
University Nice Côte d’Azur Graphs
Master 2 September-November 2019

Exercises : Flows, Linear Programming and Graphs’
Applications

To be returned for December 20th 2019.

The goal of this homework is to learn how to compute a flow with maximum value
in any network flow and to see some of its applications (and also some important
properties of Linear programming).

1 Flow in graphs

A network flow N = (D = (V,A), s, t, c : A→ R+) is defined by a directed graph D = (V,A),
with a source s ∈ V , a target (or sink) t ∈ V and a capacity function c : A→ R+ over the arcs.

A s-t flow in N is any function f : A→ R+ satisfying :

Capacity : f(a) ≤ c(a) for all a ∈ A ;

Flow conservation :
∑

w∈N−(v)

f(wv) =
∑

w∈N+(v)

f(vw) for all v ∈ V \ {s, t}.

Question 1 Show that any network flow admits a s-t flow.

The value of a flow f : A → R+ is defined as v(f) =
∑

w∈N+(s)

f(sw). Let us first show that

the amount of flow leaving s (which is v(f) by definition) equals the amount of flow entering
into t.

Question 2 Show that v(f) =
∑

w∈N−(t)

f(wt) for any network flow N = (D, s, t, c : A→ R+).

hint : sum the flow conservation constraints over all vertices of V \ {s, t}

The problem considered here is, given a network flow N = (D, s, t, c), to compute a s-t flow
f : A→ R+ with maximum value v(f). First, let us show some easy upper bound on the value
of any flow in N .

A s-t cut in N is defined as any bipartition (Vs, Vt) of V (i.e., Vs ∪ Vt = V and Vs ∩ Vt = ∅)
such that s ∈ Vs and t ∈ Vt. The capacity of a s-t cut (Vs, Vt) is δ(Vs, Vt) =

∑
u∈Vs,v∈Vt

c(uv) (with

the convention that, if uv /∈ A, then c(u, v) = 0).

Question 3 Let f be any s-t flow in N and (Vs, Vt) be any s-t cut. Show that v(f) ≤ δ(Vs, Vt).
Let v∗ be the maximum value of a s-t flow in N and δ∗ be the minimum capacity of a s-t

cut. Show that v∗ ≤ δ∗.

Previous question aims at showing that a minimum s-t cut in N is a bottleneck for a maxi-
mum s-t flow in N . We will show a tighter relationship in what follows.

1

1.1 Ford-Fulkerson algorithm

Let N = (D = (V,A), s, t, c : A→ R+) be a flow network and let f : A→ R+ be a s-t flow.
The auxiliary digraph Naux with respect to (N , f) is the digraph with auxiliary arc capacity

caux defined as follows. Naux has vertex set V and, for every (u, v) ∈ V ×V , add an arc uv with
capacity caux(uv) = c(uv)− f(uv) + f(vu) in Naux.

Note that uv ∈ V × V may be an arc (with positive auxiliary capacity, i.e., caux(uv) > 0) of
Naux even if uv /∈ A.

s a

e

c t

b

3 33
4 2

2 7

s a

e

c t

b

3 33

Network flow
(capacity in blue)

Initial flow f from s to t
(amount of flow on each arc in red)

Figure 1 – (left) Network flow N with arcs’ capacity in blue. (right) A s-t flow f : a red number
on an arc indicates the amount of flow along it. Arcs that are represented in grey have no flow.

Question 4 Consider the network flow N described in Figure 1. Prove that the function f :
A→ R+ (in red on the Figure) is a flow. Draw the auxiliary digraph Naux with respect to (N , f).

Let N = (D = (V,A), s, t, c : A → R+) be a flow network, f : A → R+ be a s-t flow and
Naux be the auxiliary digraph with respect to (N , f). Assume that there is a directed path P
from s to t in Naux with ε = min

a∈A(P)
caux(a) > 0. Let f ′ : A→ R be defined as follows :

— For every arc a ∈ A \A(P), let f ′(a) = f(a) ;
— For every arc a ∈ A ∩A(P) with f(a) + ε ≤ c(a), then f ′(a) = f(a) + ε ;
— Else, if a = uv ∈ A ∩ A(P) and f(a) + ε > c(a), let f ′(a) = c(a) and f ′(vu) = f(vu) −

(ε− (c(a)− f(a))).
By performing the above operation, we say that f ′ is obtained from f by pushing ε amount

of flow along the (not necessarily directed) path P in N .

Question 5 Prove that f ′ is a s-t flow in N with v(f ′) = v(f) + ε > v(f).

Let us consider the following (Ford-Fulkerson) Algorithm 1.

Question 6 Prove that if Algorithm 1 terminates, then it returns a s-t flow in N .

Let us consider the following pathological example described in Figure 2.

Question 7 Consider the flow network N and initial flow described (in red) in Figure 2. Ap-
ply Algorithm 1 to it by, iteratively pushing flow along path (s, c, d, a, b, t), then along path
(s, c, b, a, d, t), then along path (s, a, b, c, d, t) and then along path (s, a, d, c, b, t), and iteratively
repeating such a sequence of pushing paths. Conclusion ?

2

Algorithm 1 Ford-Fulkerson’s algorithm.

Require: A network flow N = (D = (V,A), s, t, c : A→ R+) and initial s-t flow f0 : A→ R+.
Ensure: If it terminates, a s-t flow f ′ : A→ R+ with maximum value.
1: f ← f0.
2: Let Naux be the auxiliary digraph with respect to (N , f).
3: while There exists a directed s-t path P in Naux with ε = min

a∈A(P)
caux(a) > 0 do

4: Let f ′ be obtained from f by pushing ε amount of flow along P in N .
5: f ← f ′.
6: Let Naux be the auxiliary digraph with respect to (N , f).
7: return f

s

d

c

b

a

t

infinity , 1

infinity

infinity , alpha+alpha^2

infinity

infinity , 1

infinity

infinity

infinity , alpha

infinity

infinity , 1+alpha^2

infinity , alpha^2

infinity , alpha

Figure 2 – An example of Network flow, with arc capacities in blue, and initial flow (of value
1 + α + α2) in red, with 0 < α < 1. (Note : alpha in the Figure means α and alphâ 2 in the
Figure means alpha2, i.e., α2)

Question 8 Prove that if c : A→ N and f0 : A→ N, then Algorithm 1 terminates and that its
returns a function f : A→ N with v(f) ∈ N.

Let N = (D = (V,A), s, t, c : A→ R+) be a flow network and f0 : A→ R+ be an initial s-t
flow. Assume that Algorithm 1, applied on N and f0, terminates. Let N ′ and f ′ be the values
of Naux and of f at the last iteration of the While-loop of Algorithm 1 before terminating. Note
that Algorithm 1 returns f ′ and that (because of the While-loop condition), there is no directed
path from s to t in N ′. Let Vs be the set of vertices v such that there is a directed path (with
positive capacities) from s to v in the auxiliary digraph N ′, and let Vt = V \ Vs.

Question 9 Prove that (Vs, Vt) is an s-t cut (in N) with capacity v(f ′).

Question 10 Deduce that, if Algorithm 1 terminates, it computes a s-t flow with maximum
value.

Question 11 Prove the following theorem :

3

Theorem 1 (Max flow-Min Cut) In any network flow N = (D = (V,A), s, t, c : A → N),
the minimum capacity of an s-t cut equals the maximum value of a flow from s to t.

Question 12 Assume that c : A → N. Prove that the Ford-Fulkerson algorithm (Algorithm 1)
computes a maximum s-t flow in time O(fmax|A|) where fmax is any upper bound on the maxi-
mum value of a s-t flow in N .

2 Flow and Linear Programming

2.1 Duality in Linear Programming

Let n,m ∈ N. Let x1, · · · , xn be n non-negative real variables and, for every 1 ≤ i ≤ n and
1 ≤ j ≤ m, let aj,i and ci ∈ R be given constants. Let us consider the following Linear Program.

maximize
∑

1≤i≤n
cixi

subject to

(constraint Cj :)
∑

1≤i≤n
aj,ixi ≤ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ n
The solution of the LP, denoted by OPT , is the optimal value of its objective function. A

feasible assignement is any assignment (x1, · · · , xn) of the variables that satisfies all constraints
Cj and such that xi ≥ 0 for all 1 ≤ i ≤ n.

Question 13 Give four simple concrete examples of LPs with 2 variables x1 and x2 : one with
no solution (i.e., no feasible assignment), one with unbounded solution (i.e., OPT = ∞), one
with one finite solution and infinite number of feasible assignments achieving this solution, one
with one finite solution and a single feasible assignment achieving this solution.

For each of the four required LPs, draw the feasibility domain in R2 and show where the
optimal solution (if any) is achieved.

The goal of this section is to find a “good” upper bound on OPT .

Question 14 Let 1 ≤ j ≤ m and let β = max
1≤i≤n

| ciaj,i
|. Show that, if the above LP admits a

solution OPT , then OPT ≤ β · bj.
Above, we gave an upper bound on OPT by using a single constraint (Cj). To obtain a better
(i.e., smaller) upper bound, let us consider a linear combination of all the constraints.

Question 15 Let (y1, · · · , ym) ∈ (R+)n be such that, for every 1 ≤ i ≤ n,
∑

1≤j≤m
yjaj,i ≥ ci.

Show that, if the above LP admits a solution OPT , then OPT ≤
∑

1≤j≤m
yjbj.

Let us consider the following LP with variables y1, · · · , ym which is called the dual of the
above LP (which is called the primal)

minimize
∑

1≤j≤m
bjyj

subject to

(constraint C∗i :)
∑

1≤j≤m
aj,iyj ≥ ci ∀1 ≤ i ≤ n

yj ≥ 0 ∀1 ≤ j ≤ m

4

Question 16 Show that the dual of the dual of a LP is the primal LP.

Question 17 Assume that the above primal LP and dual LP admit bounded solutions, respec-
tively OPT and OPT ′. Show that OPT ≤ OPT ′.

Then, if x∗ = (x1, · · · , xn) is a feasible assignment of the primal LP and y∗ = (y1, · · · , ym)
is a feasible assignment of the dual LP such that

∑
1≤j≤m

cjyj =
∑

1≤i≤n
cixi = OPT ∗, show that

OPT ∗ is an optimal solution of both the primal and the dual.

In what follows, we will assume the following fundamental theorem (that can be proved, e.g.,
using the simplex method and previous question).

Theorem 2 (LP duality) A primal LP has a bounded solution OPT if and only if its dual
has a bounded solution OPT ′. Moreover, in that case, OPT = OPT ′.

2.2 Max Flow - Min Cut duality

Let N = (D = (V,A), s, t, c) be a network flow.

Question 18 Give a LP for solving the maximum s-t flow problem, using one variable fa per
arc a ∈ A, and one constraint per vertex.

The minimum s-t cut problem consists in computing an s-t cut, inN , with minimum capacity.

Question 19 Let F ⊆ A be a subset of arcs such that, for every directed path P from s to t,
A(P) ∩ F 6= ∅. Show that there is an s-t cut (Vs, Vt) such that δ(Vs, Vt) ≤

∑
a∈F

c(a).

Reciprocally, show that for every s-t cut (Vs, Vt), there exists some F ⊆ A intersecting every
directed path P from s to t, such that

∑
a∈F

c(a) ≤ δ(Vs, Vt).

Question 20 Give a LP for solving the minimum s-t cut problem, using one variable ya per
arc and one constraint per directed path P from s to t.

Question 21 Give the dual LP of the previous Linear program, with one variable per directed
path P from s to t and one constraint per arc.

Question 22 Show that the LP defined in previous question actually defines a s-t flow.

From what precedes, we aim at proving Theorem 1 in a different way than the proof provided
in Section 1.

Question 23 Use Theorem 2 and above questions to prove Theorem 1, i.e., that the value of a
maximum s-t flow equals the minimum capacity of a s-t cut.

3 Applications of Flows in Graphs

3.1 Maximum matching in Bipartite Graphs

Let G = (A,B) be a bipartite graph. Recall that a matching is a set of pairwise disjoint
edges. Let DG be the digraph obtained from G by orienting every edge uv ∈ E(G) from u ∈ A
to v ∈ B. Let N = (D = (V,A), s, t, c) be the network flow obtained from DG by adding to DG

one vertex s with arcs su for all u ∈ A and one vertex t with arcs vt for all v ∈ B. Finally, let
c : A(D)→ R+ such that c(a) = 1 for all a ∈ A(D).

5

Question 24 Let k ∈ N. Show that there is bijection between any integral flow in N (i.e., flow
f : A→ N) of value k and any matching in G of size k.

Question 25 Deduce, from previous question, question 8 and question 12, a polynomial-time
algorithm that computes a maximum matching in any bipartite graph G.

3.2 Vertex-disjoint paths and Menger’s theorem

In any (tele)communication network, it is important to ensure that several paths exist bet-
ween any pair of vertices. Therefore, if some path cannot be use because of some problem/fault,
another one may be used.

Let G = (V,E) be an undirected graph and s, t ∈ V be two distinct vertices. The question
addressed in this section aims at finding a maximum number of internally vertex-disjoint s-t
(simple) paths inG (two s-t paths P andQ are internally vertex-disjoint if V (P)∩V (Q) ⊆ {s, t}).

Let D = (V,A) be the digraph defined as follows. Let V (D) = {v+, v− | v ∈ V } and
A(D) = {v−v+ | v ∈ V } ∪ {v+w− | vw ∈ E}. Let N = (D = (V,A), s, t, c) be the network flow
obtained from D by having capacity one to every arc.

Question 26 Let k ∈ N. Show that there is a bijection between any integral flow in N (i.e.,
flow f : A→ N) of value k and any k internally vertex disjoint s-t paths in G.

A set of vertices S ⊆ V \ {s, t} is an s-t separator in G if every s-t path intersects S or,
equivalently, if s and t are in distinct connected components of G \ S.

Question 27 Let k ∈ N. Show that there is an s-t separator of size k in G if and only if there
is a s-t cut of size k in N .

Question 28 Prove the following theorem :

Theorem 3 (Menger’s theorem) Let G = (V,E) be any graph and s, t ∈ V . Then the maxi-
mum number of internally vertex disjoint s-t paths equals the minimum size of an s-t separator.
Moreover, such a maximum number of internally vertex disjoint s-t paths can be computed in
polynomial time.

6

