
University Nice Côte d’Azur Graphs
Master 1 March-April 2019

Exercises : Knapsack Problem

To be returned for April 16th 2019.

The Simple Knapsack problem takes a set of integers S = {w1, · · · , wn} and an integer b

as inputs. The objective is to compute a subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b

and
∑
i∈T

wi is maximum. That is, we want to fill our knapsack without exceeding its capacity b

and putting the maximum total weight in it.

1 Exact Algorithm via dynamic programming

Dynamic programming is a generic algorithmic method that consists in solving a problem
by combining the solutions of sub-problems.

As an example, the Simple Knapsack Problem consists in computing an optimal solution
for an instance S = {w1, · · · , wn} and an integer b. Let OPT (S, b) denote such a solution. We
will compute it using solutions for sub-problems with inputs Si = {w1, · · · , wi} and b′ ∈ N, for
any i ≤ n and b′ < b. That is, we will compute OPT (S, b) from all solutions OPT (Si, b′) for
i ≤ n and b′ < b.

Algorithm 1 Dynamic programming algorithm for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset OPT ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b

1: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let OPT [i, b′] = ∅ ;
2: For any 0 ≤ i ≤ n and any 0 ≤ b′ ≤ b, let opt cost[i, b′] = 0 ;
3: for i = 1 to n do
4: for b′ = 1 to b do
5: if wi ≤ b′ and opt cost[i− 1, b′ − wi] + wi > opt cost[i− 1, b′] then
6: OPT [i, b′] = OPT [i− 1, b′ − wi] ∪ {i}
7: opt cost[i, b′] = opt cost[i− 1, b′ − wi] + wi
8: else
9: OPT [i, b′] = OPT [i− 1, b′]

10: opt cost[i, b′] = opt cost[i− 1, b′]
11: return OPT = OPT [n, b]

Question 1 Prove that Algorithm 1 has time-complexity O(n · b).
Question 2 Explain that we may assume that maxiwi ≤ b and b ≤

∑
iwi since, otherwise, the

instance may be simplified.
Prove that, if maxiwi ≤ b ≤

∑
iwi, Algorithm 1 proceed in polynomial-time if maxiwi is

polynomial in n but exponential if maxiwi is exponential in n.

Actually, the Knapsack Problem is an example of Weakly NP-hard (roughly, it can be solved
in polynomial-time if the weights are polynomial).

Question 3 Prove by induction on i and b′ that the solution OPT = OPT [n, b] returned by
Algorithm 1 is optimal.

1



2 Approximation Algorithm and PTAS

Algorithm 2 Greedy algorithm for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn} and b ∈ N.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: T = ∅
2: total weight = 0
3: Sort S. Let us assume that w1 ≥ w2 ≥ · · · ≥ wn.
4: for i = 1 to n do
5: if total weight+ wi ≤ b then
6: Add i to T
7: Add wi to total weight
8: return T

Question 4 What is the time-complexity of Algorithm 2 ?

Question 5 Prove that Algorithm 2 is a 2-approximation algorithm for the Simple Knapsack
problem.

hint : let T be the computed solution and assume it is not optimal. Let
j ≥ 1 be the smallest integer such that j + 1 is NOT in T . Show that wj+1 ≤

∑
i≤j

wi/j and that∑
i≤j

wi ≤
∑
i∈T

wi ≤ OPT <
∑

i≤j+1
wi with OPT the value of an optimal solution.

A polynomial-time approximation scheme (PTAS) is an algorithm which takes an
instance of an optimization problem and a parameter ε > 0 and, in polynomial time in the size
of the instance (not necessarily in ε), produces a solution that is within a factor 1 + ε of being
optimal.

That is, when ε tends to 0, the solution tends to an optimal one, while the complexity
increases (generally, the complexity is of the form O(nf(1/ε)) for some function f).

Question 6 Prove that Algorithm 3 has time-complexity O(nd1/εe+1).
hint : prove that there are O(nk) subsets of size at most k in a ground-set with n elements.

Question 7 Prove that Algorithm 3 is a (1+ε)-approximation algorithm for the Simple Knap-
sack problem.

hint : Consider an optimal solution M and let X∗ = {i1, · · · , ik} be the k items with largest
weight in M . Consider the iteration of Algorithm 3 when it considers X∗.

Actually, we can do better. Indeed, the Knapsack Problem admits a fully polynomial-
time approximation scheme (FPTAS) algorithm, that is an algorithm that computes a
solution that is within a factor 1 + ε of being optimal in time polynomial both in the size
of the instance AND in 1/ε.

2



Algorithm 3 PTAS for Simple Knapsack

Require: A set of integers S = {w1, · · · , wn}, b ∈ N and a real ε > 0.

Ensure: A subset T ⊆ {1, · · · , n} of items such that
∑
i∈T

wi ≤ b
1: best = ∅
2: best cost = 0
3: k = d1/εe
4: for Any subset X ⊆ S of size k do
5: Complete X using the Greedy Algorithm. That is :
6: T = X
7: total weight =

∑
i∈X wi

8: Sort S \X. Let us assume that S \X = {w1, · · · , wn−k} and w1 ≥ w2 ≥ · · · ≥ wn−k.
9: for i = 1 to n− k do

10: if total weight+ wi ≤ b then
11: Add i to T
12: Add wi to total weight
13: if total weight > best cost then
14: Replace best by T
15: return T

3


