University Nice Côte d'Azur Master 1

Exercises : KNAPSACK Problem

To be returned for April 16th 2019.

The SIMPLE KNAPSACK problem takes a set of integers $S = \{w_1, \dots, w_n\}$ and an integer b as inputs. The objective is to compute a subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$

and $\sum_{i \in T} w_i$ is maximum. That is, we want to fill our knapsack without exceeding its capacity b and putting the maximum total weight in it.

1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem by combining the solutions of sub-problems.

As an example, the SIMPLE KNAPSACK Problem consists in computing an optimal solution for an instance $S = \{w_1, \dots, w_n\}$ and an integer b. Let OPT(S, b) denote such a solution. We will compute it using solutions for sub-problems with inputs $S_i = \{w_1, \dots, w_i\}$ and $b' \in \mathbb{N}$, for any $i \leq n$ and b' < b. That is, we will compute OPT(S, b) from all solutions $OPT(S_i, b')$ for $i \leq n$ and b' < b.

Algorithm 1 Dynamic programming algorithm for SIMPLE KNAPSACK **Require:** A set of integers $S = \{w_1, \dots, w_n\}$ and $b \in \mathbb{N}$. **Ensure:** A subset $OPT \subseteq \{1, \dots, n\}$ of items such that $\sum w_i \leq b$ 1: For any $0 \le i \le n$ and any $0 \le b' \le b$, let $OPT[i, b'] = \emptyset$; 2: For any $0 \le i \le n$ and any $0 \le b' \le b$, let $opt_cost[i, b'] = 0$; 3: for i = 1 to n do for b' = 1 to b do 4: if $w_i \leq b'$ and $opt_cost[i-1, b'-w_i] + w_i > opt_cost[i-1, b']$ then 5: $OPT[i, b'] = OPT[i - 1, b' - w_i] \cup \{i\}$ 6: $opt_cost[i, b'] = opt_cost[i - 1, b' - w_i] + w_i$ 7:8: else OPT[i, b'] = OPT[i - 1, b']9: $opt_cost[i, b'] = opt_cost[i - 1, b']$ 10: 11: return OPT = OPT[n, b]

Question 1 Prove that Algorithm 1 has time-complexity $O(n \cdot b)$.

Question 2 Explain that we may assume that $\max_i w_i \leq b$ and $b \leq \sum_i w_i$ since, otherwise, the instance may be simplified.

Prove that, if $\max_i w_i \leq b \leq \sum_i w_i$, Algorithm 1 proceed in polynomial-time if $\max_i w_i$ is polynomial in n but exponential if $\max_i w_i$ is exponential in n.

Actually, the KNAPSACK Problem is an example of *Weakly NP-hard* (roughly, it can be solved in polynomial-time if the weights are polynomial).

Question 3 Prove by induction on i and b' that the solution OPT = OPT[n, b] returned by Algorithm 1 is optimal.

2 Approximation Algorithm and PTAS

Algorithm 2 Greedy algorithm for SIMPLE KNAPSACKRequire: A set of integers $S = \{w_1, \dots, w_n\}$ and $b \in \mathbb{N}$.Ensure: A subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$ 1: $T = \emptyset$ 2: $total_weight = 0$ 3: Sort S. Let us assume that $w_1 \geq w_2 \geq \dots \geq w_n$.4: for i = 1 to n do5: if $total_weight + w_i \leq b$ then6: Add i to T7: Add w_i to $total_weight$ 8: return T

Question 4 What is the time-complexity of Algorithm 2?

Question 5 Prove that Algorithm 2 is a 2-approximation algorithm for the SIMPLE KNAPSACK problem.

hint : let T be the computed solution and assume it is not optimal. Let $j \ge 1$ be the smallest integer such that j + 1 is NOT in T. Show that $w_{j+1} \le \sum_{i \le j} w_i/j$ and that $\sum_{i \le j} w_i \le \sum_{i \in T} w_i \le OPT < \sum_{i \le j+1} w_i$ with OPT the value of an optimal solution.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an instance of an optimization problem and a parameter $\epsilon > 0$ and, in polynomial time in the size of the instance (not necessarily in ϵ), produces a solution that is within a factor $1 + \epsilon$ of being optimal.

That is, when ϵ tends to 0, the solution tends to an optimal one, while the complexity increases (generally, the complexity is of the form $O(n^{f(1/\epsilon)})$ for some function f).

Question 6 Prove that Algorithm 3 has time-complexity $O(n^{\lceil 1/\epsilon \rceil+1})$.

hint : prove that there are $O(n^k)$ subsets of size at most k in a ground-set with n elements.

Question 7 Prove that Algorithm 3 is a $(1+\epsilon)$ -approximation algorithm for the SIMPLE KNAP-SACK problem.

hint : Consider an optimal solution M and let $X^* = \{i_1, \dots, i_k\}$ be the k items with largest weight in M. Consider the iteration of Algorithm 3 when it considers X^* .

Actually, we can do better. Indeed, the KNAPSACK Problem admits a fully polynomialtime approximation scheme (FPTAS) algorithm, that is an algorithm that computes a solution that is within a factor $1 + \epsilon$ of being optimal in time polynomial both in the size of the instance AND in $1/\epsilon$.

Algorithm 3 PTAS for SIMPLE KNAPSACK

Require: A set of integers $S = \{w_1, \dots, w_n\}, b \in \mathbb{N}$ and a real $\epsilon > 0$. **Ensure:** A subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq b$ 1: $best = \emptyset$ 2: $best_cost = 0$ 3: $k = \lfloor 1/\epsilon \rfloor$ 4: for Any subset $X \subseteq S$ of size k do Complete X using the Greedy Algorithm. That is : 5:T = X6: $total_weight = \sum_{i \in X} w_i$ 7:Sort $S \setminus X$. Let us assume that $S \setminus X = \{w_1, \cdots, w_{n-k}\}$ and $w_1 \ge w_2 \ge \cdots \ge w_{n-k}$. 8: for i = 1 to n - k do 9:if $total_weight + w_i \leq b$ then 10: Add i to T11: Add w_i to $total_weight$ 12:if $total_weight > best_cost$ then 13:Replace *best* by T14: 15: return T