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Pursuit-Evasion Games

Mobile agents in a graph.

Turn-by-turn with 2 players.

Coordination for common goal, e.g.,
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Eternal Domination (protection)

(Goddard et al, 2005)

natural applications : coordination of mobile autonomous agents
(Robotics, Network Security, Information Seeking...)
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2/26

Pursuit-Evasion Games

Mobile agents in a graph.

Turn-by-turn with 2 players.

Coordination for common goal, e.g.,

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1 1

1

1 1

1

1 1

1

1 11

Cops and Robbers (capture) (Quilliot,

1978 ; Nowakowski, Winkler, 1983)

1 1 1 1 1 1 1

1 1 1

1

1

1

1

1 1

1

1 111 1

1

1 1

1

1 1

1

1 1 11 1

1

1 1

Eternal Domination (protection)

(Goddard et al, 2005)

natural applications : coordination of mobile autonomous agents
(Robotics, Network Security, Information Seeking...)

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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2/26

Pursuit-Evasion Games

Mobile agents in a graph.

Turn-by-turn with 2 players.

Coordination for common goal, e.g.,

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1 1

1

1 1

1

1 1

1

1

11

Cops and Robbers (capture) (Quilliot,

1978 ; Nowakowski, Winkler, 1983)

1 1 1 1 1 1 1

1 1 1

1

1

1

1

1 1

1

1 1

11 1

1

1 1

1

1 1

1

1 1 11 1

1

1 1

Eternal Domination (protection)

(Goddard et al, 2005)

natural applications : coordination of mobile autonomous agents
(Robotics, Network Security, Information Seeking...)

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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Spy Game

Spy (1st) vs guards (2nd) in a
graph G .

Start : Spy placed at a vertex.
Then, guards placed.

Turn-by-turn : Spy traverses up
to s ≥ 2 edges. Guards traverse
up to 1 edge.

Goal : Spy wants to be at least
distance d + 1 from all guards.

Ex : s = 2 and d = 1.

1 1 1 1
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1 1 1

1

1

11

11 1

1

1
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Guard Number : gns,d(G )

Definition

For all s ≥ 2, d ≥ 0 and a graph G , gns,d(G ) is the minimum
number of guards guaranteed to win vs the spy.

1 1 1 1

1

1 11

gn2,1(G ) = 2

gns,1(G ) ≤ γ(G )
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Our Results : Computing gn

Complexity

Calculating gns,d is NP-hard in general.

Tight bounds for paths

gns,d(Pn) =
⌈

n
2d+2+q

⌉
where q = b 2d

s−1c.

Almost tight bounds for cycles⌈
n+2q

2(d+q)+3

⌉
≤ gns,d(Cn) ≤

⌈
n+2q

2(d+q)+1

⌉
where q = b 2d

s−1c.

Polynomial time Linear Program for trees

Can calculate gns,d(T ) and a corresp. strategy in polynomial time.

Grids

∃β > 0, s.t. Ω(n1+β) ≤ gns,d(Gn×n).
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Related Work

Cops vs robber (capture at a distance) (Bonato et al, 2010).

Cops vs fast robber (Fomin et al, 2010).

How many cops needed in an n × n grid ?

Eternal Domination (Goddard et al, 2005).

γm(m × n grid) ≤ dmn
5 e+ O(m + n) (Lamprou et al, 2016).

γm(G ) = gns,d(G ) when s =∞ and d = 0.
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5 e+ O(m + n) (Lamprou et al, 2016).

γm(G ) = gns,d(G ) when s =∞ and d = 0.
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Paths

: Lower bound

Theorem

For all s ≥ 2, d ≥ 0, and a path Pn on n vertices,

gns,d(Pn) =

⌈
n

2d+2+b 2d
s−1
c

⌉

Ex : s = 3 and d = 1.
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Paths : Upper bound

Theorem

For all s ≥ 2, d ≥ 0, and a path Pn on n vertices,

gns,d(Pn) =

⌈
n
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c

⌉
Ex : s = 3 and d = 1.

1 guard can protect subpath of 2d + 2 + b 2d
s−1c vertices.
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8/26

Paths : Upper bound

Theorem

For all s ≥ 2, d ≥ 0, and a path Pn on n vertices,

gns,d(Pn) =

⌈
n

2d+2+b 2d
s−1
c

⌉
Ex : s = 3 and d = 1.

1 guard can protect subpath of 2d + 2 + b 2d
s−1c vertices.

1 1 1 1 11

11 111 11 11

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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8/26

Paths : Upper bound

Theorem

For all s ≥ 2, d ≥ 0, and a path Pn on n vertices,

gns,d(Pn) =

⌈
n

2d+2+b 2d
s−1
c

⌉
Ex : s = 3 and d = 1.

1 guard can protect subpath of 2d + 2 + b 2d
s−1c vertices.

1 1 1 1 1

1 1

1 1

11 11 11

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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Paths : Upper bound

Theorem

For all s ≥ 2, d ≥ 0, and a path Pn on n vertices,

gns,d(Pn) =

⌈
n

2d+2+b 2d
s−1
c

⌉
Each guard protects a subpath of 2d + 2 + b 2d

s−1c vertices.
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Guard Strategies

Spy-Positional Strategy :

f : V k × V ⇒ V k (Unrestricted strategy)

ω : V ⇒ V k (Restricted or Spy-Positional strategy)

Guards’ positions depend only on position of spy.

Unique configuration for guards for each position of spy.

Zonal Strategy :

Divide graph into subgraphs & assign certain number of guards to
each.

Optimal strategy in paths uses both strategies above.
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Cycles : Upper Bound Case 2d < s − 1

Theorem

For all s ≥ 2, d ≥ 0 s.t. 2d < s − 1,
and a cycle Cn on n vertices,

gns,d(Cn) =
⌈

n
2d+3

⌉
.

Ex : s = 6 and d = 0.

gn6,0(C12) = 4
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Cycles

Theorem

For all s ≥ 2, d ≥ 0 s.t. q = 0, and a cycle Cn on n vertices,

gns,d(Cn) =
⌈

n
2d+3

⌉
.

Theorem

For all s ≥ 2, d ≥ 0 s.t. q 6= 0, and a cycle Cn on n vertices,⌈
n+2q

2(d+q)+3

⌉
≤ gns,d(Cn) ≤

⌈
n+2q

2(d+q)+1

⌉
.

Reminder : q =
⌊

2d
s−1

⌋
.
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Trees are Harder

Zonal strategy in Paths : 1 guard per subpath of 2d + 2 + b 2d
s−1c

vertices.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Trees are Harder

Can’t always divide tree into subtrees protected by a certain
number of guards. No Zonal strategy in trees.

11 1
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111
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1 1 1

1 1 1

1 1 1

1
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1

1

1

1

1

1

1

1 1 1

11

11

11 1 111

11

1

11

1

11

Example of a tree T where s = 2, d = 1 and gn2,1(T ) = 4.

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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Fractional Version of the Game

Guards may be fractional entities ;
movements rep. by flows.

Unchanged for spy. Total fraction
of guards distance ≤ d from spy
must be ≥ 1.

Linear program to compute optimal
spy-positional fractional strategy.

Optimal fractional strategy ⇒
optimal integral strategy in trees.

s = 2, d = 1.
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gn2,1(C6) = 2
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1.5 guards suffice.
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15/26

Fractional Version of the Game

Guards may be fractional entities ;
movements rep. by flows.

Unchanged for spy. Total fraction
of guards distance ≤ d from spy
must be ≥ 1.

Linear program to compute optimal
spy-positional fractional strategy.

Optimal fractional strategy ⇒
optimal integral strategy in trees.

s = 2, d = 1.

1 1

11

1 1

d
0.25 0.25

0.25 0.250.25

0.25

1
0.5
1

0.5
1

0.5
1

gn2,1(C6) = 2
but

1.5 guards suffice.

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs
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Opt. Fractional Strategy ⇒ Opt. Integral Strategy in Trees

Theorem : Can transform optimal fractional strategy into optimal
integral strategy in polynomial time.
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Opt. Fractional Strategy ⇒ Opt. Integral Strategy in Trees
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Restricted Strategies

f : V k × V ⇒ V k (Unrestricted strategy)

ω : V ⇒ V k (Restricted or Spy-Positional strategy)

Guards’ positions depend only on position of spy.

Unique configuration for guards for each position of spy.

Theorem

Optimal fractional strategy ⇒ optimal fractional Spy-Positional
strategy in trees.

Can calculate optimal Spy-positional fractional strategies with
Linear Program in polynomial time.
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Linear Program to Compute Spy-Positional Strategy

Spy-positional strategy : ω : V ⇒ V k

ωx ,u : quantity of guards on u when spy is on x .

fx ,x ′,u,u′ : quantity of guards that go from u to u′ when spy goes
from x to x ′.

(1) Minimize
∑
v∈V

ωx0,v

Minimize number of guards.
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Linear Program to Compute Spy-Positional Strategy

Spy-positional strategy : ω : V ⇒ V k

ωx ,u : quantity of guards on u when spy is on x .

fx ,x ′,u,u′ : quantity of guards that go from u to u′ when spy goes
from x to x ′.

(2)
∑

v∈Nd [x]

ωx ,v ≥ 1 ∀x ∈ V

Guarantees always at least 1 guard within distance d of spy.
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Linear Program to Compute Spy-Positional Strategy

Spy-positional strategy : ω : V ⇒ V k
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from x to x ′.

(3)
∑
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∑

u′∈N[u]
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Guarantees validity of moves of guards when spy moves.

O(n4) real variables and constraints.
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Main Result : gn in Trees

Theorem

∀s > 1, d ≥ 0 and all trees T , gns,d(T ) and a corresponding
strategy can be calculated in polynomial time.

Idea of proof : Linear Program can compute opt. frac.
Spy-positional strategy in polynomial time.

Run LP. From previous theorem, strategy is opt. frac.

Can transform opt. frac. into opt. int. in polynomial time.
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Grids

Theorem

∃β > 0, s.t. ∀s > 1, d ≥ 0, Ω(n1+β) ≤ gns,d(Gn×n).

Idea of proof : Lower bound holds for fractional version.

Torus and grid have same order of number of guards.

Theorem

∃α ≥ log(3/2) ≈ 0.58, s.t. ∀s > 1, d ≥ 0,
fgns,d(Gn×n) ≤ O(n2−α).

Idea of proof : Density function ω∗(v) = c
(dist(v ,v0)+1)log3/2 for a

constant c > 0 satisfies LP.

1
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Distribution of Guards in the Torus for an optimal
symmetrical spy-positional strategy when n = 100,
m = 100, s = 2 and d = 1
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Further Work

Determine gns,d(Gn×n).

Approximate gns,d(G ) in polynomial time in certain classes of
graphs ?

Fractional approach applied to other combinatorial games.
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26/26

Gracias !
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