Graph Theory and Optimization Introduction on Graphs

Nicolas Nisse

Inria, France
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

Master 1 international, Univ. Nice Sophia Antipolis, September, 2015
Lecture Notes:
http://www-sop.inria.fr/members/Frederic.Giroire/teaching/ubinet/

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Graph: terminology and notations (Vertex/Edge)

A graph $G=(V, E)$

Vertices: $V=V(G)$ is a finite set
Edges: $E=V(E) \subseteq\{\{u, v\} \mid u, v \in V\}$ is a binary relation on V

Example: $G=(V, E)$ with $V=\{a, b, c, d, e, f, g, h, i, j\}$ and $E=\{\{a, b\},\{a, c\},\{a, f\},\{b, g\},\{b, h\},\{c, f\},\{c, d\},\{d, g\},\{d, e\},\{e, j\},\{f, g\},\{f, i\},\{g, h\},\{h, i\},\{h, j\},\{i, j\}\}$.

Graph: terminology and notations (Vertex/Edge)

A graph $G=(V, E)$

Vertices: $V=V(G)$ is a finite set
Edges: $E=V(E) \subseteq\{\{u, v\} \mid u, v \in V\}$ is a binary relation on V

Example: $G=(V, E)$ with $V=\{a, b, c, d, e, f, g, h, i, j\}$ and

$$
E=\{\{a, b\},\{a, c\},\{a, f\},\{b, g\},\{b, h\},\{c, f\},\{c, d\},\{d, g\},\{d, e\},\{e, j\},\{f, g\},\{f, i\},\{g, h\},\{h, i\},\{h, j\},\{i, j\}\}
$$

Exercise: What is the maximum number of edges of a graph with n vertices?

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

1st Example: roads' network

> What is the "best" road for reaching Oulu from Helsinki?

1st Example: roads' network

What is the "best" road for reaching Oulu from Helsinki?

Model geographical netowrk by a graph

1st Example: roads' network

What is the "best" road for reaching Oulu from Helsinki?

Model geographical netowrk by a graph

Use powerful tools that deal with graphs

1st Example: roads' network

More difficult setting

- traffic jam
- bus/subway schedule
- no-left, no-right and no U-turn signs at intersections.

Again, graph algorithm tools may help
That is how your GPS work !!

2nd Example: the Internet

Internet network (Autonomous

Systems)

Optical networks (WDM)

- node= IP routers
- links= optical fiber
- capacity on links
- How to compute "best" routes?
- Where to put Amplificators?

- Which links to be turned off to limit energy consumption?

3rd Example: Social Network

Model of social interaction
a user = a node
 two friends = an edge

- structure of social networks?
- communities?
- how to do advertisement?
- how to prevent advertisement?

More Example: Web (google)

Showin	Google PageRank: sort search results
Shownis search resuls in ordera frelevance Movies com: Eventhing Movies	node= web page
Movies com- movie reviews, movie trailers, movie tickets and showtim Movie Night Right!	link = hyperlink
View META Data - View Inbound Links - Analyze Links Cached Version - Similar Web Sites	(1) finding pages with
The Interne Movie Database (II)	
Mobe The bigestst best, most warad.wining move site on the planel	(2) determining the
$\frac{\text { View META Data }}{\text { Cached Version - View Inbound Links }}$ - - Analyze Links Web Sites Cached Version - Similar Web Sites	importance of a

More Example: Web (google)

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Graph: terminology and notations (Neighbor/Degree)

- two vertices $x \in V$ and $y \in V$ are adjacent or neighbors if $\{x, y\} \in E$ i.e. there is an edge $\{x, y\}$
- $N(x)$: set of neighbors of $x \in V$ ex: $N(g)=\{b, d, f, h\} \subseteq V$
- degree of $x \in V$: number of neighbors of x i.e., $\operatorname{deg}(x)=|N(x)|$

Graph: terminology and notations (Neighbor/Degree)

- two vertices $x \in V$ and $y \in V$ are adjacent or neighbors if $\{x, y\} \in E$ i.e. there is an edge $\{x, y\}$
- $N(x)$: set of neighbors of $x \in V$ ex: $N(g)=\{b, d, f, h\} \subseteq V$
- degree of $x \in V$: number of neighbors of x

$$
\text { i.e., } \operatorname{deg}(x)=|N(x)|
$$

Exercise: Prove that, for any graph $G=(V, E), \quad \sum_{x \in V} \operatorname{deg}(x)=2|E|$

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Terminology and notations (Path/Distance/Connectedness)

- Walk: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$ ex: $W=(a, b, g, h, j, i, f, g, d, e)$

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$ ex: $P_{1}=(a, b, g, h, j)$

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
ex: $P_{1}=(a, b, g, h, j), P_{2}=(a, c, f, g, b, h, j, i, e)$

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
ex: $P_{1}=(a, b, g, h, j), P_{2}=(a, c, f, g, b, h, j, i, e)$
- Length of a path: number of its edges
ex: length $\left(P_{2}\right)=8$

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
ex: $P_{1}=(a, b, g, h, j), P_{2}=(a, c, f, g, b, h, j, i, e)$
- Length of a path: number of its edges
ex: length $\left(P_{2}\right)=8$
- Distance between 2 vertices: length of a shortest path ex: $\operatorname{dist}(a, j)=3$

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
- Length of a path: number of its edges ex: length $\left(P_{2}\right)=8$
- Distance between 2 vertices: length of a shortest path ex: $\operatorname{dist}(a, j)=3$
- $G=(V, E)$ is connected if, for any two vertices $x \in V$ and $y \in V$, there exists a path from x to y.

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
- Length of a path: number of its edges ex: length $\left(P_{2}\right)=8$
- Distance between 2 vertices: length of a shortest path ex: $\operatorname{dist}(a, j)=3$
- $G=(V, E)$ is connected if, for any two vertices $x \in V$ and $y \in V$, there exists a path from x to y.

Exercise: Let G be a graph and $v \in V(G)$
Prove that G is connected iff, for any $y \in V$, there exists a path from x to y.

Terminology and notations (Path/Distance/Connectedness)

- Path: sequence $\left(v_{1}, \cdots, v_{\ell}\right)$ of distinct vertices such that consecutive vertices are adjacent, i.e., $\left\{v_{i}, v_{i+1}\right\} \in E$ for any $1 \leq i<\ell$
- Length of a path: number of its edges ex: length $\left(P_{2}\right)=8$
- Distance between 2 vertices: length of a shortest path ex: $\operatorname{dist}(a, j)=3$
- $G=(V, E)$ is connected if, for any two vertices $x \in V$ and $y \in V$, there exists a path from x to y.

Exercise: Prove that if $|E|<|V|-1$ then $G=(V, E)$ is NOT connected

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Graph: terminology and notations (Trail/Cycle)

- Trail: walk $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: Trail }=(a, b, g, d, c, g, h, i, j, d, e, j, g, f)
$$

Graph: terminology and notations (Trail/Cycle)

- Trail: walk $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: Trail }=(a, b, g, d, c, g, h, i, j, d, e, j, g, f)
$$

- Cycle: path $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: } C_{1}=(d, e, j, i, h, g), C_{2}=(a, c, f)
$$

Graph: terminology and notations (Trail/Cycle)

- Trail: walk $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: Trail }=(a, b, g, d, c, g, h, i, j, d, e, j, g, f)
$$

- Cycle: path $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: } C_{1}=(d, e, j, i, h, g), C_{2}=(a, c, f)
$$

- Eulerian trail: trail passing through all edges

Graph: terminology and notations (Trail/Cycle)

- Trail: walk $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: Trail }=(a, b, g, d, c, g, h, i, j, d, e, j, g, f)
$$

- Cycle: path $\left(v_{1}, \cdots, v_{\ell}\right)$ such that $\ell \geq 3$ and $\left\{v_{1}, v_{\ell}\right\} \in E$

$$
\text { ex: } C_{1}=(d, e, j, i, h, g), C_{2}=(a, c, f)
$$

- Eulerian trail: trail passing through all edges

Exercise: Is this graph Eulerian, i.e., does it have an Eulerian trail?

Graph Theory

an old story

Euler 1735: Koenisberg bridges.
Existe-t-il un parcours empruntant tous les ponts une fois et une seule?
Is there a trail going through each bridge exactly once?

COATI
(91) Civía

Graph Theory

an old story
Modeling: city = graph, island = vertex, bridge = edge

Graph Theory

an old story
Modeling: city = graph, island = vertex, bridge = edge
Question: can we find an eulerian cycle in this graph?
Cycle going through all edges once and only once

Graph Theory
 an old story

Modeling: city = graph, island = vertex, bridge = edge Question: can we find an eulerian cycle in this graph? Solution: Such cycle exists if and only if all nodes have even degree

Graph Theory

 an old storyModeling: city = graph, island = vertex, bridge = edge Question: can we find an eulerian cycle in this graph? Solution: Such cycle exists if and only if all nodes have even degree An intriguing variant: find a cycle going through all vertices once and only once (Hamiltonian cycle) is very difficult

One million dollar (Clay price) !

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Graph: terminology and notations (Tree)

- Tree: connected graph without cycles
- Leaf: vertex of degree 1 in a tree

Graph: terminology and notations (Tree)

- Tree: connected graph without cycles
- Leaf: vertex of degree 1 in a tree

Trees are important because:
"simple" structure + "minimum" structure ensuring connectivity

Theorem:

$T=(V, E)$ is a tree $\Leftrightarrow T$ connected and $|V|=|E|+1$

Graph: terminology and notations (Tree)

Theorem: $T=(V, E)$ is a tree $\Leftrightarrow T$ connected and $|V|=|E|+1$
\Leftarrow By contradiction:

- if T not a tree, then \exists a cycle $\left(v_{1}, \cdots, v_{\ell}\right)$
- Let T^{\prime} be obtained from T by removing edge $\left\{v_{1}, v_{\ell}\right\}$
- T^{\prime} is connected
"technical" part, to be proved
- $\left|E\left(T^{\prime}\right)\right|=|E|-1=|V|-2=\left|V\left(T^{\prime}\right)\right|-2$
- so $\left|E^{\prime}\right|<\left|V^{\prime}\right|-1$ and T^{\prime} is not connected by previous Exercise

A contradiction

Graph: terminology and notations (Tree)

Theorem: $T=(V, E)$ is a tree $\Leftrightarrow T$ connected and $|V|=|E|+1$
\Rightarrow Induction on $|V|$
OK if $|V|=1$

- Let $P=\left(v_{1}, \cdots, v_{\ell}\right)$ be a longest path in T (ℓ max., in particular $\ell \geq 2$)
- v_{1} is a leaf. By contradiction:
- assume $\operatorname{deg}\left(v_{1}\right)>1$, and $x \in N\left(v_{1}\right) \backslash\left\{v_{2}\right\}$
- $x \notin V(P)$ otherwise there is a cycle in T
- then, $\left(x, v_{1}, \cdots, v_{\ell}\right)$ path longer than P, a contradiction
- then $S=T \backslash\left\{v_{1}\right\}$ is a tree
"technical" part, to be proved
- $|V(S)|<|V|$ so, by induction $|V(S)|=|E(S)|+1$
- $|V|=|V(S)|+1$ and $|E|=|E(S)|+1$, so $|V|=|E|-1$

Graph: terminology and notations (subgraph)

- Subgraph of $G=(V, E)$: any graph $H=\left(V^{\prime}, E^{\prime}\right)$ with

$$
V^{\prime} \subseteq V \text { and } E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}
$$

obtained from G by removing some vertices and edges

Graph: terminology and notations (subgraph)

- Subgraph of $G=(V, E)$: any graph $H=\left(V^{\prime}, E^{\prime}\right)$ with

$$
V^{\prime} \subseteq V \text { and } E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}
$$

obtained from G by removing some vertices and edges

Graph: terminology and notations (subgraph)

- Subgraph of $G=(V, E)$: any graph $H=\left(V^{\prime}, E^{\prime}\right)$ with

$$
V^{\prime} \subseteq V \text { and } E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}
$$

obtained from G by removing some vertices and edges

Graph: terminology and notations (subgraph)

- Subgraph of $G=(V, E)$: any graph $H=\left(V^{\prime}, E^{\prime}\right)$ with

$$
V^{\prime} \subseteq V \text { and } E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}
$$

obtained from G by removing some vertices and edges

Graph: terminology and notations (subgraph)

- Subgraph of $G=(V, E)$: any graph $H=\left(V^{\prime}, E^{\prime}\right)$ with

$$
V^{\prime} \subseteq V \text { and } E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}
$$

obtained from G by removing some vertices and edges

Graph: terminology and notations (subgraph)

- Subgraph: $H=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}$
- Spanning subgraph of G : subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V$ obtained from G by removing only some edges

Graph: terminology and notations (subgraph)

- Subgraph: $H=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}$
- Spanning subgraph of G : subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V$ obtained from G by removing only some edges
- Spanning tree of G : spanning subgraph $H=\left(V, E^{\prime}\right)$ with H a tree

Graph: terminology and notations (subgraph)

- Subgraph: $H=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq\left\{\{x, y\} \in E \mid x, y \in V^{\prime}\right\}$
- Spanning subgraph of G : subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V$ obtained from G by removing only some edges
- Spanning tree of G : spanning subgraph $H=\left(V, E^{\prime}\right)$ with H a tree

Exercise: A graph G is connected if and only if G has a spanning tree

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Searching algorithms (BFS/DFS)

Searching algorithms (BFS/DFS)

ToBeExplored=(a)

Searching algorithms (BFS/DFS)

ToBeExplored=(a, b)

Searching algorithms (BFS/DFS)

ToBeExplored=(a,b,c)

Searching algorithms (BFS/DFS)

ToBeExplored=(a,b,c,f)

Searching algorithms (BFS/DFS)

ToBeExplored=(b,c,f)

Searching algorithms (BFS/DFS)

ToBeExplored=(b,c,f)

Searching algorithms (BFS/DFS)

ToBeExplored=(b,c,f,g)

Searching algorithms (BFS/DFS)

Searching algorithms (BFS/DFS)

ToBeExplored=(c,f,g,h)

Searching algorithms (BFS/DFS)

ToBeExplored=(c,f,g,h,d)

Searching algorithms (BFS/DFS)

ToBeExplored=(f,g,h,d)

Searching algorithms (BFS/DFS)

ToBeExplored $=(\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{d}, \mathrm{i})$

Searching algorithms (BFS/DFS)

ToBeExplored=(h,d,i)

Searching algorithms (BFS/DFS)

Searching algorithms (BFS/DFS)

ToBeExplored=(d,i,j)

Searching algorithms (BFS/DFS)

Breadth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$
Initially: $d(r)=0$, ToBeExplored $=(r)$

$$
\text { and } T=(V(T), E(T))=(\{r\}, \emptyset)
$$

While ToBeExplored $\neq \emptyset$ do
Let $v=$ head (ToBeExplored)
for $u \in N(v) \backslash$ ToBeExplored do

$$
d(u) \leftarrow d(v)+1
$$

$$
\text { add } u \text { in } V(T) \text { and }\{v, u\} \text { in } E(T)
$$ add u at the end of ToBeExplored

remove v from ToBeExplored

Searching algorithms (BFS/DFS)

ToBeExplored=(d,i,j,e)

Breadth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$
Initially: $d(r)=0$, ToBeExplored $=(r)$

$$
\text { and } T=(V(T), E(T))=(\{r\}, \emptyset)
$$

While ToBeExplored $\neq \emptyset$ do
Let $v=$ head (ToBeExplored)
for $u \in N(v) \backslash$ ToBeExplored do

$$
d(u) \leftarrow d(v)+1
$$ add u in $V(T)$ and $\{v, u\}$ in $E(T)$ add u at the end of ToBeExplored

remove v from ToBeExplored
Output: for any $v \in V, d(v)=\operatorname{dist}(r, v)$.
T is a shortest path tree of G rooted in r : i.e., T spanning subtree of G s.t. for any $v \in V$, the path from r to v in T is a shortest path from r to v in G.

Searching algorithms (BFS/DFS)

Breadth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$

ToBeExplored=(d,i,j,e)

$$
\begin{aligned}
& \text { Initially: } d(r)=0, \text { ToBeExplored }=(r) \\
& \text { and } T=(V(T), E(T))=(\{r\}, \emptyset) \\
& \text { While ToBeExplored } \neq \emptyset \text { do } \\
& \qquad \begin{array}{l}
\text { Let } v=\text { head }(\text { ToBeExplored }) \\
\text { for } u \in N(v) \backslash \text { ToBeExplored do } \\
\quad d(u) \leftarrow d(v)+1 \\
\text { add } u \text { in } V(T) \text { and }\{v, u\} \text { in } E(T) \\
\text { add } u \text { at the end of ToBeExplored } \\
\text { remove } v \text { from ToBeExplored }
\end{array}
\end{aligned}
$$

Time-Complexity: \# operations $=O(|E|)$
each edge is considered
Exercise: Give an algorithm that decides if a graph is connected

Searching algorithms (BFS/DFS)

ToBeExplored $=(\mathrm{d}, \mathrm{i}, \mathrm{j}, \mathrm{e})$

Breadth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$
Initially: $d(r)=0$, ToBeExplored $=(r)$

$$
\text { and } T=(V(T), E(T))=(\{r\}, \emptyset)
$$

While ToBeExplored $\neq \emptyset$ do
Let $v=$ head (ToBeExplored)
for $u \in N(v) \backslash$ ToBeExplored do

$$
d(u) \leftarrow d(v)+1
$$ add u in $V(T)$ and $\{v, u\}$ in $E(T)$ add u at the end of ToBeExplored

remove v from ToBeExplored
Time-Complexity: \# operations $=O(|E|) \quad$ each edge is considered
Rmk1: allows to decide whether G is connected
G connected iff dist $(r, v)<\infty$ defined for all $v \in V$

Searching algorithms (BFS/DFS)

ToBeExplored=(d, i,j,e)

Breadth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$
Initially: $d(r)=0$, ToBeExplored $=(r)$

$$
\text { and } T=(V(T), E(T))=(\{r\}, \emptyset)
$$

While ToBeExplored $\neq \emptyset$ do
Let $v=$ head (ToBeExplored)
for $u \in N(v) \backslash$ ToBeExplored do

$$
d(u) \leftarrow d(v)+1
$$ add u in $V(T)$ and $\{v, u\}$ in $E(T)$ add u at the end of ToBeExplored

remove v from ToBeExplored
Time-Complexity: \# operations $=O(|E|) \quad$ each edge is considered Rmk2: gives only one shortest path tree, may be more...
depends on the ordering in which vertices are considered

Searching algorithms (BFS/DFS)

Depth First Search

input: unweighted graph $G=(V, E)$ and $r \in V$
Initially: $d(r)=0$, ToBeExplored $=(r)$

$$
\text { and } T=(V(T), E(T))=(\{r\}, \emptyset)
$$

While ToBeExplored $\neq \emptyset$ do
Let $v=$ head (ToBeExplored)
for $u \in N(v) \backslash$ ToBeExplored do $d(u) \leftarrow d(v)+1$ add u in $V(T)$ and $\{v, u\}$ in $E(T)$ add u at the beginning of ToBeExplored
remove v from ToBeExplored

Exercise: Gives a DFS-tree rooted in a in this graph

Outline

(1) Vertex/Edge

2 Examples of applications
(3) Neighbor/Degree

4 Path/Distance/Connectivity
(5) Cycle/Eulerian/Hamiltonian
(6) Trees/SubGraph
(7) Searching algorithms (BFS/DFS)
(8) Directed graphs

Directed graphs

Directed graph: $D=(V, A), A$: set of arcs, $(x, y) \in A$ ordered pair
arrows

Directed graphs

Directed graph: $D=(V, A), A$: set of arcs, $(x, y) \in A$ ordered pair
arrows

strongly connected

not strongly connected
$D=(V, A)$ is strongly connected if, for any two vertices $x \in V$ and $y \in V$, there exists a directed path from x to y AND a directed path from y to x.

Directed graphs
 strongly connected

Exercise 1: Let D be a digraph and $v \in V(D)$
Prove that D is strongly connected iff, for any $y \in V$, there exist a directed path from x to y AND a directed path from y to x.

Exercise 2:

Give an efficient algorithm that decides if a digraph is strongly connected

Summary: To be remembered

All definitions will be important in next lectures
Please remember:

- graph, vertex/vertices, edge
- neighbor, degree
- path, distance, cycle (Eulerian,Hamiltonian)
- connected graph
- tree
- subgraph, spanning subgraph
- BFS/DFS
- Directed graph

