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Abstract

A novel image operator is proposed for the purpose of predicting the focus of visual

attention in arbitrary natural scenes based on local statistics. The proposed method is based

on the hypothetical premise that attention proceeds by way of sampling a scene in a manner

that maximizes the information acquired from the scene. A tractable means of computing the

joint likelihood of local statistics in a low-dimensional space is presented and shown to have a

close relationship to the representation of retinal image stimulus existing in the primary visual

cortex of primates. The proposed image operator is validated through comparison with

existing features implicated in the focus of attention in their relative correlation to

experimental eye tracking data.

r 2004 Published by Elsevier B.V.
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1. Introduction

There exist numerous models intended for predicting the focus of visual attention
that range from purely biological to almost purely mathematical. A large body of
literature exists establishing that attention appears to be directed on the basis of
see front matter r 2004 Published by Elsevier B.V.

.neucom.2004.10.065

nding author. Department of Computer Science, York University, 4700 Keele Street,

nada M3J 1P3.

dress: neil@cs.yorku.ca (N.D.B. Bruce).

www.elsevier.com/locate/neucom


ARTICLE IN PRESS

N.D.B. Bruce / Neurocomputing 65–66 (2005) 125–133126
properties of the input constituted by the response of photoreceptors at the retina in
conjunction with the goals of the observer. It appears then, that attention is stimulus
driven with some task dependent bias. A question that naturally follows from this
observation is: ‘‘What sort of stimulus tends to draw attention from a human
observer?’’ This question is typically considered independent of any particular task,
and measured quantitatively by examining the correlation between certain local
statistical properties of an image and coordinate locations fixated by a set of human
observers when asked to examine the image with no particular instructions given.
Privitera and Stark present a review of various algorithmic means of detecting
regions of interest as well as comparing predictions of such algorithms with human
eye tracking data [16]. Features investigated include edges per unit area based on the
Canny operator [3]. High curvature masks incorporating varying orientation acute
angles and ‘‘X’’ masks, a 7� 7 positive-center/negative-surround operator, Gabor
masks to measure gray-level orientation differences [6], the discrete wavelet
transform [4], a measure of local symmetry, Michaelson contrast [12], an intensity-
based point entropy operator, coefficients of the discrete cosine transform [1], and a
Laplacian of Gaussian. Analysis was carried out on a data set produced using 7
human subjects and 15 images. Generally each of the operators investigated showed
some correlation to fixation points in the context of some images and virtually no
correlation for others. None of the algorithms was suggested as being a universal
predictor of regions of interest. It is worth noting that the translation from a
continuous feature map to a discrete set of fixation points was performed by
selecting only local maxima in the feature maps and clustering of the resulting loci.
Such an operation seems somewhat questionable since one is discarding significant
information concerning the output of the operator in the vicinity of local maxima
(like the height of such peaks) and in areas where no obvious local maxima lie. It also
remains unclear whether a data set based on 7 subjects and 15 images is sufficient for
a quantitative comparison. These issues are addressed in some capacity in Section 4.
Other features implicated in attention include contrast, shape, location, and size [15],
perimeter, intensity, area and elongation of regions [13], and center-surround masks
applied in luminance, red–green and blue–yellow feature planes [8]. Topper
introduced an interesting addition to the attention literature rooted in information
theory [20]. The foundation of his work lies in the assertion that it is the uniqueness
of the response in a feature domain that determines salience. For example, in a scene
composed almost entirely of edges and containing a small flat region, one may be
more likely to attend to the small homogeneous region. It is the uniqueness of this
region in the edge domain that determines salience and not the raw measure of edge
strength. Owing to the close relationship between this observation, and some ideas
that arise from information theory, Topper suggested Shannons self-information
measure [18] as a suitable transformation from a feature plane into a dimension that
more closely corresponds to perceptual salience. In the context of this problem,
Shannon’s self-information measure may be described as follows: The information
I(x) conveyed by an event x is inversely proportional to the likelihood of observing
x. Shannon’s proposed relationship may be written explicitly as I(x) ¼ �log(p(x)).
The reason for choosing this particular relationship lies primarily in the fact that the
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information conveyed by two independent events is given by the sum of the
information afforded by each individual event when using the log operator. In a
feature domain, each value of edge strength may be mapped to a value of edge
information by considering the likelihood distribution of edge strength over the
entire image, which may be determined through a histogram or kernel density
estimate [17]. Topper conducted a comparison study along the same lines as that
carried out by Privitera and Stark, with a particular emphasis on comparing
correlation between feature and information maps and eye tracking data. Topper
found that in all cases, the transformation to the information domain improved
correlation to the set of eye tracking data. Given the aforementioned considerations
and in particular Topper’s findings, we explore the premise that visual attention
proceeds entirely by way of maximizing the information sampled from an image.
That is, in this scheme we are not interested in particular feature measures, but
rather, the likelihood of observing the raw set of local statistics. A means of
computing this likelihood is outlined which allows the evaluation of the information
content of such statistics in a classic information theoretic sense and in a manner that
is tractable. We will also demonstrate that the proposed operator is both biologically
plausible, and more closely correlated to fixation density than features investigated
in each of the aforementioned studies, and in particular, some of the more promising
information domain operators considered by Topper.
2. Measuring the joint likelihood of local statistics

As mentioned, the premise of the proposed approach is that the informativeness of
local statistics is a quantity more closely related to attention than many other feature
operators that are typically employed in attention models. It is important to stress
that unlike Topper, we are not considering the informativeness in a particular feature
domain, and on a pixel by pixel basis. Instead, the more general measure of the
informativeness of the raw set of statistics in a local neighborhood is considered.
Informativeness in a feature domain requires the estimation of a one-dimensional
probability density function. In the more general case that requires computing a joint
likelihood measure based on local statistics, estimation of a 3*M*N dimensional
probability density function is required for a local window size of M*N in RGB
space. In practice, estimation of such high-dimensional probability functions proves
unfeasible requiring prohibitively large degrees of computation and data. A natural
question to consider is whether there exists a feasible method for reducing the
dimensionality of this representation to the degree that available data and
computational resources allow its estimation. Dimensionality reduction is a problem
that arises in many statistical applications and one for which a rich body of literature
exists. In particular, principal components and independent components have been
applied in a variety of image processing and machine vision applications in the past
decade most often aimed at image compression. In this work, we have employed a
representation based on independent component analysis for dimensionality
reduction based on two considerations: (i) A representation based on independent
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components reduces the problem of estimating a 3*M*N dimensional probability
density function to the problem of estimating 3*M*N one-dimensional probability
density functions. This is accomplished through a transformation of the data that is
lossless, and invertible. (ii) As is discussed in Section 3, this choice yields a representation
that has some close ties to the neural circuitry of the human visual cortex.

2.1. Independent representation of local statistics

Independent component analysis assumes that the data under consideration was
formed from a number of independent sources, combined in an additive manner. To
simplify discussion of local statistics, let x ¼ ½x1; . . . ; xN �

T; represent the local
statistics in column vector form with x3*j*k, x3*j*k+1 and x3*j*k+2 coding the red,
green and blue values for pixel j,k in the original patch. Mathematically, we can
express the mixing model for the above setup as x ¼

PN
i¼1 aisi ¼ As; where the basis

functions ai, i ¼ 1; . . . ;N constitute the columns of the n�N matrix A, and s ¼

½s1; . . . ; sN �
T; a random vector. To determine the coefficients of A, it is necessary to

find a linear transformation V of the input data x such that, for some vector w,
w ¼ V � x with the components of w as statistically independent as possible. w allows
an estimate of s for a particular data sample, and A is the pseudo-inverse of V. Each
wi is then given by the dot product hV i;xi ¼

P
m;nV iðm; nÞxðm; nÞ: There are a variety

of unsupervised learning algorithms for estimating the set of basis functions given a
number of examples of x. In our implementation, we have employed Lee, Girolami,
and Sejnowski’s extended infomax ICA algorithm [10]. It has been demonstrated
that such a representation provides a reasonable means of representing very general
non-Gaussian statistics [2] and in a manner that parallels the representation existent
in the human primary visual cortex [7]. This last consideration is elaborated on in
Section 3. The ICA algorithm was applied to a set of 360,000 7� 7 image patches
chosen randomly from a set of 3600 natural images and at four spatial scales. A
linear combination of the resulting basis functions may be used to describe each local
neighborhood of any arbitrary image. For a particular basis function ak, with a value
of vk corresponding to a particular local neighborhood, it is possible to measure the
likelihood p(ak ¼ vk). This is accomplished through a Parzen window probability
density estimate [5] for p(ak) based on the coefficients arising from every local
neighborhood of the image and corresponding to the basis function ak. Since the
coefficients corresponding to each ak are independent variables, pða1 ¼ v1 \ a2 ¼

v2 \ . . . ak ¼vk \ . . . an¼vnÞ¼pða1¼v1Þpða2 ¼ v2Þ . . . pðak ¼ vkÞ . . . pðan ¼ vnÞ ¼
Qn

i¼1

pðai ¼ viÞ: This likelihood is readily converted to an information measure by
considering � logð

Qn
i¼1 pðai ¼ viÞÞ: The overall aforesaid process to derive an

information map based on a given image is depicted in Fig. 1.
3. Independent components and V1

An important consideration in designing a framework for simulating a sensory
system, is that of biological plausibility. Thus far we have established that
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independent components allow a representation of local statistics in a manner that
allows the joint likelihood to be computed in a manner that is tractable. Although
computationally the proposed approach could not be realized without such a
representation, there is another more fundamental reason for choosing a
representation based on independent components. Olshausen and Field [7] have
demonstrated that the response of simple cells in the primary visual cortex may be
explained in terms of a strategy for producing a sparse distribution of activity in
response to gray-level values in natural images [14]. In particular, they demonstrated
that independent component analysis applied to natural gray-level image patches
gives rise to localized and oriented edge detectors whose responses closely match
spatial receptive field properties of simple cells in V1. Their work has inspired further
investigation of minimum redundancy sparse coding of cell responses to other forms
of visual input. van Hateren and Ruderman [21] produced basis functions that
resemble simple cells in V1 through independent component analysis of spatiotem-
poral data. Wachtler and Sejnowski [11] and Tailor et al. [19] examined the problem
in relation to spatiochromatic data. In each case, they found that ICA of
spatiochromatic patches gives rise to independent component filters that consist of
luminance and color filters. The luminance filters were very similar to those obtained
in the gray-level case examined by Olshausen and Field. Color filters resembled
either red–green or blue–yellow opponent cells in V1. All of these studies provide
strong evidence that neural circuitry appears to be built on the basis of minimizing
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redundancy of neuron population responses with regard to the input they process. It
also follows that the proposed architecture is built on a representation that is
fundamentally very similar to the representation existent in the human primary
visual cortex, and as such, is more closely tied to neural circuitry than existing
attentional feature measures.
4. On the interpretation of fixation data

Eye tracking data was collected for 20 subjects with normal vision, for a set of 120
images. Each image was presented for 4 s in random order, with a mask presented in
between each pair of images for 1 s. Any image location upon which the eyes of the
subject rested for more than 200ms was deemed a fixation point and recorded. An
important consideration in comparing the output of feature detectors with
experimental eye tracking data is the manner in which the fixation data is
represented. Data from eye tracking experiments typically comes in the form of
coordinates of fixations. As mentioned, in this raw form there is no obvious metric
for measuring the difference between feature extractor output and discrete fixation
coordinates. Further, attention is not necessarily directed to single points, but rather,
more realistically modeled as directed upon extended regions with visual acuity a
maximum at the discrete fixation points. Koesling et al. suggest a means of
transforming raw fixation data to fixation density maps to allow direct comparison
with feature detector output [9] as follows: For a given image, all of the fixation
points from 20 subjects were merged into a single data set. A distribution that
approximately models visual acuity dropoff in the human visual system, modeled by
a Gaussian distribution with appropriately chosen parameters, is placed at each
fixation point. To calculate the fixation density map, the two-dimensional Gaussian
distributions as described, are summed over the entire image. This approach
provides for each image, a continuous fixation density map based on 20 subjects. In
this case, the parameters of the Gaussian were such that one standard deviation lie
20 pixels from the center of a fixation point in each direction. Such a representation
allows comparison with feature maps without the need to discard all information
outside of local maxima.

4.1. Comparing fixation density and feature maps

To compare the derived eye tracking density maps with feature maps, a suitable
metric is required to measure the difference between the two. The most obvious
means of computing the difference between the maps is that of summing the
absolute value of the difference between each pixel in the density map and
corresponding feature map. This operation is analogous to computing the
volume between two probability density surfaces in the continuous case.
For simplicity, allowing straightforward comparison with other studies and
avoiding the introduction of ad hoc, or parametric difference metrics, the
aforementioned scheme has been applied in all cases as a natural quantitative
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measure of the difference between feature extractor output and fixation density. In
effect, this metric affords a comparison between the output of each feature operator,
and the degree to which each local neighborhood of the image is sampled on average
by a human observer.
5. Correlation between image features and fixation density

Information maps were produced through the proposed information measure for
the full set of 120 images. The difference between resulting information maps and
fixation density was measured as outlined in Section 4.1 and an average measure
recorded for each spatial scale. The same operation was carried out for 6 of the
features examined by Topper showing the strongest correlation to eye tracking
density. The resulting average difference values are displayed in Table 1. Each
difference is shown in its raw form and below the raw value in normalized form.
Normalization in this case is given by (raw-random)/(2-random) where random
corresponds to the average score resulting from the difference between a random
probability distribution, and each corresponding density map, resulting in a value
between 0 for a case that is no better than a random probability distribution and 1
for a perfect match. It is clear in examining these values that the information
operator based on the joint likelihood stands out in its similarity to fixation density.
What is not obvious from the numbers, is how these measures translate to qualitative
similarity between feature and density maps and in particular, response in non-
salient regions and where local maxima lie. Figs. 2a and b demonstrate for a number
of images, the original image (left), the average of scale 1, 2, and 3 information maps
Table 1

Average difference between various feature maps and their corresponding experimental density maps

Filter/scale Scale 1 Scale 2 Scale 3 Scale 4

Random Map 1.4121 1.4121 1.4121 1.4121

0.0000 0.0000 0.0000 0.0000

Sobel Magnitude 1.3494 1.3353 1.3411 1.3469

0.1067 0.1306 0.1208 0.1109

Sobel Orientation 1.3485 1.3551 1.3616 1.3616

0.0636 0.0970 0.0859 0.0859

Intensity 1.3471 1.3524 1.3532 1.3528

0.1106 0.1015 0.1002 0.1009

Variance 1.3613 1.3697 1.3748 1.3747

0.0864 0.0721 0.0634 0.0636

Hue 1.3485 1.3490 1.3468 1.3620

0.1082 0.1073 0.1111 0.0852

ICA Information 1.2875 1.2864 1.2874 1.3389

0.2119 0.2138 0.2121 0.1245

This value is presented in raw form (top of each row) and in normalized form (bottom of each row).
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flat background statistics, and (b) significant clutter.
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(center), and experimental density map (right). Fig. 2a contains images that tend to
have qualitatively homogeneous backgrounds and Fig. 2b the converse. It is evident
in viewing these figures that there exists significant similarity between the
information maps and experimental density maps in terms of response in regions
of interest, response elsewhere, and the position of local maxima.
6. Conclusion

A novel means of quantifying the informativeness of local statistics was presented
through representation based on independent components. The self-information
based on this joint likelihood was demonstrated quantitatively and qualitatively to
bear a close resemblance to experimental fixation density. In particular, the proposed
information measure appears to be more closely tied to fixation density than image
operators previously implicated in the focus of attention. The proposed information
measure appears to afford a reasonable predictor of regions of interest for any given
image using a representation fundamentally connected to the primary visual cortex
of primates.
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