
Formal languages and compilers

Projects for the exam

Academic year 2010-2011

General information

The project consists of the extension of the interpreter or compiler1 presented
during the lecture. The project is provided for groups of no more than three
persons, and should be chosen from the options offered below, or agreed with
the teaching assistant before starting.

For the project to be evaluated it is crucial to:

• present the code of the interpreter/compiler extended according to the
option of the project

• submit a report on the project according to the description in Section 4.

• the compilation must not return errors. Not serious warning can be ac-
cepted if properly justified in the report. Example: ”the warning this
pattern-matching is not exhaustive in line xyz it is due to the fact that I
guarantee that the type cannot be different from those indicated in the
match because..., and so I decided not to consider all possible cases.”

• the working examples in extended version of créme CAraMeL should reflect
the intention of the chosen project.

1 Groups of 1 person

A free choice of the project from the following list.

1.1 Pointers and dynamic memory management

Introduce in créme CAraMeL the possibility to use pointers and dynamic mem-
ory (heap) as follows:

Pointers: add to the language the possibility to use pointers as in the
following examples:

1It’s a free choice, but take into account that the working project based on compiler will
be given a bigger value with respect to the same (working) project based on the interpreter.

1



• declaration of the pointer variables:

var p : ^int;
var q: ^^float;

• referencing and dereferencing pointers:

x := 1;
p := @x;
y := ^p + 4;

the result will be y = 5.

Notice that pointers can have an arbitrary depth (number of ” ˆ ” in the
declaration).

Dynamic memory: based on what was discussed at the lecture, introduce
in the language the dynamic memory management as heap: a memory separated
from the one currently implemented (that is represented with the stack where
local variables of programs and subprograms are allocated) in which it is possible
to allocate objects at run-time. The deallocation of dynamic memory must be
based on one of the following approaches:

• reference counter: add counters to the ”cells” of the memory so that there
will be a way to count how many pointers point to each cell, and remove
any cells that appear to be no longer used.

• garbage collection: use the algorithm of mark/sweep presented in class to
perform the actual release of unused memory cells.

1.2 Pointers and record

Introduce in créme CAraMeL the possibility to use pointers and record as follows:

Pointers: see Section 1.1 (only the part on pointers)

Record: Extend the language to give a possibility to define and use the
record type, by making the necessary modifications so that all of the following
situations are supported:

• definition of record type
type name record = record {
name field1 : type ;
...
name fieldn : type ;
}

2



• declaration of variables of type record:
var v : name record ;

• mechanisms to access the components of type record:
v.name fieldi := expression ;
a := v.name fieldi ;

• the possibility to compare (<,≤, =) the objects of type record: given
that v and w are of the same record type containing two fields a: int
and b: int, it should be the case that:
v.a := 4; v.b := 6;
w.a := 3; w.b := 1;
if (w < v) then write(1) else write (0);
will write 1 on the screen.

• the assigning command between the objects of type record: with the
same assumptions as above, an assignment:
v := w;
have to give a result v.a = w.a = 3 and v.b = w.b = 1.

1.3 Array implemented by linked lists

Based on the examples seen at the lecture, change the implementation of créme
CAraMeL in a way that the operations that need changing the dimension of the
vector, such as inserting or deleting elements, are possible. It is suggested to
implement vectors using the linked lists and take into account that the following
operations are possible:

• inserting an element
v(3) := 5
this command inserts in vector v a value 5 on the third position, increasing
the length of the vector.

• substitution of an element
v[2] := 6
this command substitutes the second element in vector v with a value 6.

• deleting an element
v#4
this command deletes the forth element from the vector v a value 5, de-
creasing the length of the vector.

• finding a value:
v?23
this expression has a value i if vector contains value 23 at position i and
has a value -1 if there is no value in the vector that is equal to 23.

3



2 Groups of 2 persons

A free choice of the project from the following list.

2.1 Multidimensional matrices and slices

Introduce in créme CAraMeL the possibility to use multidimensional matrices
and slices:

Multidimensional matrices

Introduce in créme CAraMeL the possibility to use multidimensional matrices
(= array with n dimensions) as it was described in the class.

• It should be possible to declare in the following ways
var v : array [LB1..UB1, LB2..UB2, ..., LBn..UBn] of type ;
var v : array [LB1..UB1] of
array [LB2..UB2] of ... array[LBn..UBn] of type ;
as well as in the combination of them:
var v : array [LB1..UB1] of
array [LB2..UB2, ..., LBn..UBn] of type ;

• The syntax for accessing the elements can be done (by free choice) in one
of the following ways:
v[i][j] := 5; write(v[i][j] + 2);
v[i, j] := 5; write(v[i, j] + 2);

Slices

Based on the examples seen at the lecture, introduce in créme CAraMeL the
possibility to use the slices as follows:

• declaration:
var v : array [LB1..UB1, LB2..UB2, ..., LBn..UBn] of type ;
var s: slice [*, *, ..., j, *, k, *, ..., *] of v;
two indexes j and k of the array v are fixed in the slice s (but one can fix
an arbitrary number of indexes). Example:
var v : array [5..43, 4..17] of int;
var w : slice [*, 10] of v;
w is the slice that takes only column number 10 of the matrix v. Hence,
the indices of w are from 5 to 43.

• accessing the elements:
considering the example above, the following accesses should be allowed:
w[6] := 4 + 12;
write(w[40]);
but this is not a correct access

4



w[3] := 2;
because 3 is not a valid index (3 /∈ {5, ..., 43})

2.2 Pointers and different ways of passing the parameters

Add to the language créme CAraMeL all of the following functionality:

Pointers : see a part ”Pointers” in Section 1.1

Passing the parameters : Introduce in créme CAraMeL the possibility to
pass the parameters to the procedure and functions in all the possible ways:

• value

• reference

• value-result

• name

according to the way shown at the lecture.

3 Groups of 3 persons

A free choice of the project from the following list.

3.1 Record, pointers, multidimensional matrices and slices

Implement all of the following funcitonality:

• multidimensional matrices and slices (see Section 2.1)

• pointers (see a part ”Pointers” in Section 1.1)

• record (see a part ”Record” in Section 1.2)

3.2 Functions and nested procedures, with different ways
of passing parameters

Add to the language créme CAraMeL all of the following functionality:

Functions and nested procedures : add the possibility to define func-
tions and nested procedures (inside the other functions/procedures). Define the
environment of the procedures/functions using the rule of static scoping based
on the scoping tree as it was shown at the lecture.

Passing the parameters : see the Section 2.2 (implementation of the
pointers is not mandatory)

5



4 Delivery

What to deliver

• report written in English of about 10-15 pages explaining the details
of the project:

– objective

– the work done (what are the modifications that were done and why)

– principal choices of implementation

– difficulties that were faced (the choices of implementation that failed
and why, a way of solving the problems, ...)

– names and matriculation numbers of the participants of the project

• code of the interpreter/compiler extended according to the tasks of the
chosen project

• code in créme CAraMeL of several examples showing the functionality
added to the language, commented to explain the meaning and the output
they should produce. All the comments should be in English.

When to deliver strictly before and not later than 12:00 of the day in-
dicated on the website of the course http://disi.unitn.it/~bielova/flc/
index.html

How to deliver via e-mail to the address bielova@disi.unitn.it, attach-
ing the report (in format .pdf) and the source code + examples (compressed in
format .zip or .tar.gz).

The oral evaluation of the projects will be done during the exam.

6


