
University Nice Côte d’Azur Graphs
Master 1, Informatique et Interactions February-March 2020

Exercises : Spanning Trees and Matchings

To be returned for March 30th 2020.

The goal of this homework is to learn basic concepts on graphs, how to prove
some properties and how to execute algorithms.

1 Minimum Spanning Tree vs. Shortest Path Tree

A tree is a connected acyclic graph.

Question 1 Let T = (V,E) be a tree and u, v ∈ V be two distinct vertices. Show that there
exists a unique path between u and v in T . hint : proof by contradiction.

Let G = (V,E) be a connected graph with a weight function w : E → R+. Let P =
(v1, v2, · · · , v`) be any path in G. The weight (or length) of P equals

∑
1≤i<`

w(vivi+1). Given two

vertices u, v ∈ V , the distance distG(u, v) between u and v equals the minimum length of a
path between u and v (if u = v, then distG(u, v) = distG(u, u) = 0).

Let d > 9. Let us consider the following weighted graph H = (V,E) with d + 1 nodes
V = {v0, v1, · · · , vd} such that, for every 1 ≤ i ≤ d, there is an edge with weight/length
w(v0, vi) = d from v0 to vi, and, for any 1 ≤ i < d, there is an edge with weight/length
w(vi, vi+1) = i between vi and vi+1. This graph H is depicted in Figure 1.
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Figure 1 – The graph H with d+ 1 vertices (d > 9). A red number indicates the weight/length
of the arc it is close to.

Question 2 For every 0 ≤ i ≤ j ≤ d, give the distance distH(vi, vj) between vi and vj in the
graph H. Explain briefly by giving a shortest path for each pair of vertices.

A tree T = (V,E) rooted in r is simply a tree with a particular specified vertex, its root,
r ∈ V . A spanning tree T of a graph G = (V,E), such that T is rooted in r ∈ V , is a shortest
path tree of G if, for every v ∈ V , the unique path between r and v in T has length distG(r, v).

The goal of the following is to understand the difference between minimum
spanning trees and shortest path trees.
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Question 3 Appy the Boruvska (or Kruskal, or Primm) Algorithm to the graph H. Explain
how you proceed and what is the result that you obtain.

Question 4 Give d different minimum spanning trees of H.
hint : consider the choices you had when applying the algorithm.

Question 5 Let T be a spanning tree of H such that v0 has degree at least two in T . Show that
T is not a minimum spanning tree of H.

Question 6 Prove that there are exactly d distinct minimum spanning trees in H.
hint : use Questions 4) and 5).

Question 7 (*) Show that no minimum spanning tree of H is a shortest-path tree. That is, for
any minimum spanning-tree T of G and for any v ∈ V (H), T is not a shortest-path tree rooted
in v. hint : the fact that d > 9 is important here.

2 Maximum and Perfect Matchings

A matching M in a graph G = (V,E) is any subset M ⊆ E of pairwise disjoint edges (they
do not share vertices), i.e., for all distinct e, f ∈ M , e ∩ f = ∅. Given a set F ⊆ E of edges, let
V (F ) = {u ∈ V | ∃e ∈ F, u ∈ e} be the set of vertices that are the end of at least one edge in
F , i.e., the set of vertices “touched” by some edge in F . A matching M ⊆ E of G is perfect
if V (M) = V , i.e., each vertex is “touched” by an edge of the the matching M . A matching
M ⊆ E is maximum in G if, for every matching M ′ in G, |M ′| ≤ |M |.

Question 8 Prove that if G admits a perfect matching M , then M is a maximum matching.
hint : what is the size of a perfect matching in function of |V | ?

2.1 Case of bipartite graphs

Given a graph G = (V,E), a set of vertices S ⊆ V is said stable (or independent set) if,
every two distinct vertices of S are not adjacent in G, i.e., for all u, v ∈ S, {u, v} /∈ E. A
graph G = (V,E) is bipartite if V can be partitioned into two stable sets, i.e., there exist
A,B ⊆ V such that V = A∪B, A∩B = ∅ and A and B are stable. If G is bipartite, let us note
G = (A,B,E) to explicit two possible stable sets A and B.

Given a bipartite graph G = (A,B,E) and a matching M ⊆ E of G, M saturates A if
A ⊆ V (M), i.e., if each vertex of A is “touched” by an edge in M .

Question 9 Let G = (A,B,E) be a bipartite graph and assume that |A| ≤ |B|. Prove that every
maximum matching M in G is such that |M | ≤ |A|.

Deduce that, if there exists a matching saturating A, then it is a maximum matching in G.

Question 10 Let G = (A,B,E) be a bipartite graph. Let S ⊆ A and assume that N(S) = {v ∈
V | ∃u ∈ S, {u, v} ∈ E} ⊆ B, i.e., N(S) is the set of vertices (necessarily in B) that have a
neighbor in S, is such that |S| > |N(S)|. Show that no matching in G saturates A.

Next two questions aim at understanding how to compute a matching saturating
A in a bipartite graph G = (A,B,E), or showing that no such matching exists.
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Algorithm 1 : Hungarian method [Kuhn 1955]

Require: A bipartite graph G = (A ∪B,E).
Ensure: A matching M saturating A or a set S ⊆ A such that |S| > |N(S)|.
1: M ← ∅.
2: while A is not saturated by M do
3: Let a0 ∈ A be any vertex not covered by M . Set X = {a0}.
4: Let Continue = True.
5: while N(X) saturated by M and Continue do
6: Y ← {a0} ∪ {a | ∃b ∈ N(X), {a, b} ∈M}.
7: if X ⊂ Y then
8: X ← Y
9: else

10: Continue = False.
11: if ∃b0 ∈ N(X) not covered by M then
12: Let P be an M -augmenting path between a0 and b0 ;
13: M ← (M \ E(P )) ∪ (E(P ) \M).
14: else
15: return X
16: return M .
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Figure 2 – Two examples of connected bipartite graphs.

Question 11 Apply Algorithm 1 on the graph depicted in Figure 2 (left). Apply it in the graph
depicted in Figure 2 (right). In both cases, describe the basic steps and what is the result that
you obtain.

Question 12 (*) Prove the following theorem :

Theorem 1 (Hall) A bipartite graph G = (A,B,E) admits a matching saturating A if and
only if ∀S ⊆ A, |S| ≤ |N(S)|. hint : have a look on the lecture notes.

2.2 General graphs

To conclude this homework, we aim at generalizing previous notions to graphs
that are not necessarily bipartite. Here, we focus on cubic graphs.

Let G = (V,E) be an undirected cubic graph. That is, every vertex of G has degree 3. An
example of a cubic graph is depicted in Figure 3 where bold edges represent a perfect matching.
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Figure 3 – A cubic graph with a perfect matching.

Given a graph G = (V,E) and S ⊆ V , the subgraph G[S] of G induced by S, is the
subgraph of G with vertex-set S and all edges of G that have both ends in S, i.e., V (G[S]) = S
and E(G[S]) = E∩(S×S). A component of G−S is any connected component of G[V \S], i.e.,
any maximal connected component of the subgraph obtained from G by removing the vertices
in S. A component C of G − S is odd if it has an odd number of vertices. A (sub)graph H is
2-edge connected if removing any edge from H lets the resulting subgraph connected, that is,
for every e ∈ E(H), the graph obtained from H by removing the edge e (but keeping its ends)
is still connected.

We recall that 2|E| =
∑

v∈V deg(v), where deg(v) denotes the degree of the vertex v.

Question 13 Show that, if C ⊆ V has odd size, then there is an odd number of edges between
C and V \ C.

Question 14 Deduce from Question 13 that, if G is cubic and 2-edge connected, there are at
least three edges between any set S ⊆ V and an odd component C of G− S.

Let imp(G) denote the number of connected components of G with an odd number of vertices.
In what follow, the following theorem can be used without proving it.

Theorem 2 (Tutte) A graph G admits a perfect matching if and only if ∀S ⊆ V , |S| ≥
imp(G− S).

Question 15 (*) Using the theorem of Tutte above, deduce from Question 14, that if G is cubic
and 2-edge connected, then G admits a perfect matching.

Question 16 Give an example of a cubic graph without perfect matching. Justify your answer.
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