+(v)

f ′(vw) and so the flow conservation is satisfied. If v ∈ V (P ), let P = (· · · v−, v, v+, · · · ).

There are four cases depending of whether f(v−v) + ε ≤ c(v−v) and/or f(vv+) + ε ≤ c(vv+).

• If f(v−v)+ε ≤ c(v−v) and f(vv+)+ε ≤ c(vv+), then
∑

w∈N−(v)
f ′(wv) = ε+

∑
w∈N−(v)

f(wv) =

ε+
∑

w∈N+(v)

f(vw) =
∑

w∈N+(v)

f ′(vw) and so the flow conservation is satisfied.

• If f(v−v) + ε ≤ c(v−v) and f(vv+) + ε > c(vv+), then f ′(v−v) = f(v−v) + ε, f ′(v+v) =
f(v+v) − (ε − (c(vv+) − f(vv+))) and f ′(vv+) = c(vv+). Therefore,

∑
w∈N−(v)

f ′(wv) =

f ′(v−v)+f ′(v+v)+
∑

w∈N−(v)\{v−,v+}
f ′(wv) = f(v−v)+ε+f(v+v)−(ε−(c(vv+)−f(vv+)))+∑

w∈N−(v)\{v−,v+}
f(wv) =

∑
w∈N+(v)

f(vw) + (c(vv+) − f(vv+)) =
∑

w∈N+(v)\{v+}
f(vw) +

c(vv+) =
∑

w∈N+(v)\{v+}
f ′(vw) + f ′(vv+) =

∑
w∈N+(v)

f ′(vw) and so the flow conservation is

satisfied.

The other two cases and the fact that v(f ′) = v(f) + ε > v(f) can be proved similarly.

Let us consider the following (Ford-Fulkerson) Algorithm 29.

Lemma 33 If Algorithm 29 terminates, then it returns a s-t flow in N .

Proof. The proof is by induction on the number of iteration of the While-loop and using
Lemma 32.

Let us consider the following pathological example described in Figure 3.
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Algorithm 29 Ford-Fulkerson’s algorithm.

Require: A network flow N = (D = (V,A), s, t, c : A→ R+) and initial s-t flow f0 : A→ R+.
Ensure: If it terminates, a s-t flow f ′ : A→ R+ with maximum value.

1: f ← f0.
2: Let Naux be the auxiliary digraph with respect to (N , f).
3: while There exists a directed s-t path P in Naux with ε = min

a∈A(P )
caux(a) > 0 do

4: Let f ′ be obtained from f by pushing ε amount of flow along P in N .
5: f ← f ′.
6: Let Naux be the auxiliary digraph with respect to (N , f).
7: end while
8: return f

Exercise 39 Consider the flow network N and initial flow described (in red) in Figure 3.
Apply Algorithm 29 to it by, iteratively pushing flow along path (s, c, d, a, b, t), then along path
(s, c, b, a, d, t), then along path (s, a, b, c, d, t) and then along path (s, a, d, c, b, t), and iteratively
repeating such a sequence of pushing paths. Conclusion?

s

d

c

b

a

t

infinity , 1

infinity

infinity , alpha+alpha^2

infinity

infinity , 1

infinity

infinity

infinity , alpha

infinity

infinity , 1+alpha^2

infinity , alpha^2

infinity , alpha

Figure 3: An example of Network flow, with arc capacities in blue, and initial flow (of value
1 + α + α2) in red, with 0 < α < 1. (Note: alpha in the Figure means α and alphâ 2 in the
Figure means alpha2, i.e., α2)

Previous exercise shows that Algorithm 29 does not necessarily terminates. In what follows,
we show that in particular setting, it terminates.

Lemma 34 If c : A→ N and f0 : A→ N, then Algorithm 29 terminates and that its returns a
function f : A→ N with v(f) ∈ N.

Proof. By induction on the number of iterations of Algorithm 29, the auxiliary graph has
integral capacities. It follows that at each iteration, ε is an integer at least 1. By Lemma 32,
the value of the computed flow at each iteration of the Algorithm 29 is an increasing sequence
of integers that is bounded by

∑
a∈A

c(a) (by Lemma 31). Then, Algorithm 29 terminates.
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Let N = (D = (V,A), s, t, c : A→ R+) be a flow network and f0 : A→ R+ be an initial s-t
flow. Assume that Algorithm 29, applied on N and f0, terminates. Let N ′ and f ′ be the values
of Naux and of f at the last iteration of the While-loop of Algorithm 29 before terminating.
Note that Algorithm 29 returns f ′ and that (because of the While-loop condition), there is no
directed path from s to t in N ′. Let Vs be the set of vertices v such that there is a directed
path (with positive capacities) from s to v in the auxiliary digraph N ′, and let Vt = V \ Vs.

Lemma 35 (Vs, Vt) is an s-t cut (in N ) with capacity v(f ′).

Proof. For every u ∈ Vs and v ∈ Vt, caux(uv) = c(uv) − f ′(uv) + f ′(vu) = 0 by definition
of (Vs, Vt). Therefore, δ(Vs, Vt) =

∑
u∈Vs,v∈Vt

c(uv) =
∑

u∈Vs,v∈Vt
(f ′(uv) − f ′(vu)) =

∑
v∈Vt

f ′(sv) +∑
u∈Vs\{s},v∈Vt

(f ′(uv) − f ′(vu)). Moreover, by summing the flow conservation over all vertices

in Vs \ {s}, we get that 0 =
∑

v∈Vs\{s}
(

∑
w∈N−(v)

f ′(wv) −
∑

w∈N+(v)

f ′(vw)) =
∑

v∈Vs\{s}
f ′(sv) −∑

u∈Vs\{s},v∈Vt
(f ′(uv)−f ′(vu)) =

∑
v∈Vs\{s}

f ′(sv)+
∑
v∈Vt

f ′(sv)−δ(Vs, Vt) =
∑

v∈V \{s}
f ′(sv)−δ(Vs, Vt) =

v(f ′)− δ(Vs, Vt).

Lemma 36 If Algorithm 29 terminates, it computes a s-t flow with maximum value.

Proof. By previous lemma, if Algorithm 29 terminates, it has computed a flow f ′ and a cut
(Vs, Vt) with value v(f ′) = δ(Vs, Vt). By Lemma 31, the value of any flow is upper bounded by
the capacity of any cut. This implies that f ′ is a flow with maximum value and (Vs, Vt) is a cut
with minimum capacity.

13.2 Maximum flow-minimum cut Theorem

Theorem 40 (Max flow-Min Cut) In any network flow N = (D = (V,A), s, t, c : A → N),
the minimum capacity of an s-t cut equals the maximum value of a flow from s to t.

Moreover, such a maximum flow and minimum cut can be computed in time O(fmax|A|)
where fmax is any upper bound on the maximum value of a s-t flow in N .

Proof. The first statement directly follows from both previous lemmas.
The complexity of each iteration of Algorithm 29 has complexity O(|A|). Moreover, because

the capacities are integral, each iteration increases the current flow by at least ε ≥ 1 and so
there are at most fmax iterations.

14 Flow and Linear Programming

Let N = (D = (V,A), s, t, c) be a network flow. The minimum s-t cut problem consists in
computing an s-t cut, in N , with minimum capacity.

Lemma 37 Let F ⊆ A be a subset of arcs such that, for every directed path P from s to t,
A(P ) ∩ F 6= ∅. There is an s-t cut (Vs, Vt) such that δ(Vs, Vt) ≤

∑
a∈F

c(a).

Reciprocally, for every s-t cut (Vs, Vt), there exists some F ⊆ A intersecting every directed
path P from s to t, such that

∑
a∈F

c(a) ≤ δ(Vs, Vt).
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Proof. Let Vs be the set of vertices that can be reached from s by a directed path using no
arc in F . Note that s ∈ Vs and t ∈ Vt = V \ Vs since all paths from s to t are using some arc
of F . Moreover, let F ′ = {(uv) ∈ A | u ∈ Vs, v ∈ Vt}. By definition of (Vs, Vt), F

′ ⊆ F . Then,
δ(Vs, Vt) =

∑
a∈F ′

c(a) ≤
∑
a∈F

c(a).

Conversely, if (Vs, Vt) is an s-t cut, the set F = {(uv) ∈ A | u ∈ Vs, v ∈ Vt} must intersect
all directed s-t paths and δ(Vs, Vt) =

∑
a∈F

c(a).

From previous lemma, we can describe the following ILP to solve the minimum s-t cut
problem, using one variable ya per arc and one constraint per directed path P from s to t.
Intuitively, setting ya to 1 means that the arc a belongs to the cut, while ya = 0 means that a
does not belong to the cut. Let P be the set of all directed s-t paths.

minimize
∑
a∈A

c(a)ya

subject to
∑

a∈A(P )

ya ≥ 1 ∀s-t directed path P ∈ P

ya ∈ {0, 1} ∀a ∈ A
The dual of the linear relaxation of the above ILP is

maximize
∑
P∈P

xP

subject to
∑

P∈P such that a∈A(P )

xP ≤ c(a) ∀a ∈ A

xP ≥ 0 ∀P ∈ P

Lemma 38 The above LP actually defines a maximum s-t flow.

Proof. Let (xP )P∈P be any solution of the above LP. For every a ∈ A, let

f(a) =
∑

P∈P such that a∈A(P )

xP .

Show that f : A→ R+ defines a flow of value
∑
P∈P

xP .

Note that, contrary to the LP for computing maximum flow that has been presented in
Section 10.8, the above LP has an exponential number of variables (so it cannot be solved in
polynomial-time). However, it is useful because, what precedes, and using Theorem 37, provides
an alternative proof of Theorem 40 (the maximum value of a s-t flow equals the minimum
capacity of a s-t cut).

15 Applications of Flows in Graphs

15.1 Maximum matching in Bipartite Graphs

Let G = (A,B) be a bipartite graph. Recall that a matching is a set of pairwise disjoint edges.
Let DG be the digraph obtained from G by orienting every edge uv ∈ E(G) from u ∈ A to
v ∈ B. Let N = (D = (V,A), s, t, c) be the network flow obtained from DG by adding to DG

one vertex s with arcs su for all u ∈ A and one vertex t with arcs vt for all v ∈ B. Finally, let
c : A(D)→ R+ such that c(a) = 1 for all a ∈ A(D).

Lemma 39 Let k ∈ N. There is bijection between any integral flow in N (i.e., flow f : A→ N)
of value k and any matching in G of size k.
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Proof. Let f be a maximum s-t flow such that f(a) ∈ N for all a ∈ A (such a flow exists by
Lemma 34). Note that f(a) ∈ {0, 1} for all a ∈ A since the capacities are all equal to 1. Let
M = {{u, v} ∈ E | u ∈ A, v ∈ B, f(uv) = 1}. Show that M is a matching of size v(f).

Let M be any matching of G. Let f : A→ R+ be defined as follows. For every {u, v} ∈M
(u ∈ A and v ∈ B), let f(su) = f(uv) = f(vt) = 1, and let f(a) = 0 for every other arc a.
Show that f is a s-t flow with value |M |.

From previous lemma, a way to compute a maximum matching in any bipartite graph G is
to compute a maximum flow (e.g., using Algorithm 29) in N .

15.2 Vertex-disjoint paths and Menger’s theorem

In any (tele)communication network, it is important to ensure that several paths exist between
any pair of vertices. Therefore, if some path cannot be use because of some problem/fault,
another one may be used.

Let G = (V,E) be an undirected graph and s, t ∈ V be two distinct vertices. The question
addressed in this section aims at finding a maximum number of internally vertex-disjoint s-t
(simple) paths in G (two s-t paths P and Q are internally vertex-disjoint if V (P ) ∩ V (Q) ⊆
{s, t}).

Let D = (V (D), A(D)) be the digraph defined as follows. Let V (D) = {s, t} ∪ {w+, w− |
w ∈ V \ {s, t}} and A(D) = {sw− | sw ∈ E} ∪ {w+t | wt ∈ E} ∪ {v+w−, v−w+ | vw ∈ E, v 6=
s, w 6= t}. Let N = (D = (V (D), A(D)), s, t, c) be the network flow obtained from D by having
capacity one to every arc.

Lemma 40 Let k ∈ N. There is a bijection between any integral flow in N (i.e., flow f : A→
N) of value k and any k internally vertex disjoint s-t paths in G.

Proof. Let P be a set of k internally vertex-disjoint s-t paths. Let us define f : A(D) → R+

as follows. For every internal vertex v ∈ V \ {s, t} of some path P in P, let u and w be the
unique neighbors of v in P (u closer to s and w closer to t in G[P ]), let f(u+, v−) = f(v−v+) =
f(v+, w−) = 1. Then, for every other arc a ∈ A(D), let f(a) = 0. Show that f is an s-t flow of
value k.

Let f : A → N be a s-t flow of value k in N . Note that k ∈ N by Lemma 34. Let us
show by induction on k that there are k internally vertex-disjoint s-t paths in G. The result is
trivial if k = 0. Let us assume that k ≥ 1. Let v1 ∈ V be such that f(sv−1 ) ≥ 1 (it exists since
v(f) = k ≥ 1). Let P1 = (s = v0, v1). Assume by induction on i ≥ 1 that we have built a path
Pi = (s = v0, v1, · · · , vi) such that f(v+j−1, v

−
j ) ≥ 1 and f(v−j , v

+
j ) ≥ 1 for all 0 < j ≤ i (where

v+0 = s). If vi = t, let us set P = Pi. Otherwise, by the flow conservation constraint, there
is vi+1 ∈ V \ {v0, · · · , vi} such that f(v+i , v

−
i+1) ≥ 1 and f(v−i+1, v

+
i+1) ≥ 1 (where, if vi+1 = t,

then v−i+1 = v+i+1 = t). Then, let Pi+1 = (v0, · · · , vi+1) and we go on. Eventually (since |V | is
bounded), vi+1 = t. Let P = (s = v0, v1, · · · , v` = t) be the obtained s-t path in G.

Let P ′ = (s, v−1 , v
+
1 , v

−
2 , v

+
2 , · · · , v

−
`−1, v

+
`−1, v` = t) be the corresponding directed s-t path in

D. Let f ′ : A → N be defined by f ′(a) = f(a) − 1 if a ∈ A(P ′) and f ′(a) = f(a) otherwise.
Prove that f ′ is a s-t flow of value k − 1. By induction on k, f ′ corresponds to k − 1 internally
vertex-disjoint s-t paths (P1, · · · , Pk−1) in G. Show that P is internally disjoint from Pi for all
1 ≤ i ≤ k−1, and so (P1, · · · , Pk−1, P ) is the set of desired k internally vertex disjoint s-t paths
in G.

A set of vertices S ⊆ V \ {s, t} is an s-t separator in G if every s-t path intersects S or,
equivalently, if s and t are in distinct connected components of G \ S.
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Lemma 41 Let k ∈ N. There is an s-t separator of size k in G if and only if there is a s-t cut
of capacity k in N .

Proof. Let S be a s-t separator in G. Show that {(v−, v+) | v ∈ S} is an s-t cut of capacity
|S| in N .

Reciprocally, let (Vs, Vt) be any s-t cut and let F = {(u, v) ∈ A(D) | u ∈ Vs, v ∈ Vt}. If there
is a ∈ F such that a = (x+, y−), then let F ′ = F ∪ {y−, y+} \ {a}. Show that F ′ corresponds
to an s-t cut of capacity at most δ(Vs, Vt). Therefore, we may assume that there exists S ⊆ V
such that F = {(x−, x+) | x ∈ S}. Show that S is a separator of size at most δ(Vs, Vt).

Theorem 41 (Menger’s theorem 1927) Let G = (V,E) be any graph and s, t ∈ V . Then
the maximum number of internally vertex disjoint s-t paths equals the minimum size of an s-t
separator. Moreover, such a maximum number of internally vertex disjoint s-t paths can be
computed in polynomial time.

Proof. By previous lemmas, the maximum number of internally vertex-disjoint s-t paths in G
equals the maximum value of a s-t flow in D. Moreover, the minimum size of a s-t separator in
G equals the minimum capacity of an s-t cut in D. By Theorem 40, the maximum value of an
s-t flow in D equals the minimum capacity of an s-t cut in D. Therefore, the maximum number
of internally vertex disjoint s-t paths equals the minimum size of an s-t separator. Moreover,
Algorithm 29 allows to compute such a maximum set of internally vertex disjoint s-t paths (and
a corresponding minimum separator) in polynomial time.

Part VI

Shortest Path Problem

So far, we have mainly considered NP-hard problems and presented various algorithmic tech-
niques to design efficient algorithms to solve (or approximate) these problems. We also studied
some problems that can be solved in polynomial time (e.g., matching, spanning tree, flows...)
mostly because they may be use as basic tools in the design of algorithms for harder problems.

In this chapter, we focus on an “easy” problem, namely computing shortest paths, for itself.
Our goal is to show that, even for well studied easy problems, current practical applications
still require to improve algorithms to solve them, which lead to new algorithmic challenges and
to an important current research trend on such topics.

The main problem considered in this chapter takes a (directed or not) graph G = (V,E)
with non-negative edge-length function ` : E → R+ and two vertices s, d ∈ V (the source and
the destination respectively) as inputs and must compute the distance distG(s, d) in G, i.e., the
minimum length of a shortest s-d-path in G, and possibly a shortest s-d-path.

16 Dijkstra’s algorithm

Computing a shortest path is probably one of the first result on graphs that students learn
during their studies in computer science. Hence, you probably already know the Dijkstra’s
algorithm which is the best known algorithm for this problem in general graphs with non-
negative edge-weights. We recall it here in details because it will be important to know it well
in the continuation of the chapter and in next chapter.
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The output of the Dijkstra’s algorithm is actually (a bit) more general than computing a
shortest path. Precisely, it takes as inputs an edge-weighted (di)graph (G = (V,E), `) and
one single vertex sinV (the source) and computes (distG(s, v))v∈V and a shortest-path tree T
rooted in s, i.e., a spanning tree T of G such that distT (s, v) = distG(s, v) for every v ∈ V
(where distT (a, b) denotes the distance between a and b in T ). In what follows, we restrict our
description to undirected graphs. Note that, the presentation of Algorithm 30 is not optimal
(some operations may be factorized) but it is done in a way to understand it more easily.

Algorithm 30 Dijkstra’s algorithm [Edsger W. Dijkstra,1956].

Require: A connected graph G = (V,E), ` : E → R+ and s ∈ V .
Ensure: D = (distG(s, v))v∈V and a shortest-path tree T rooted in s.

1: Let D = (d(v))v∈V with d(s) = 0 and d(v) =∞ for all v ∈ V \ {s}.
2: Let Done = ∅, Border = {s} and T = ({s}, ∅).
3: while Border 6= ∅ do
4: Let v ∈ Border that minimizes d(v) in Border.
5: Add v to Done and remove v from Border.
6: for w ∈ N(v) do
7: if w /∈ Done then
8: if w /∈ Border then
9: Add w to Border and to V (T )

10: d(w)← d(v) + `(vw)
11: Add vw to E(T )
12: else if d(v) + `(vw) < d(w) then
13: d(w)← d(v) + `(vw)
14: Let e be the edge of T incident to w, E(T )← (E(T ) \ {e}) ∪ {vw}.
15: end if
16: end if
17: end for
18: end while
19: return (D,T )

Theorem 42 (Dijkstra’s algorithm) Given G = (V,E), ` : E → R+ and s ∈ V , Algo-
rithm 30 computes (distG(s, v))v∈V and a shortest-path tree T rooted in s in time O(|E| +
|V | log |V |).

Proof. The proof of the correctness of Algorithm 30 is by induction on the number of iterations
of the While-loop and of its internal For-loop. Precisely, at any moment of the execution of the
algorithm, the following invariants can be proved: (1) T is a spanning tree of Done ∪ Border
where each vertex in Border is a leaf and internal vertices are in Done (note that some vertices
of Done may be leaves); (2) for any v ∈ Done ∪ Border, distG(s, v) ≤ distT (s, v) = d(v); and
(3) d(v) = distG(s, v) for all v ∈ Done. These properties clearly hold before the first iteration
of the While-loop. It is also easy to check that they hold just after the first iteration of the
While-loop.

We only prove the third property, the other two can be proved easily. Let us consider an
iteration of the While-loop and let v be the vertex considered at this iteration. That is, v is a
vertex of Border minimizing d(v) and, at this iteration, v is added to Done. We aim at proving
that d(v) = distG(s, v).

By (2), distG(s, v) ≤ d(v). For purpose of contradiction, let us assume that distG(s, v) <
d(v). Let P be a shortest s-v path in G and let v′ be a vertex of (V (P ) \ {v}) ∩ Done that
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is closest (in terms of ` and in terms of number of hops if there are ties) to v in G (v′ exists
since, after the first iteration of the While-loop, s ∈ Done). Let v′′ be the neighbor of v′ on the
subpath P ′ of P between v′ and v. In particular, `(P ′) = `(v′v′′) + distG(s, v′) = dist(s, v′′).

Since all edge-length are non negative, dist(s, v′′) ≤ dist(s, v) = `(P ) < d(v). Let us show
that v′′ ∈ Border and that d(v′′) < d(v), contradicting the choice of v. First, let us note
that v′′ ∈ Border. Indeed, there is a previous iteration of the While-loop during which v′

has been considered (since v′ ∈ Done), and after this iteration, N(v′) ⊆ Done ∪ Border (so
v′′ ∈ N(v′) must be in Border since v′ is the vertex of P ∩Done that is closest to v) and d(v′′) ≤
`(v′′v′) + distG(s, v′) (Line 10 or 13 of the Algorithm). Moreover, by (2), distG(s, v′′) ≤ d(v′′).
So, `(v′v′′) + distG(s, v′) = dist(s, v′′) ≤ d(v′′) ≤ `(v′′v′) + distG(s, v′), i.e., d(v′′) = `(v′′v′) +
distG(s, v′) = dist(s, v′′). Finally, since d(v′′) = dist(s, v′′) < d(v), we get our contradiction.

About the time-complexity, there are n = |V | iterations of the While-loop since all vertices
must be added to Border exactly once. In each iteration of the While-loop, we must first extract
the minimum from Border (let v be the considered vertex), then, for every neighbor w of v
(there are at most ∆ such neighbors if ∆ is the maximum degree of G), we need to update d(w)
and add w to Border if it was not there yet. Overall, at first glance, the complexity is upper
bounded by O(n ∗ (TimeToExtractMin+ ∆ ∗ (TimeToAddInBorder + Update)).

To achieve a good time-complexity, we first need to use an appropriate data structure for
Border. For this purpose, Border can be implemented using a heap (for which TimeToExtractMin+
TimeToAddInBorder = O(log n)). Second, we need to count the operations globally rather
than for each iteration of the While-loop. Hence, note that each vertex is added exactly once
into Border. Then, to count the number of updates, it can be noted that each edge is considered
exactly once. Hence, the complexity is O(n ∗ (TimeToExtractMin+TimeToAddInBorder) +
|E| ∗ Update). Since the time to update is O(1), we get a time complexity bounded by
O(|V | log |V |+ |E|).

17 Going faster in practice

In this (rather informal) section, we briefly present some current research trend and explain
the motivations for it. Computing a shortest path in a network is clearly a daily-life question
(e.g., when you look for your itinerary using your smartphone). Consider a network with 20M
vertices (e.g., European road network) and a basic computer (laptop, smartphone), then a
(good) implementation of the Dijkstra’s algorithm would compute (in average) a shortest path
between a source and a destination in few seconds (the numbers given here are not precise but
are correct in terms of order of magnitude). Clearly (“normally”), you would not accept to
wait for 3-4 seconds to have your itinerary. Therefore, some better solutions must be provide
in practice.

17.1 Bidirectional Dijkstra’s algorithm and A∗ algorithm(s)

Note that this subsection is purely informal.
Here, the problem is to find a shortest path from a source s to a destination d. A first

natural improvement of Dijkstra’s algorithm is as follows: launch Dijkstra’s algorithm from
s and stop its execution as soon as the distance to d has been found (technically, as soon
as d ∈ Done). Thinking a bit more, launching two executions of the Dijkstra’s algorithm
(bidirectional Dijkstra), one from s and the other from d (alternating the iterations of the
While-loop between the two executions) and stoping the executions as soon as they “meet”
(i.e., when the two sets Done intersect) should give a faster answer (to have an intuitive idea
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of why, see difference between the number of considered vertices, i.e., the number of iterations
of the While-loop, in an execution of Dijkstra’s algorithm and in an execution of bidirectional
Dijkstra’s algorithm in Figures 4-a, b, where the “number” is represented by the areas of the
disks). Indeed, in practice (same network with 20M vertices as before), the computation time
goes down to (an order of magnitude of) 1 second. Still, this looks too much with respect to
the classical expectations of users.

The A∗ algorithm aims at introducing some biais in the next vertex to be considered at
each iteration of the Dijkstra’s algorithm. We only give an intuitive presentation of the A∗

algorithm. Note that the Dijkstra’s algorithm starting from some vertex s considers the vertices
in non-decreasing order of their distance to s, independently from their position relatively to
the destination (i.e., the next vertex v to be considered is always a one that minimizes d(v))
(see Figure 4-a). Assume that you have further information on the relative positions of the
vertices. For instance, considering a road network, we may know the distance as the crow
flies dcf(x, y) between every two vertices x, y ∈ V . In that case, at each iteration of the
Dijkstra’s algorithm (on line 4 of Algorithm 30), we may for instance give priority to a vertex v
minimizing λd(v)+(1−λ)dcf(v, d) (0 ≤ λ ≤ 1) rather to the one minimizing d(v) (see Figure 4-c
for an intuitive illustration). While such an algorithm is only a heuristic (theoretically, it only
provides an upper bound on the distance between s and d), it works very well in practice (for
road networks). Moreover, on a network with 20M vertices as before, the computation time of
the bidirectional A∗ Algorithm (see Figure 4-d) goes down to (an order of magnitude of) 100
micro seconds.

s d

(a) Dijkstra's algorithm

s
d

(b) Bidirectional 
Dijkstra's algorithm

s
d

(c) A* algorithm

s d

(d) Bidirectional 
A* algorithm

Figure 4: Very (very) intuitive schemes of (bidirectional) Dijkstra’s and A∗ algorithms for
computing a shortest path between a source s and a destination d.

17.2 Pre-computing (Contraction Hierarchy and Hub Labeling)

Previous subsection presented the bidirectional A∗ algorithm that may look efficient enough for
users (roughly, few micro seconds to compute a shortest path in huge graphs). However, from
the point of view of a server that must answer a huge number of such requests at any time, that
is still not sufficient and, therefore, many research efforts have been (and still are) devoted to
improve the performance of such algorithms.

A hub system is a set (Hu)u∈V such that, every vertex u ∈ V is assigned a hub set Hu ⊆ V
such that, for every x, y ∈ V × V , there exists w ∈ Hx ∩Hy with distG(x, y) = distG(x,w) +
distG(w, y). In other words, a hub system must ensure that for any pair of vertices x, y, the
hub sets Hx and Hy must contain a common vertex that belongs to a shortest x-y path.

To be continued
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18 Diameter

For ease of presentation, in this section, all graphs are undirected and unweighted (i.e., the length
of a path is its number of edges). However, all results mentioned there can be generalized to
weighted (di)graphs.

Given an undirected unweighted connected graph G = (V,E), its diameter diam(G) =
max
u,v∈V

dist(u, v) is the maximum distance dist(u, v) (in terms of number of edges) between any

two vertices u and v of G. Also, for every v ∈ V , the eccentricity ecc(v) of the vertex v is the
maximum distance max

u∈V
dist(u, v) between v and any vertex of G (i.e., it is the distance between

v and a vertex furthest from v in G).

Exercise 40 Let G = (V,E) be a connected undirected unweighted graph. Show that, for every
v ∈ V , ecc(v) ≤ diam(G) ≤ 2 · ecc(v).

In particular, show that max
v∈V

ecc(v) = diam(G) ≤ 2 ·min
v∈V

ecc(v).

The question of interest in this section is, given a undirected connected n-node m-edge graph
G, to compute the diameter of G. A naive algorithm for this purpose consists in launching
n executions of the Dijkstra’s algorithm (one execution from every vertex of G) in order to
compute (distG(u, v)u,v∈V×V and then to extract the maximum of it. From Theorem 42, such
an algorithm has time-complexity O(n(n log n + m)) = O(n3). The best known algorithm for
this purpose is currently [] with time complexity and uses the best known algorithm for matrix
multiplication []. If G is unweighted, then Dijkstra’s algorithm may be replaced by a simple BFS
(with linear-time complexity) from each vertex, leading to a O(n2)-time algorithm to compute
the diameter. It is a current challenge to prove that no algorithm can solve this problem with
time-complexity o(n2) [].

Below, we show that in particular graph classes or in practical instances, only a few (a
constant number of) executions of BFS are sufficient to compute the diameter, leading to a O(n)
algorithm to compute the diameter in practical cases or in graphs having particular structural
properties.

18.1 Diameter of trees (with only 2 BFSs)

Algorithm 31 Diameter of trees.

Require: An unweighted tree T = (V,E).
Ensure: diam(T ).

1: Let r ∈ V be any arbitrary root.
2: Do a BFS from r in T and let x be such that dist(x, r) = ecc(r).
3: Do a BFS from x in T and let y be such that dist(y, x) = ecc(x).
4: return dist(x, y).

Theorem 43 Alg. 31 computes the diameter of any n-node tree in time O(n) (using 2 BFSs).

Proof. The time complexity is obvious. Let us show the correctness of the algorithm.
For purpose of contradiction, let us assume that dist(x, y) < diam(G) and let a, b ∈ V such

that diam(G) = dist(a, b).
First, note that x, y, a and b are leaves of T . Indeed, for purpose of contradiction, assume

that a is not a leaf and let a′ be its (unique) neighbor on the unique a-b path (see Exercise 2, first
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item). Then, let a′′ ∈ N(a)\{a′} be any other neighbor of a. Then, dist(a′′, b) = dist(a, b)+1 >
diam(G), a contradiction. The result follows similarly for x, y and b.

W.l.o.g., let a be such that dist(a, r) ≥ dist(b, r). We now show that dist(a, b) ≤ ecc(x).
Let u be the least common ancestor of a and b in T rooted in r. Note that dist(a, b) =
dist(a, u) + dist(u, b). Let u′ be the least common ancestor of a and x. There are several cases
to be considered.

• If r is on the u-x path (then u′ = r), then, dist(a, b) = dist(a, u)+dist(u, b) ≤ dist(a, u)+
dist(r, b) ≤ dist(a, u)+dist(r, x) ≤ dist(a, u)+dist(u, r)+dist(r, x) = dist(a, x) ≤ ecc(x).

• If u′ is on the u-r path (possibly u = u′), and since dist(r, x) = dist(r, u′) + dist(u′, x) ≥
dist(r, b) = dist(r, u′) + dist(u′, b) then dist(u′, x) ≥ dist(u′, b) = dist(u′, u) + dist(u, b).
Therefore, ecc(x) ≥ dist(a, x) = dist(a, u)+dist(u, u′)+dist(u′, x) ≥ dist(a, u)+dist(u, b) =
dist(a, b) = diam(G).

• Finally, if u is on the u′-r path, since dist(r, x) = dist(r, u′) + dist(u′, x) ≥ dist(r, a) =
dist(r, u′) + dist(u′, a) then dist(u′, x) ≥ dist(u′, a). Therefore, ecc(x) ≥ dist(x, b) =
dist(x, u′) + dist(u′, u) + dist(u, b) ≥ dist(a, u′) + dist(u′, u) + dist(u, b) = dist(a, b).

Hence, diam(G) = dist(a, b) ≤ ecc(x) = dist(x, y) ≤ diam(G).

The key point to remember is that, while in general it seems necessary to compute n BFSs
to compute the diameter of a graph, only 2 BFSs are sufficient in trees.

18.2 Diameter in practice (iFUB)

It is important to understand that, even a “simple” algorithm that consists in doing n BFSs,
i.e., with complexity O(n2), is far to be usable in practice for huge graphs as current social
networks. On the other hand, a single application of a BFS from some vertex r gives valuable
informations, a lower bound ecc(r) and an upper bound 2ecc(r), for the diameter. Crescenzi et
al. used this remark to design iFUB (iterative Fringe Upper Bound)43 44 45 46, an algorithm
that allowed to compute the diameter of huge networks such as Facebook. Here we only present
a simplified version of the Fringe algorithm.

While above has worst-case time complexity O(n2), it is actually very efficient in prac-
tice. The iFUB algorithm (which roughly proceeds similarly) used only 18 BFSs to compute
the diameter of Facebook! Understanding why such algorithms are efficient in practice is an
interesting current research direction47.

19 Small World phenomenon and Distributed Computing

To conclude this part, we would like to present graph study from the distributed point of view.
So far, all problems we have considered assume the full knowledge of the input graph. Here,

43Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, Andrea Marino: Finding the Di-
ameter in Real-World Graphs - Experimentally Turning a Lower Bound into an Upper Bound. ESA (1) 2010:
302-313

44Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, Andrea Marino: On Computing the Diameter of Real-
World Directed (Weighted) Graphs. SEA 2012: 99-110

45Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, Andrea Marino: On computing the diameter
of real-world undirected graphs. Theor. Comput. Sci. 514: 84-95 (2013)

46Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, Frank W. Takes:
Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: With an application
to the six degrees of separation games. Theor. Comput. Sci. 586: 59-80 (2015)

47Feodor F. Dragan, Michel Habib, Laurent Viennot: Revisiting Radius, Diameter, and all Eccentricity Com-
putation in Graphs through Certificates. CoRR abs/1803.04660 (2018)
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Algorithm 32 Diameter of graphs.

Require: An unweighted graph G = (V,E).
Ensure: diam(G).

1: Let r ∈ V be any arbitrary root.
2: Do a BFS from r in T and let v1, v2, · · · , vn−1 be the vertices ordered in such a way that
dist(vi, r) ≥ dist(vj , r) for all i < j.

3: Let LB = ecc(r) and UB = 2ecc(r) and i = 1.
4: while LB < UB do
5: Do a BFS from vi.
6: LB = max{LB, ecc(vi)} and UB = min{UB, 2ecc(vi)}
7: i← i+ 1
8: end while
9: return LB.

we consider a graph as a distributed system that consists of nodes which have only a local
knowledge. Typically, a vertex is a computational entity that only knows it own name (or
identifier (ID)), the IDs of its neighbors and possibly some extra global information (that we
aim at maintaining as small as possible). Then, given a global objective, the goal is to design
an algorithm (which will be executed by each node).

As an example, we will focus on the routing problem which consists, for a source-node,
to send a message to a destination-node, while not having the full knowledge of the network,
but expecting that the message will not take “too long” to reach its destination. The problem
is then to establish a tradeoff between the amount of local knowledge (number of bits), the
length of the computed path with respect to the actual distance between the source and the
destination, the time-complexity for computing the local-knowledge, the time-complexity for a
vertex to determine to which vertex it has to send the message, the class of considered graphs...
Let us start with simple examples.

Full knowledge in any graph. Let G = (V,E) be any n-node graph, each vertex v having
the full knowledge of the graph, e.g., each vertex knows the adjacency matrix A (with requires
O(n2) bits). When a vertex v receives a message to be sent to some vertex d ∈ V \ {v}, it may
use the Dijkstra’s algorithm (using A) to compute a shortest path from v to d in G and then,
the vertex v can determine (in time O(|E|+n log n)) to which of its neighbors the message must
be sent. If every vertex follows this algorithm, the message will reach its target via a shortest
path.

No knowledge in any graph. Let G = (V,E) be any n-node graph, each vertex v having
no knowledge about G. That is, a vertex v only knows its degree and can distinguish the edges
incident to it (note that v does not even know the IDs of its neighbors). When a vertex v
receives a message to be sent to some vertex d ∈ V \ {v}, a possible algorithm for v is to choose
one of its neighbors w uniformly at random and to send the message to w. The message then
follows a random walk in G and, because the expected cover time of a random walk is O(n3) 48,
the message eventually reaches its destination after expected time O(n3).

Small knowledge in grids. Finally, let us consider the n × n grid G = (V,E) where V =
{(i, j) | 0 ≤ i ≤ j < n} such that two vertices (i, j) and (i′, j′) are adjacent if and only if
|(i− i′) mod n|+ |(j− j′) mod n| = 1. Let us assume that each vertex knows the IDs (i.e., the

48Greg Barnes, Uriel Feige: Short random walks on graphs. STOC 1993: 728-737
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coordinates) of its fours neighbors (O(1) bits). When a vertex v = (i, j) receives a message to
be sent to some vertex (i′, j′) ∈ V \{(i, j)}, then v may send the message to one of its neighbors
(a, b) such that |a− i′| < |i− i′| or |b− j′| < |j − j′|. If every vertex follows this algorithm, the
message will reach its target via a shortest path (prove it!).

In the next subsection, we consider distributed (local) routing in the real social network (where
vertices are people and links represent social knowledge).

19.1 Milgram’s experiment and Small World phenomenon

19.1.1 Experiment and arising questions

Everything starts with the experiment done by Milgram 49. Around 100 people had to send let-
ters to one person they knew the name, the address (Cambridge, MA) and some other practical
informations (job, hobbies, etc.). To send the letter, people were guided by the informations
about the destination, but under the constraint that they had to transmit the letter to some-
one they know (hand to hand). It appears that 20 letters arrived and that chains had length
between 2 and 10. The average length of the successful paths was 5 (meaning that the letters
passed in hands of 6 people). From there, the idea arises that people on earth are six steps
away one from each other. This is the six degrees of separation.

In 2003, Dodds, Muhamad and Watts tried another experiment using e-mails 50. There were
around 25000 sources and 12 different destinations. Around 400 chains were successful with a
average length of 4 (roughly between 1 and 10). Lot of unsuccessful emails were due to laziness
or due to the fact that people did not trust in such an experiment.

From these experiments two main remarks arise: there exist short paths between humans
and it is possible to find them even without having the full knowledge of the network. This can
be turned into two natural questions:

1. why do there exist short chains between humans?

2. how can we find them without knowing the entire network?

From these questions, a attempt of definition of small worlds can be stated as follows. A
network has the small worlds properties if it has small diameter and that short routes (with
(poly)logarithmic length) can be found by a greedy algorithm only based on local knowledge.

From such a definition, the following natural questions arise: how to mathematically define
“local knowledge”? Do all graphs admit small worlds properties? If not, which graphs admit
small worlds properties? To try to answer these questions, Watts and Strogatz propose to
model small worlds by augmented graphs 51. An augmented graph consists of a pair (G,D)
where G = (V,E) is a graph and D is a probability distribution defining, for any u, v ∈ V , the
probability to have an extra arc (u, v).

The extra arcs (that do not belong to E) are called the long links. It is important to note
that they are chosen independently. In the model of augmented graphs, nodes represent humans
and edges/arcs represent social links. The graph G is known by all nodes and represents the
global knowledge (geography, professional informations, etc.). On the other hand, an (oriented)
long link (u, v) is only known by u and v and it is supposed to model social links that are ”not
predictable” (hazard friendship, etc.). Let L be the set of such long links.

49S. Milgram. The Small World Problem. Psychology Today. Ziff-Davis Publishing Company, 1967.
50P. Dodds, R. Muhamad, and D. Watts. An Experimental Study of Search in Global Social Networks. Science:

Vol. 301, Issue 5634, pp. 827-829, 2003
51D.J. Watts and S.H Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393:409–10, 1998
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No, we describe how the (distributed) greedy routing algorithm performs in an augmented
graph. For any v ∈ V , let NG(v) = {u ∈ V : {v, u} ∈ E} and ND(v) = {u ∈ V : (v, u) ∈ L}.
When a node v receives a message with destination d ∈ V , d 6= v, then v sends the message to its
neighbor u ∈ NG(v)∪ND(v) such that the distance between u and d in G (without considering
the long links) is minimum. Ties are broken uniformly at random.

The following question has been widely studied for a while before being solved52.

3. Given a graph G, does there exist a probability distribution D such that the augmented
graph (G,D) is a small world?

Jon Kleinberg proposed a first a attempt of solution by considering grids G 53.

19.1.2 Augmenting a D-dimensional grid

Let GD be a D-dimensional grid, D > 0, with n vertices. Let r ≥ 0. We consider the probability
distribution Dr that is inversely proportional to the distance. That is, let u ∈ V . For any v ∈ V ,
the probability to have a long link (u, v) is

Let u ∈ V, P (u→ v) =
1

Hr(u)
· 1

distG(u, v)r
with Hr(u) =

∑
v∈V \{u}

1

distG(u, v)r

Let us consider the example of a 2-dimensional grid, where each node has one extra long
link uniformly chosen among all vertices, i.e., P (u→ v) = 1

n−1 (r = 0). Let ε < 1/4. Let t ∈ V
be the destination of a message and let

B = {u ∈ V : distG(u, t) ≤ nε}.

Let p be the probability that there exists a vertex u ∈ B with its long link going in B.

Lemma 42 p = Prob{∃u, v ∈ B : (u, v) ∈ L} →
n→∞

0

Proof. Note that |B| = Θ(n2ε). p = 1 − Prob{∀u, v ∈ B : (u, v) /∈ L}. Hence, p =

1−Πu∈BProb{∀v ∈ B : (u, v) /∈ L}. So p = O(1−Πu∈B(1− |B|n )) = O(1− (1− 1
n1−2ε )

n2ε
).

ln[(1− 1
n1−2ε )

n2ε
] = n2ε ln(1− 1

n1−2ε ) = n2ε(− 1
n1−2ε + o( 1

n1−2ε )) = − 1
n1−4ε + o( 1

n1−4ε )

Finally, p = 1− e−
1

n1−4ε+o(
1

n1−4ε ) →
n→∞

0 (because ε < 1/4).

From previous lemma, when a message arrives at distance ≤ nε to t, then no long links can
be used to reach t. Hence,

Theorem 44 ([Kleinberg 2000) If r = 0 and D = 2, then the expected number of steps used
by the greedy routing is at least Ω(nε), and (G2,D0) is not a small world.

Let us then consider the augmented grid (GD,Dr) with r = D, i.e., P (u → v) = 1
Hr(u)

·
1

distG(u,v)r
. Let t be the destination node.

Theorem 45 ([Kleinberg 2000) In (GD,DD), the greedy routing performs in O(log2 n) steps
in expectation.

52P. Fraigniaud and G. Giakkoupis. On the searchability of small-world networks with arbitrary underlying
structure. In Proc. of the 42nd ACM Symposium on Theory of Computing (STOC), pages 389–398. ACM, 2010.

53Jon M. Kleinberg. Navigation in a small world. In Nature, volume 406, page 845, 2000
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Lemma 43 Let s ∈ V and δ = dist(s, t) and let B = {v ∈ V : dist(v, t) ≤ δ/2}.

p = Prob{∃v ∈ B : (s, v) ∈ L} = Ω(
1

log n
).

Proof. Note that |B| = Θ(δr). Note also that the diameter of G is rn1/r.

Hr(s) =
∑

v∈V \{s}
1

distG(s,v)r
=

∑rn1/r

i=1 |Si|/ir where Si = {x ∈ V : dist(s, x) = i}. Since

|Si| = Θ(ir−1), we get that Hr(s) = Θ(
∑rn1/r

i=1 1/i) = Θ(log rn1/r) = Θ(log n). Let v ∈ B such

that dist(v, s) = 3δ/2. p =
∑

u∈B Prob{(s, u) ∈ L} ≥ |B|Prob{(s, v) ∈ L} = |B|
Hr(s)

· 1
(3δ/2)r ≥

δr

logn ·
1

(3δ/2)r = Θ( 1
logn).

Lemma 44 Let s ∈ V and δ = dist(s, t) and let B = {v ∈ V : dist(v, t) ≤ δ/2}. The expected
number of steps to reach B from s is O(log n).

Proof. Let (s, x1, x2, · · · ) be the path followed by a message with destination t, according to
the greedy routing. Since, for all i ≥ 1, dist(xi, t) ≤ dist(s, t), and because Dr is inversly
proportional to the distance, we get that, for all i ≥ 1, Prob{∃v ∈ B : (xi, v) ∈ L} ≥ Ω( 1

logn).
Bernoulli distribution: Prob{X = 0} = p ≤ 1 and Prob{X = 1} = 1 − p. Then, the

expected number of steps before getting a 0 is
∑

i≥1 i(1− p)i−1p = 1/p.

Hence, in expectation, every log n steps, the greedy algorithm divides the distance from the
current message’s position to its destination by 2. So, it takes, in expectation, log n log ` steps
for a message to reach its destination, where ` is the diameter of Gr, i.e., ` = rn1/r. This
concludes the proof of Theorem 45.

Theorem 46 (Kleinberg 2000) The D-dimensional grid with probability distribution Dr is
a small world if and only if D = r.

19.1.3 Beyond the grids: is every graph small-worldisable?

In previous sections, we saw how grids can be augmented into small worlds. That is, there is a
probability distribution D such that the greedy routing algorithm performs in log2 n steps (in
expectation) in the D-dimensional grid augmented via D. Apart the grid, several other graphs’
classes have been investigated as bounded treewidth graph54, bounded growth graphs 55, graphs
excluding a minor 56, bounded doubling dimension metrics 57, etc. In all these classes of graphs,
probability distributions have been proposed to make the greedy routing algorithm to perform
in poly-logarithmic number of steps. The question was to know whether similar probability
distributions for any graph. More generally, Question 3 of Section 19.1.1 can be reformulated
as follows: What is the smallest function f(n) such that there exists a probability distribution
D such that the greedy routing algorithm performs in f(n) steps (in expectation) in any graph
augmented via D? Actually, it is easy to see that f(n) = O(

√
n)58.

54P. Fraigniaud. Greedy routing in tree-decomposed graphs. In Proc. of the 13th Annual European Symposium
on Algorithms (ESA), volume 3669 of LNCS, pages 791–802. Springer, 2005.

55P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel. Could any graph be turned into a small-world? Theor.
Comput. Sci., 355(1):96–103, 2006.

56I. Abraham and C. Gavoille. Object location using path separators. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 188– 197. ACM, 2006.

57A. Slivkins. Distance estimation and object location via rings of neighbors. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 41–50. ACM, 2005.

58P. Fraigniaud, C. Gavoille, A. Kosowski, E. Lebhar, and Z. Lotker. Universal augmentation schemes for
network navigability. Theor. Comput. Sci., 410(21-23):1970–1981, 2009
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Lemma 45 f(n) = O(
√
n)

Proof. Let G be any graph and, for any v ∈ V , choose uniformly at random u ∈ V and add a
long link (v, u). Now consider any target t. Consider the ball B of radius

√
n centered at the

target. For any vertex x /∈ B, the probability that the long link (x, u) is such that u ∈ B is
|B|/n = 1/

√
n. Hence, the expected number of steps before the message arrives in B is

√
n.

Once the message ais arrived in B, the number of remaining steps is at most
√
n.

Theorem 47 (Fraigniaud,Lebhar,Lotker 2010) f(n) = Ω(2
√
logn). More precisely, there

exists a infinite family of graphs such that for any augmentation scheme, greedy routing requires
an expected number of Ω(2

√
logn) steps, for some source-target pair.

Theorem 48 (Fraigniaud,Giakkoupis 2010) f(n) = O(2
√
logn).

19.2 Introduction to Compact Routing

To be written

Part VII

Planar graphs

This chapter is mainly inspired from http://courses.csail.mit.edu/6.889/fall11/lectures/ (lec-
tures 2 to 4).

Informally, a graph is planar if it can be “drawn” on the plane (i.e., R2) (equivalently on a
sphere) without crossing edges.

More precisely, an embedding of a graph G = (V,E) in the plane is a mapping ξ that maps
V to disjoint points in R2 and that maps each edge uv ∈ E to a simple curve59 of R2 that
joins ξ(u) and ξ(v). An embedding is planar if the interior of the curves ξ(e) for all e ∈ E are
pairwise disjoint. Finally, a graph is planar if it admits a planar embedding.

The above definition of planar graphs is topological, which implies that further proofs might
use complicated topological arguments. In that course, we will not enter into topological “de-
tails” and just keep the informal definition that a planar graph can be drawn on the plane
without crossing edges. In particular, some arguments in the proofs may be a bit handwavy
(sorry). Before going on, note that there is a purely combinatorial way to define planar graphs
(using what is sometimes called rotation system [Youngs 1963] and the Euler’s formula, see
Lecture 2 of the MIT course mentioned above).

Planar graphs play an important role both theoretically and practically. In practice, many
important networks are planar or “almost” planar: for instance, road networks have generally
few bridges or tunnels. Theoretically, many problems can be solved more efficiently when
restricted to planar graphs. This chapter is dedicated to give some examples of such problems
and algorithms.

20 Preliminaries on planar graphs

From now on, a graph is planar if it can be drawn on the plane without crossing edges (note
that edges are not constrained to be drawn as straight lines). Such a drawing is called a planar

59A simple curve is the image of a continuous one-to-one mapping f : [0, 1]→ R2. A curve joins two points a
and b if f(0) = a and f(1) = b. The interior of the curve is f(]0, 1[).
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embedding. Note that any graph have several embeddings, some of them may be planar or not
(as an example, draw K4, the complete graph with 4 vertices, in a non-planar way and in a
planar way). So, it is not difficult to show that K4 is planar (it admits a planar embedding).
Proving that K5 is not planar is, at first glance, much more complicated (can you prove that
K5 cannot be drawn on the plane without crossing edges?).

Exercise 41 Is K4 planar? Is K5 planar? Is K3,3 (the complete bipartite graph with two parts
each of size 3) planar?

20.1 Euler Formula

Given a planar graph G and a planar embedding ξ(G) of G, a face of ξ(G) is any connected
component of R2 \ ξ(G). Note that each edge of G is in the border of one or two faces of ξ(G)
(here is a first handwavy argument mentioned above). Note also that, according to the above
definition of an embedding, all faces are finite (bounded by simple closed curve in R2) but one
that is infinite. Let F (ξ(G)) be the set of faces of an embedding ξ(G) of G. Note that the border
of a face of ξ(G) is actually a cycle of G, we will often identify the face and the corresponding
cycle.

Theorem 49 (Euler’s formula) For any planar connected graph G = (V,E) and any planar
embedding ξ(G), |V | − |E|+ F (ξ(G)) = 2.

Proof. The proof is by induction on |V |. If G is reduced to a single vertex, then |V | − |E| +
F (ξ(G)) = 1 − 0 + 1 = 2 (in that case, whatever be the embedding, there is unique face, the
infinite one). By induction, let us assume that the statement holds for any planar graph with
n ≥ 1 vertices and let G have n+ 1 vertices. Let v be any vertex of G and let d be its degree in
G. Note that d ≥ 1 because G is connected. Let us prove the result by induction on d. If d = 1,
let w be the unique neighbor of v. Adding the vertex v and the edge vw to G′ = G \ {v} does
not create any new face (again an handwavy argument), then |V (G)| − |E(G)| + F (ξ(G)) =
|V (G′)|+ 1− |E(G′)| − 1 + |F (ξ(G′))| = 2 (where ξ(G′) is the embedding of G′ obtained from
ξ(G) restricted to G′, i.e., when removing v and the edges incident to it). If d ≥ 2, let w with a
neighbor of v in G and let G′ = (V,E \ {vw}). Then, adding the edge uw divides one face f of
ξ(G′) into two faces (i.e., the edge vw divides the cycle corresponding to f , containing both v and
w, into two cycles). Hence, |V (G)|−|E(G)|+F (ξ(G)) = |V (G′)|−|E(G′)|−1+|F (ξ(G′))|+1 = 2.

Note that Euler’s formula implies that any planar embedding of a graph G has the same
number of faces.

Corollary 5 (Sparsity lemma) Let G = (E, V ) be a simple connected planar graph. Then
|E| ≤ 3|V | − 6. Moreover, if G is bipartite, |E| ≤ 2|V | − 4.

Proof. Let G be a planar graph and ξ(G) be any planar embedding of it. Assume that any
face f has length `(f) at least x (i.e., the cycle corresponding to f has at least x edges). Note
that, if G is simple (no parallel edges nor loops), then x ≥ 3, and if moreover G is bipartite (iff
G has no odd cycle) then x ≥ 4. Then, 2|E| =

∑
f∈F (ξ(G))

`(f) ≥ x · |F (ξ(G))|.

By Euler’s formula, 2 = |V |−|E|+F (ξ(G)) ≤ |V |−|E|+ 2
x |E|. Hence, 2x ≤ x|V |−(x−2)|E|.

Therefore, |E| ≤ x
x−2 |V | −

2x
x−2 .

Note that Corollary 5 provides a simple proof that K5 and K3,3 are not planar (see Exer-
cise 41).
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Let d ∈ N. A graph G is d-degenerated if G has a vertex v of degree at most d and G \ {v}
is also d-degenerated (for instance, forests (i.e., acyclic graphs) are exactly the 1-degenerated
graphs).

Corollary 6 Any planar simple graph is 5-degenerated

Proof. By contradiction, assume that a planar graph G = (V,E) has all its vertices with degree
at least 6. Then 2|E| =

∑
v∈V (G)

deg(v) ≥ 6|V |, contradicting Corollary 5.

20.2 Wagner-Kuratowski theorem

We already mentioned the following theorem in Section 8.5, we give here a sketch of its proof
for completeness. Recall that H is a minor of G is H is any subgraph of any graph obtained
from G by edge-contractions.

Theorem 28 (Wagner 1937) A graph is planar if and only if it has no K5 nor K3,3 as minor.

Proof.[Sketch] ⇒ . Since, K5 and K3,3 are not planar (see above), and because the class of
planar graph is closed under taking minor, any planar graph admits neither K5 nor K3,3 as
minor.
⇐ . For purpose of contradiction, let G be a minimal counter example, i.e., a minimum-

order non-planar graph with neither K5 nor K3,3 as minor. If G is not 4-connected, let X be a
minimal separator, |X| < 4 (by Menger’s theorem), let G′1, G

′
2 be 2 graphs with at least |X|+ 1

vertices, such that G = G′1 ∪ G′2 and X = V (G′1) ∩ V (G′2). Let Gi being obtained from G′i
by completing X into a clique. Then, prove that Gi has no K5 or K3,3 as a minor (trivial if
|X| < 3). Then, by minimality of G, Gi is planar. Moreover, we can choose the face bordered
by vertices of X as infinite face of an embedding. This allows to glue G1 and G2, proving that
G is planar, a contradiction.

Now, assume G is 4-connected. Then, contract an edge {x, y} into vertex z. By minimality
of G, the resulting graph is planar. Moreover, since G is 4-connected, the resulting graph is
2-connected. Consider the faces surrounding z in a planar embedding of it. By studying the
neighbors of y and x in this embedding, we get that G is planar, otherwise it would admit K5

or K3,3 as a minor. A contradiction.

Wagner’s theorem implies that planar graphs may be “simply” defined by two excluded
minors (K5 and K3,3). The Graph Minor Theorem 28 states that, actually, any class of graphs
that is closed under taking minor can be defined by a finite number of excluded minors. Un-
fortunately, not all such graph classes have a simple obstruction set such as planar graphs. For
instance, the class of graphs that have genus 1 (roughly, that can be drawn on a donut without
edge crossings) is closed under taking minors, but its obstruction set is not explicitly known.On
the positive side, some other graph classes can be defined by their obstruction sets, e.g., the
class of graphs of treewidth at most 2 is the class of graphs that have no K4 as minors.

20.3 Four Colors theorem

Let k ∈ N. Recall that a k-proper coloring of a graph G = (V,E) is any function c : V →
{1, · · · , k} such that c(u) 6= c(v) for every uv ∈ E. Recall also that the chromatic number χ(G)
of a graph G is the minimum k such that G admits a proper k-coloring (see Section 10.4).

In 1852, the mathematician and botanist Francis Guthrie asked whether a plane map of
countries/regions can be colored with four colors (giving one color to each region) in such a way
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that two regions sharing some common border (not reduced to as ingle point) received different
colors. In graph terminology, it is equivalent to ask whether χ(G) ≤ 4 for any planar graph G.

After more than one century of research and several wrong proofs, this conjecture has finally
been confirmed with the following celebrated theorem. Note, in particular, that it is one of the
first (famous) mathematical results that has been proved using computers’ power.

Theorem 41 (Four Color Theorem) [Appel,Haken 1976],[Robertson,Sanders,Seymour and
Thomas 1997] For any planar graph G, χ(G) ≤ 4.

The proof of above theorem is quite involved (the problem was open for more than one
century). We give here an almost trivial proof of a slightly weaker result.

Lemma 46 For any planar graph G, χ(G) ≤ 6.

Proof. The proof is by induction on |V (G)|. It is clear if |V (G)| ≤ 6. Assume that the result
holds for any planar graph with n ≥ 1 vertices. Let G be any planar graph with n+ 1 vertices.
Let v ∈ V (G) with degree at most 5 (v exists by Corollary 6) and let G′ = G \ v and note that
G′ is planar. By induction, G′ admits a proper coloring with at most 6 colors. Now, v having
at most 5 neighbors, it can be properly colored with a color not appearing in its neighborhood.

Recall that an independent set (or a stable set) in a graph G is any set of pairwise non-
adjacent vertices in a graph G. Note that a k-proper coloring of G = (V,E) is equivalent to a
partition of V into at most k stable sets (each part of the partition corresponding to the set of
vertices with the same color). Therefore, Theorem 41 has the following corollary that will be
used in Section 22.1:

Corollary 7 Any planar n-node graph admits a stable set of size at least n/4.

20.4 Dual of a planar graph

Let G be a connected planar graph given with a planar embedding ξ(G). The dual G∗ of G is
the graph with vertex-set the faces of ξ(G) and two faces f and f ′ in V (G∗) are adjacent, i.e.,
there is an edge e∗ = ff ′ ∈ E(E∗), if an edge e of G “divides” f and f ′ (i.e., if e is in the border
of both f and f ′) in ξ(G). Note that there is a one-to-one mapping between E and E(G∗) that
associates every e ∈ E to the corresponding edge e∗.

The following lemma (whose proof is straightforward when using the combinatorial definition
of planar graphs) justifies the fact that G∗ is called the dual. We do not prove it here.

Lemma 47 (The dual of the dual is the primal) For every planar embedding of a graph
G, (G∗)∗ = G.

Given a connected graph G = (V,E), a set C ⊆ E is a simple cut or a bond if G′ = (V,E\C)
consists of two connected components. To avoid tedious topological arguments (in particular,
it uses the Jordan’s curve theorem [Camille Jordan (1838-1922)] that states that any simple
closed curve divides the plane into two connected parts, see [1]), we do not prove the following
important lemma.

Lemma 48 (Duality between cycles of primal and bonds of dual) For any connected graph
G = (V,E) with planar embedding ξ(G), there is a one-to-one mapping between the cycles of G
and the bonds of G∗.
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By Lemma 47, previous lemma also implies that there is a one-to-one mapping between the
cycles of G∗ and the bonds of G.

Lemma 49 (Interdigitating trees lemma) Let G = (V,E) be a planar graph with planar
embedding ξ(G). Let T be any spanning tree of G and let F = {e ∈ E | e /∈ E(T )} = E \E(T ).
Then, the subgraph T ∗ of G∗ induced by V (T ∗) and {e∗ ∈ E(G∗) | e ∈ F} is a spanning tree of
G∗.

Proof.[handwavy proof] By definition, T ∗ is spanning. For purpose of contradiction, let us
assume that T ∗ contains a cycle C∗. Then, this cycle of G∗ corresponds to a simple closed curve
of R2 which, by the Jordan’s curve theorem, separates the plane into two connected parts A
and B. Moreover, there are u, v ∈ V (G) such that ξ(u) ∈ A and ξ(v) ∈ B. By Lemma 48, the
edges of C∗ ⊆ E(T ∗) corresponds to a bond C of G separating u and v. Since C ⊆ F , this
contradicts that T is a spanning tree of G.

Hence, T ∗ is acyclic. Note that |V (G∗)| is the number of faces of ξ(G). Moreover, |E(T ∗)| =
|F | = |E(G)|−(|V (T )|−1) = |V (G∗)|−2+1 (by Euler’s formula) and so |E(T ∗)| = |V (G∗)|−1 =
|V (T ∗)| − 1 (because T ∗ is spanning). By Exercice 2, T ∗ being acyclic, it is a tree.

Too well understand the previous lemma (and its name), you are encouraged to draw a
picture of it.

21 Small balanced separators

The key point that many problems are “easier” in planar graphs is that planar graphs can
be recursively “well” separated which is well appropriate for divide and conquer algorithms.
Intuitively, this section is devoted to show that planar graphs admit small balanced separators.

Precisely, given a graph G = (V,E), a separation of G is a any partition (A,B, S) of V
such that there are no edges between vertices in A and vertices in B, i.e., (A × B) ∩ E = ∅,
i.e., every path from a vertex in A to a vertex in B intersects S (Note that neither A nor
B nor S is required to be connected). Then, S is called a separator. Note that all graphs
do not admit some separation (e.g., consider any complete graph). If G is given with vertex-
weight function w : V → R+, for 0 < β < 1, the separation (A,B, S) is β-balanced if w(A) =∑
v∈A

w(v) ≤ β · w(V ) = β
∑
v∈V

w(v) and w(B) ≤ β · w(V ). The interest of finding recursive

β-balanced separations is because the number of levels of recursion is then O(logw(V )). When
a graph admits a β-balanced separation, the difficult part will be to find a separation that is
both β-balanced and such that |S| (number of vertices in S) is “small”.

21.1 Case of trees and grids

This section is devoted to the search of small balanced separators in trees and grids in order to
give examples, to provide tools that will be used later on (case of trees) and to explain some
further hypotheses that will be made (trees and grids).

In trees, we will look for a “well balanced” separation using a separator consisting of one
node. First, let us consider a star with three leaves, each leaf being of weight w(V )/3 (so the
center has weight 0). Then, it is easy to check that no one-vertex separator leads to a β-balanced
separation with β < 2/3.

Lemma 50 Let T = (V,E) be a vertex-weighted tree with w : V → R+. Then (T,w) admits a
2/3-balanced separation (A,B, S) with |S| = 1.
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Proof. Let v ∈ V (T ) be any node and let T1, · · · , Td be the connected components of T \ v
(with d the degree of v) ordered by weight, i.e., w(T1) ≤ · · · ≤ w(Td).

First, let us assume that w(Td) ≤ w(T )/2. Then, let 0 ≤ j ≤ d be the smallest integer such
that w(v) +

∑
0≤i≤j

w(Ti) ≥ w(T )/2 (with T0 = ∅). Note that j < d since w(Td) ≤ w(T )/2. Let

X =
⋃

0≤i≤j
V (Ti) and Y = V \ ({v} ∪ A). Then, w(Y ) = w(T ) − (w(v) + w(X)) ≤ w(T )/2. If

j = 0, then X = ∅ and so, w(X) ≤ w(T )/2. In this case, let us set (A,B, S) = (X,Y, {v}).
Else, let X ′ =

⋃
1≤i<j

V (Ti). Note that w(X ′) < w(T )/2. If w(X ′) ≥ w(T )/3, then w(Y ∪ Tj) ≤

2w(T )/3. In this case, let us set (A,B, S) = (X ′, Y ∪Tj , {v}). Finally, it w(X ′) < w(T )/3, then
w(X) = w(X ′) + w(Tj) ≤ 2w(T )/3 since w(Tj) ≤ w(Td) and w(X ′) + w(Tj) + w(Td) ≤ w(T ).
Hence, let us set (A,B, S) = (X,Y, {v}).

Second, if w(Td) > w(T )/2 (note that w(Ti) < w(T )/2 for all 1 ≤ i < d), then let u be the
neighbor of v in Td and let T ′1 = {v}∪

⋃
1≤i<d

Ti, T
′
2, · · · , T ′d′ be the connected components of T \u

(with d′ the degree of u). Note that w(T ′1) = w(T )−w(Td) ≤ w(V )/2 and that, for all 1 < j ≤ d′,
T ′j is a component of Td, and therefore max

1<j≤d′
w(T ′j) ≤ w(Td)−w(u). If max

1≤j≤d′
w(T ′j) ≤ w(T )/2,

we are back to previous case with u instead of v. Otherwise, let 1 < j′ ≤ d′ be such that
w(T ′j′) = max

1≤j≤d′
w(T ′j), then we go on toward the neighbor u′ of u in the subtree T ′j′ , and so on,

until we get the first case (this process eventually terminates by previous remarks).

In what follows, we will need to find balanced separators of trees using trees rather than ver-
tices. We show here that finding edge-separators requires further hypothesis. Given a weighted
tree (T = (V,E), w), and edge e ∈ E is a β-balanced edge-separator if w(T1), w(T2) ≤ βw(T ) for
both subtrees T1 and T2 of T \e (obtained from T by removing the edge e, keeping its endpoints).
In the edge-separator case, there is no β-balanced edge-separator with β < max

v∈V
w(v)/w(T ) (for

instance, consider the tree reduced to a single edge), then from now on, we will assume that
each vertex of T has a bounded fraction of w(T ) as weight. On the other hand, consider the
star with n leaves, each with weight w(T )/n, then this tree has no β-balanced edge-separator
with β < (1 − 1/n). To handle this latter problem, it is necessary to bound the degree of T .
Finally, the following lemma can be proved (do it!) using a proof similar to the one of previous
lemma.

Lemma 51 Let T = (V,E) be a vertex-weighted tree with maximum degree 3 and with w : V →
R+ such that w(v) ≤ w(T )/4 for all v ∈ V . Then (T,w) admits a 3/4-balanced edge-separator.

We have seen that trees admit small (one vertex/edge) balanced separators. Unfortunately,
we now show that not all planar graphs can expect such small balanced separators. For instance,
let us consider any n×n grid G. A natural 1/2-balanced separator is a middle “column”, which
has size n =

√
V (G). Another natural separator could be any “diagonal”. Any diagonal of

size k separates the grid G into two parts one of them of size O(k2). For such a diagonal to
be a β-balanced separator, it follows that O(k2) ≤ βn2 and, again, k = O(n) = O(

√
V (G)).

Actually, it can be proved that any n×n grid G has no O(1)-balanced separator with size o(n)
(cf. Exercise 25).

From previous paragraph, we will now look for balanced separators of size O(
√
n) in n-node

planar graphs.

21.2 Fundamental cycle separator lemma

Let us first prove a lemma that will be used in the proof of the main theorem of this section.

86



Lemma 52 (Fundamental cycle separator lemma) Let G = (V,E) be a planar graph, w :
V → R+ such that w(v) ≤ w(V )/6 for all v ∈ V , and let us assume that G admits a rooted
spanning tree of depth at most d. Then, G admits a 3

4 -separation (A,B, S) such that |S| ≤ 2d+1.

Proof. Let T be a spanning tree of G, rooted in r ∈ V , and of depth at most d.
Let us triangulate G, i.e., add edges in such a way that each face of the obtained graph H is

a triangle. Note that T is also a spanning tree of H. Let H∗ be the dual of H, note that H∗ is
cubic (each vertex has degree 3). Let assign some weight w′(f) to each vertex f of H∗ (face of
H) by “distributing” the weights of the vertices of V (H) = V (G) to the faces they are incident
to. More precisely, for every v ∈ V (G) = V (H), let nv ≥ 2 be the number of faces v is incident
to in H, and for every face f = (u, v, w) of H (identifying a face with the three vertices incident
to it), let w′(f) =

∑
x∈{u,v,w}

w(x)/nx ≤ w(V )/4. Note also that w′(V (H∗)) = w(V ).

By Lemma 49, there exists a spanning tree T ∗ of H∗ interdigitating with T . Moreover, since
H∗ is cubic, T ∗ has maximum degree at most 3. Hence, by Lemma 51, there exists an edge
e∗ ∈ E(T ∗) ⊆ E(H∗) that is a 3/4-balanced edge-separator of T ∗. Let T ∗1 and T ∗2 be the two
connected components of T ∗ \ e∗. Let e = uv be the edge of E(H) \ E(T ) corresponding to
e∗ and let P be the path between u and v in T . Let S be the cycle of H that consists of the
path P and the edge e, this cycle is called the fundamental cycle of e with respect to T (note
that C is either a path or a cycle in G). Since T has depth at most d, then |C| ≤ 2d + 1.
Let F ∗ be the set of edges of H∗ corresponding to the edges of E(C), by Lemma 48, it is a
bond in H∗ separating V (T ∗1 ) and V (T ∗2 ). Let A ⊆ V (resp., B) be the set of vertices incident
only to faces in V (T ∗1 ) (resp., in V (T ∗2 )). Note that (A,B, S) is a partition of V . Moreover,
w(A) ≤ w′(V (T ∗1 )) ≤ 3

4w
′(H∗) = 3

4w(V ) and similarly, w(B) ≤ 3
4w(V ).

21.3 Lipton-Tarjan’s theorem

Theorem 42 [Lipton-Tarjan 1979] Let G = (V,E) be a planar graph with w : V → R+

such that w(v) ≤ w(V )/6 for all v ∈ V . Then, G admits a 3
4 -separation (A,B, S) such that

|S| ≤ 4
√
|V |.

Proof. Let r ∈ V be any vertex and let (v1, · · · , vn) be a BFS ordering of V starting in r (with
n = |V |), that is dist(vi, r) ≤ dist(vj , r) for all i ≤ j (where dist(u, v) denotes the minimum
number of edges of a path between u and v). For all 0 ≤ i ≤ ecc(r) (where ecc(r) is the
eccentricity of r), let Li = {v ∈ V | dist(v, r) = i}. For technical reason, let us add a dummy
level Lecc(r)+1 = ∅. Let 1 ≤ j0 ≤ n be the smallest integer such that

∑
i≤j0

w(vi) ≥ w(V )/2

and let 0 ≤ i0 ≤ ecc(r) be such that vj0 ∈ Li0 . Let L− =
⋃
i<i0

Li and L+ =
⋃
i>i0

Li, note that

w(L−), w(L+) < w(V )/2. If |Li0 | ≤ 4
√
|V |, then (L−, L+, Li0) is the desired separation.

Otherwise, let i− be the largest integer 0 ≤ j < i0 such that |Lj | ≤
√
|V | (i− exists since

|L0| = 1) and let i+ be the smallest integer i0 < j ≤ ecc(r) + 1 such that |Lj | ≤
√
|V | (i+ exists

since |Lecc(r)+1| = 0). Note that i+ − i− <
√
|V | since otherwise

∑
i−<j<i+

|Lj | > |V |.

For all 0 ≤ i ≤ ecc(r), let L≤i = {v ∈ V | dist(v, r) ≤ i} and let L≥i = {v ∈ V |
dist(v, r) ≥ i}. Then, let G′ be obtained from G \ L≥i+ , by contracting all vertices of L≤i−

into one single vertex r′ (with weight w(L≤i
−

)). Note that G′ has a spanning tree rooted in
r′ of depth at most i+ − i− <

√
|V |. By Lemma 52, there exists a 3

4 -separation (A′, B′, S′)

of G′ with |S′| < 2
√
|V |. Finally, let {A1, A2} = {A′, B′} and {B1, B2} = {L≤i−−1, L≥i++1}

such that w(A1 ∪ B1) ≤ 3w(V )/4 and w(A2 ∪ B2) ≤ 3w(V )/4 (prove this exists). Then,
(A1 ∪B1, A2 ∪B2, (S

′ \ r′) ∪ Li− ∪ Li+) is the desired separation.
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21.4 r-division

Given a n-node graph G = (V,E), a r-division of G is a a partition of V into O(n/r) parts, each
with size O(r) and border (the border of a part is the set of vertices of this part with neighbors
in other parts) of size O(

√
r). Note that, in a r-division, the total number of boundary vertices

is O(n/
√
r).

Applying recursively Theorem 42, it is “easy” to show that, given a planar graph G, a
partition of V into O(n/r) parts, each with size O(r), and with total number of boundary
vertices is O(n/

√
r) can be computed in time O(n log n) (note that, here, the size of the border

of each part is not bounded). With more work:

Theorem 43 Let r ∈ N and G = (V,E) be a planar graph. A r-division of G can be computed
in time O(|V |).

22 Examples of algorithmic applications

22.1 Maximum Independent Set’s approximation in planar graphs

Let G = (V,E) be an n-node graph. Recall that an independent set (or stable set) is a set
I ⊆ V of pairwise non-adjacent vertices. Note that a stable set in G corresponds to a clique in
the complementary Ḡ = (V, Ē = (V × V ) \ E) of G (and vice versa). Hence, the problem of
computing a maximum independent set or of computing a maximum clique are slightly related.
For all ε > 0, there is no O(n1/2−ε)-approximation algorithm (unless P = NP ), and there exists
no O(n1−ε)-approximation algorithm (unless NP = ZPP )[Hastad, 1999]. Roughly, this means
that, in general graphs, a best approximation algorithm for computing a maximum stable set
(or a maximum clique) simply returns one single vertex! Here, we show that a much better
solution can be obtained in planar graphs.

Theorem 44 The maximum independent set has a O(1 − 1√
log logn

)-approximation (in time

O(n logn
log logn)) in n-node planar graphs.

Proof. Let r = log log n and let G = (V,E) be a n-node planar graph. Let (V1, · · · , Vt) be a
r-division of G (computed in linear time) with t = O(n/r). Let B be the set of border vertices
of the r-division. For every 1 ≤ i ≤ t, let Ii be a maximum stable set of Vi \B. Let I =

⋃
1≤i≤t

Ii.

Each of Ii can be computed using brute force in time O(2|Vi|) = O(2r) = O(log n), and so, I
can be computed in time O(t log n) = O(n logn

log logn).
Let I∗ be a maximum independent set of G. By Corollary 7, |I∗| ≥ n/4. For every 1 ≤ i ≤ t,

I∗ ∩ (Vi \ B) is a stable set of Vi \ B, and so, |I∗ ∩ (Vi \ B)| ≤ |Ii|. Then, |I∗| = |B ∩ I∗| +∑
1≤i≤t

|I∗ ∩ (Vi \ B)| ≤ |B| +
∑

1≤i≤t
|Ii| = |B| + |I| ≤ n√

log logn
+ |I| ≤ |I∗|

4
√
log logn

+ |I|. Hence,

|I| ≥ O(1− 1√
log logn

)|I∗|.

22.2 Improving Dijkstra’s algorithm in planar graphs

Recall that, given a graph G = (V,E) with non-negative length function ` : V → R+ and s ∈ V ,
the Dijkstra’s algorithm computes a shortest path tree from s in time O(|E|+ |V | log |V |). If G
is a simple planar graph, then |E| = O(|V |) (Lemma 5) and so Dijkstra’s algorithm performs
in time O(|V | log |V |). Let us show how to improve this time-complexity in planar graphs. In
what follows, we present a more efficient algorithm whose correctness is left as an exercise.
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Theorem 45 There exists an algorithm that, given a planar n-node graph G = (V,E) with
` : V → R+ and s ∈ V , computes a shortest path tree rooted in s in time O(n

√
log n log logn).

Proof. Let r = logn
log logn . Let (V1, · · · , Vt) be a r-division of G (computed in linear time) with

t = O(n/r) and, for every 1 ≤ i ≤ t, let Bi be the set of vertices of the border of Vi, note that
|Bi| = O(

√
r). Let B =

⋃
1≤i≤t

Bi, and note that |B| = O( n√
r
). We may assume that s ∈ B

(otherwise, let us artificially add s to B).
For every 1 ≤ i ≤ t and for u, v ∈ Bi, let wi(uv) be the distance between u and v in G[Vi].

Note that, for every u ∈ Bi, {wi(uv) | v ∈ Bi} can be computed in time O(|Vi] log |Vi]) =
O(r log r) by applying the Dijkstra’s algorithm from u in the planar graph induced by Vi. In
total, this step takes time O(t ·

√
r · r log r) = O(n ·

√
r log r).

Let G′ be the weighted graph with vertex set B and such that u, v ∈ B are adjacent if there
is 1 ≤ i ≤ t such that u, v ∈ Bi (i.e., if u and v are in the border of a same part), and in that
case, w(uv) = min

1≤i≤t
wi(uv). Note that G′ is not necessarily planar and that |E(G′)| = O(tr).

Using Dijkstra’s algorithm, compute a shortest path tree from s ∈ B = V (G′) in G′. This
takes time O(|E(G′)|+ |V (G′)| log |V (G′)|) = O(tr + n√

r
log n√

r
). Note that, this step allows to

compute dist(s, v) for all v ∈ B.
Finally, for every 1 ≤ i ≤ t, it remains to compute dist(s, v) for all vertices v ∈ Vi \B. For

this purpose, it is sufficient to execute Dijkstra’s algorithm once, in G[Vi], starting with labels
dist(s, w) (computed in previous step) for all w ∈ B∩Vi60. Since G[Vi] is planar, this step takes
time O(t · r log r) in total.

The overall complexity of the above algorithm is dominated by its first step (2nd paragraph
of this proof), which gives a time-complexity of O(n ·

√
r log r) = O(n

√
log n log log n)

Roughly, the algorithm presented in the above proof follows a natural intuition in road
networks: to go from one city u to another one v in a road network, we first follow short local
routes (in the part containing u), then we go through highways (in G′) and then use short local
routes (in the part containing v) to eventually reach v. Note that the above algorithm can
be improved since computing shortest path trees in planar graphs can actually be computed in
linear time by recursively decomposing planar graphs, and using much more subtle arguments [].
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