Spy Game on Graphs

Nicolas Nisse³ Stéphane Pérennes³ Rudini Sampaio²

Nathann Cohen¹ Nícolas A. Martins² Fionn Mc Inerney³

¹CNRS, Univ Paris Sud, LRI, Orsav, France

²Universidade Federal do Ceará, Fortaleza, Brazil

³Université Côte d'Azur, Inria, CNRS, I3S, France

UAI, Santiago, Chile, November 30, 2017

Seminario del Doctorado en Ingeniería de Sistemas Complejos

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,

Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983)

Eternal Domination (protection) (Goddard et al, 2005)

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Start : Spy placed at a vertex. Then, guards placed.

Turn-by-turn : Spy traverses up to $s \ge 2$ edges. Guards traverse up to 1 edge.

Goal : Spy wants to be at least distance $\mathbf{d} + 1$ from all guards.

Definition

For all $s \ge 2$, $d \ge 0$ and a graph G, $gn_{s,d}(G)$ is the minimum number of guards guaranteed to win vs the spy.

Definition

For all $s \ge 2$, $d \ge 0$ and a graph G, $gn_{s,d}(G)$ is the minimum number of guards guaranteed to win vs the spy.

 $gn_{2,1}(G) = 2$ $gn_{s,1}(G) \le \gamma(G)$

Our Results : Computing gn

Complexity

Calculating $gn_{s,d}$ is NP-hard in general.

Tight bounds for paths

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+q} \right\rceil$$
 where $q = \lfloor \frac{2d}{s-1} \rfloor$.

Almost tight bounds for cycles

$$\left\lceil \frac{n+2q}{2(d+q)+3} \right\rceil \leq gn_{s,d}(C_n) \leq \left\lceil \frac{n+2q}{2(d+q)+1} \right\rceil \text{ where } q = \lfloor \frac{2d}{s-1} \rfloor.$$

Polynomial time Linear Program for trees

Can calculate $gn_{s,d}(T)$ and a corresp. strategy in polynomial time.

Grids

$$\exists \beta > 0$$
, s.t. $\Omega(n^{1+\beta}) \leq gn_{s,d}(G_{n \times n})$.

• Cops vs robber (capture at a distance) (Bonato et al, 2010).

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - How many cops needed in an $n \times n$ grid?

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - How many cops needed in an $n \times n$ grid?
- Eternal Domination (Goddard et al, 2005).

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - How many cops needed in an $n \times n$ grid?
- Eternal Domination (Goddard et al, 2005).
 - $\gamma^m(m \times n \text{ grid}) \leq \lceil \frac{mn}{5} \rceil + O(m+n)$ (Lamprou et al, 2016).
- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - How many cops needed in an $n \times n$ grid?
- Eternal Domination (Goddard et al, 2005).
 - $\gamma^m(m \times n \text{ grid}) \leq \lceil \frac{mn}{5} \rceil + O(m+n)$ (Lamprou et al, 2016).
 - $\gamma^m(G) = gn_{s,d}(G)$ when $s = \infty$ and d = 0.

For all $s \ge 2$, $d \ge 0$, and a path P_n on n vertices, $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

For all $s \ge 2$, $d \ge 0$, and a path P_n on n vertices, $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all $s \ge 2$, $d \ge 0$, and a path P_n on n vertices, $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex :
$$s = 3$$
 and $d = 1$.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

Theorem

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Ex : s = 3 and d = 1.

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

For all
$$s \ge 2$$
, $d \ge 0$, and a path P_n on n vertices,
 $gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$

Spy-Positional Strategy :

- $f: V^k \times V \Rightarrow V^k$ (Unrestricted strategy)
- $\omega: V \Rightarrow V^k$ (Restricted or **Spy-Positional** strategy)
 - Guards' positions depend only on position of spy.
 - Unique configuration for guards for each position of spy.

Zonal Strategy :

Divide graph into subgraphs & assign certain number of guards to each.

Optimal strategy in paths uses both strategies above.

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

Theorem

Ex :
$$s = 6$$
 and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$

For all $s \ge 2$, $d \ge 0$ s.t. q = 0, and a cycle C_n on n vertices, $gn_{s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil$.

Theorem

For all $s \ge 2$, $d \ge 0$ s.t. $q \ne 0$, and a cycle C_n on n vertices, $\left\lceil \frac{n+2q}{2(d+q)+3} \right\rceil \le gn_{s,d}(C_n) \le \left\lceil \frac{n+2q}{2(d+q)+1} \right\rceil$.

Reminder : $q = \left\lfloor \frac{2d}{s-1} \right\rfloor$.

Zonal strategy in Paths : 1 guard per subpath of $2d + 2 + \lfloor \frac{2d}{s-1} \rfloor$ vertices.

Example of a tree T where s = 2, d = 1 and $gn_{2,1}(T) = 4$.

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs

Example of a tree T where s = 2, d = 1 and $gn_{2,1}(T) = 4$.

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance ≤ d from spy must be ≥ 1.

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance ≤ d from spy must be ≥ 1.

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance $\leq d$ from spy must be ≥ 1 .

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance ≤ d from spy must be ≥ 1.

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance ≤ d from spy must be ≥ 1.

• Linear program to compute optimal spy-positional fractional strategy.

- Guards may be fractional entities; movements rep. by flows.
- Unchanged for spy. Total fraction of guards distance ≤ d from spy must be ≥ 1.

- Linear program to compute optimal spy-positional fractional strategy.
- Optimal fractional strategy ⇒ optimal integral strategy in trees.

Theorem : Can transform optimal fractional strategy into optimal integral strategy in polynomial time.

Cohen, Martins, Mc Inerney, Nisse, Pérennes, Sampaio Spy Game on Graphs

Restricted Strategies

- $f: V^k \times V \Rightarrow V^k$ (Unrestricted strategy)
- $\omega: V \Rightarrow V^k$ (Restricted or **Spy-Positional** strategy)
 - Guards' positions depend only on position of spy.
 - Unique configuration for guards for each position of spy.

Restricted Strategies

- $f: V^k \times V \Rightarrow V^k$ (Unrestricted strategy)
- $\omega: V \Rightarrow V^k$ (Restricted or **Spy-Positional** strategy)
 - Guards' positions depend only on position of spy.
 - Unique configuration for guards for each position of spy.

Restricted Strategies

- $f: V^k \times V \Rightarrow V^k$ (Unrestricted strategy)
- $\omega: V \Rightarrow V^k$ (Restricted or **Spy-Positional** strategy)
 - Guards' positions depend only on position of spy.
 - Unique configuration for guards for each position of spy.

Theorem

Optimal fractional strategy \Rightarrow optimal fractional Spy-Positional strategy in trees.
Restricted Strategies

- $f: V^k \times V \Rightarrow V^k$ (Unrestricted strategy)
- $\omega: V \Rightarrow V^k$ (Restricted or **Spy-Positional** strategy)
 - Guards' positions depend only on position of spy.
 - Unique configuration for guards for each position of spy.

Theorem

Optimal fractional strategy \Rightarrow optimal fractional Spy-Positional strategy in trees.

Can calculate optimal Spy-positional fractional strategies with Linear Program in polynomial time.

Spy-positional strategy : $\omega : V \Rightarrow V^k$

 $\omega_{x,u}$: quantity of guards on u when spy is on x.

 $f_{x,x',u,u'}$: quantity of guards that go from u to u' when spy goes from x to x'.

Spy-positional strategy : $\omega : V \Rightarrow V^k$

 $\omega_{x,u}$: quantity of guards on u when spy is on x.

 $f_{x,x',u,u'}$: quantity of guards that go from u to u' when spy goes from x to x'.

(1) Minimize $\sum_{v \in V} \omega_{x_0,v}$

Minimize number of guards.

Spy-positional strategy : $\omega : V \Rightarrow V^k$

 $\omega_{x,u}$: quantity of guards on *u* when spy is on *x*.

 $f_{x,x',u,u'}$: quantity of guards that go from u to u' when spy goes from x to x'.

(2)
$$\sum_{\boldsymbol{v}\in N_d[x]}\omega_{x,\boldsymbol{v}}\geq 1$$
 $\forall x\in V$

Guarantees always at least 1 guard within distance d of spy.

Linear Program to Compute Spy-Positional Strategy

Spy-positional strategy : $\omega : V \Rightarrow V^k$

 $\omega_{x,u}$: quantity of guards on *u* when spy is on *x*.

 $f_{x,x',u,u'}$: quantity of guards that go from u to u' when spy goes from x to x'.

(3)
$$\sum_{\substack{u' \in N[u] \\ u' \in N[u]}} f_{x,x',u,u'} = \omega_{x,u} \qquad \forall u \in V, x' \in N_s[x]$$

(4)
$$\sum_{\substack{u' \in N[u] \\ u' \in N[u]}} f_{x,x',u',u} = \omega_{x',u} \qquad \forall u \in V, x' \in N_s[x]$$

Guarantees validity of moves of guards when spy moves.

Linear Program to Compute Spy-Positional Strategy

Spy-positional strategy : $\omega : V \Rightarrow V^k$

 $\omega_{x,u}$: quantity of guards on *u* when spy is on *x*.

 $f_{x,x',u,u'}$: quantity of guards that go from u to u' when spy goes from x to x'.

(3)
$$\sum_{\substack{u' \in N[u] \\ u' \in N[u]}} f_{x,x',u,u'} = \omega_{x,u} \qquad \forall u \in V, x' \in N_s[x]$$

(4)
$$\sum_{\substack{u' \in N[u] \\ u' \in N[u]}} f_{x,x',u',u} = \omega_{x',u} \qquad \forall u \in V, x' \in N_s[x]$$

Guarantees validity of moves of guards when spy moves.

 $O(n^4)$ real variables and constraints.

Theorem

 $\forall s > 1$, $d \ge 0$ and all trees T, $gn_{s,d}(T)$ and a corresponding strategy can be calculated in polynomial time.

Idea of proof : Linear Program can compute opt. frac. Spy-positional strategy in polynomial time.

Run LP. From previous theorem, strategy is opt. frac.

Can transform opt. frac. into opt. int. in polynomial time.

Theorem

 $\exists \beta > 0$, s.t. $\forall s > 1$, $d \ge 0$, $\Omega(n^{1+\beta}) \le gn_{s,d}(G_{n \times n})$.

Idea of proof : Lower bound holds for fractional version.

Theorem

$$\exists \beta > 0$$
, s.t. $\forall s > 1$, $d \ge 0$, $\Omega(n^{1+\beta}) \le gn_{s,d}(G_{n \times n})$.

Idea of proof : Lower bound holds for fractional version.

Torus and grid have same order of number of guards.

Theorem

 $\exists \alpha \geq \log(3/2) \approx 0.58, \text{ s.t. } \forall s > 1, \ d \geq 0, \\ \textit{fgn}_{s,d}(\textit{G}_{n \times n}) \leq O(n^{2-\alpha}).$

Idea of proof : Density function $\omega^*(v) = \frac{c}{(dist(v,v_0)+1)^{log3/2}}$ for a constant c > 0 satisfies LP

Distribution of Guards in the Torus for an optimal symmetrical spy-positional strategy when n = 100, m = 100, s = 2 and d = 1

- Determine $gn_{s,d}(G_{n \times n})$.
- Approximate gn_{s,d}(G) in polynomial time in certain classes of graphs ?
- Fractional approach applied to other combinatorial games.

Gracias!