University Nice Cote d’Azur Graphs
Master 1 March-April 2019

Exercises : KNAPSACK Problem

To be returned for April 16th 2019.

The SIMPLE KNAPSACK problem takes a set of integers S = {w1,--- ,w,} and an integer b
as inputs. The objective is to compute a subset T C {1,--- ,n} of items such that Zwi <b
€T
and Z w; is maximum. That is, we want to fill our knapsack without exceeding its capacity b
€T
and putting the maximum total weight in it.

1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem
by combining the solutions of sub-problems.

As an example, the SIMPLE KNAPSACK Problem consists in computing an optimal solution
for an instance S = {wy, -+ ,w,} and an integer b. Let OPT(S,b) denote such a solution. We
will compute it using solutions for sub-problems with inputs S; = {wy,--- ,w;} and V¥ € N, for
any ¢ < n and b’ < b. That is, we will compute OPT(S,b) from all solutions OPT(S;,b’) for
i<nandb <b.

Algorithm 1 Dynamic programming algorithm for SIMPLE KNAPSACK
Require: A set of integers S = {w1,--+ ,w,} and b € N.
Ensure: A subset OPT C {1,--- ,n} of items such that Zwi <b

1: For any 0 < i <n and any 0 <V < b, let OPT[i, V'] :z€®T’

2: For any 0 < i <n and any 0 < b < b, let opt_cost[i, V'] = 0;

3: fori=1ton do

4: for b =1to bdo

5 if w; < and opt_cost[i — 1,V — w;] + w; > opt_cost[i — 1,b] then
6: OPT[i,V'] = OPT[i — 1,V —w;) U {i}

7: opt_costi, b'] = opt_cost[i — 1,0 — w;] + w;

8: else

9: OPT[i,V'] = OPT[i — 1,¥]

10: opt_cost[i, b'] = opt_cost[i — 1,V

11: return OPT = OPT|n,}]

Question 1 Prove that Algorithm 1 has time-complezity O(n - b).

Question 2 Ezplain that we may assume that max; w; < b and b <), w; since, otherwise, the
istance may be simplified.

Prove that, if max; w; < b < Y . w;, Algorithm 1 proceed in polynomial-time if max; w; is
polynomial in n but exponential if max; w; is exponential in n.

Actually, the KNAPSACK Problem is an example of Weakly NP-hard (roughly, it can be solved
in polynomial-time if the weights are polynomial).
Question 3 Prove by induction on i and b that the solution OPT = OPT[n,b] returned by
Algorithm 1 is optimal.

2 Approximation Algorithm and PTAS

Algorithm 2 Greedy algorithm for SIMPLE KNAPSACK
Require: A set of integers S = {wy,--+ ,w,} and b € N.
Ensure: A subset T'C {1,--- ,n} of items such that Zwi <b
L T=0 €T
2: total_weight =0
3: Sort S. Let us assume that wy > wq > -+ > wy,.
4: for i =1ton do
5. if total_weight + w; < b then
6
7
8

AdditoT
Add w; to total_weight
: return T

Question 4 What is the time-complexity of Algorithm 2 ¢

Question 5 Prove that Algorithm 2 is a 2-approzimation algorithm for the SIMPLE KNAPSACK
problem.
hint : let T be the computed solution and assume it is not optimal. Let
J > 1 be the smallest integer such that j+ 1 is NOT in T. Show that wji; < > w;/j and that
1<j
Sw; <> w; <OPT < > w; with OPT the value of an optimal solution.
i<j i€T i<j+1

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an
instance of an optimization problem and a parameter ¢ > 0 and, in polynomial time in the size
of the instance (not necessarily in €), produces a solution that is within a factor 1 + € of being
optimal.

That is, when € tends to 0, the solution tends to an optimal one, while the complexity
increases (generally, the complexity is of the form O(n/(1/9) for some function f).

Question 6 Prove that Algorithm 3 has time-complexity O(n[*/€141),
hint : prove that there are O(n*) subsets of size at most k in a ground-set with n_elements.

Question 7 Prove that Algorithm 3 is a (1+¢€)-approzimation algorithm for the SIMPLE KNAP-
SACK problem.

hint : Consider an optimal solution M and let X* = {iy,--- ,ir} be the k items with largest
weight in M. Consider the iteration of Algorithm &8 when it considers X*.

Actually, we can do better. Indeed, the KNAPSACK Problem admits a fully polynomial-
time approximation scheme (FPTAS) algorithm, that is an algorithm that computes a
solution that is within a factor 1 + € of being optimal in time polynomial both in the size
of the instance AND in 1/e.

Algorithm 3 PTAS for SIMPLE KNAPSACK

Require: A set of integers S = {w1,--- ,w,}, b € N and a real ¢ > 0.
Ensure: A subset T'C {1,--- ,n} of items such that Zwi <b

1: best =10 i€T

2: best_cost = 0

3 k=[1/€]

4: for Any subset X C S of size k do

5. Complete X using the Greedy Algorithm. That is :

6: T=X

7. total_weight =) ;- w;

8: Sort S\ X. Let us assume that S\ X = {wy, -+ ,w,_x} and wy > wy > -+ > wy_.
90 fori=1ton—kdo

10: if total_weight + w; < b then

11: AdditoT

12: Add w; to total_weight

13: if total_weight > best_cost then

14: Replace best by T

15: return T

