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Data control 
  Problem: how to provide data to operations and subprograms? 

Or what is the “environment” of the reference by name? 

  Two major problems: 
1.  one name can denote different objects (e.g. local variables) 

2.  one object can be denoted by several names (e.g. passing 
parameters) 

  To solve these problems the environments were proposed. 

  Environment: binding between the names (Ide) and values: 
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Env : Ide → Loc ∪ Val



Environments 
Operations in programming language that affect the environment: 

1.  Creation of binding <name, object> 
  Example: declarations, parameters… in the beginning of execution and 

when entering the subprogram 

2.  Use of the environment 
  Example: reference to the identifier (variables, names of subprograms) 

3.  Deactivation the binding  
  Example: when P calls Q, some bindings of P are deactivated 

4.  Reactivation the binding  
  Example: when  Q returns control to P 

5.  Destruction the binding  
  Example: return from subprogram, the end of execution 
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Blocks and local variables 
 A block consists of local declarations and commands: 

!! !begin!

!! !  D !=> local declarations!

!! !  C !=> commands!

!! !end!

  Example (C):  

!! !x:=5;!

!! !{ int x; x:=7;!

!! !  printf(“%d”, x);!=> 7 ! !!

!! !}!

!! !printf(“%d”, x); !=>5 

 A block is like a procedure without parameters 
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Scoping 
  The “scoping” solves the problem of determining… 
  … when a particular binding <name, object> is active? 

  … or which bindings are valid in a particular moment of execution? 

  …or which is the environment? 

 Different environments: 
  local environment (LE) : all bindings created/activated in a block/

subprogram 

  non-local environment (NLE) : all bindings used (active) but not local 

  global environment (GE): all bindings shared by all blocks/
subprograms. GE can be considered: 
  as a subset of NLE 

  separately from NLE 
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Global Environment (GE) 
  Example (C): 

 ! ! !int a[20];!

! ! !float b[5];!

! ! !struct { int i; char n[10]; } c, d; !!

! ! !...!

! ! !int main() {...} 

  Contains also all the identifiers (constants, functions…) predefined in 
the language 

  Common table for all the subprograms (including main) 

  Concrete implementation: 
  treated as a record 
  the names are compiled as fields of the record 
  in the code, it’s sufficient to know the address of the base of GE 
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Local Environment 
 Notation: 

  procedure P calls Q  

  procedure P terminates and returns the control to the caller Q 

  Let’s consider the computation 

what happens to the local environment of Q? 

  The simple part: 
  when control is passed to R, LE becomes deactivated 

  when control is passed back to Q, its LE become reactivated  
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P ⇓ Q

P ⇑ Q

  

€ 

P ⇓ Q ⇓ R ⇑ Q ⇑ P

  

€ 

Q ⇓ R

R ⇑ Q



Local Environment (cont.) 
  The management of environment in Q  

is more delicate. 

Two possible solutions: 

1.  DLE: Dynamic Local Environment 

         LE of Q is created 

         LE of Q is destroyed 

2.  SLE: Static Local Environment 

        LE of Q is reactivated 

        LE of Q is deactivated 
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P ⇓ Q and Q ⇑ P

  

€ 

P ⇓ Q

Q ⇑ P

  

€ 

P ⇓ Q

Q ⇑ P



Local Environment (cont.) 
  Example: static option in C creates static local environment 

! !void f()!

! !{!

! !  static int x = 0; !

! !  x++; !

! !  printf("%d ", x); !

! !  f();!

! !} !

! !··· !

! !while(1) { f(); } ! !⇒ 1 2 3 4 5 ...!

 What happens without static? 
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Local environment: 
Implementation 
1.  Static local environment 

  The table of static local environment: it’s memorized only once 
and divided by all the calls of subprogram 

  SLE is simply a sequence of r-value 

  The names are offset inside the SLE 
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x:=… 

r-value x 

SC 

SLE x:  



Local environment: 
Implementation 
2.  Dynamic local environment 

  The local environment is a part of the activation record (AR); 
different calls of subprogram correspond to different instances of 
the local environment 

  Also in this case the local name of the subprogram is compiled as 
offset, but this time inside the AR  
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Non local references 
  Example 

  If x is not local, which binding is used for x? 

 Answer: rules of scoping 
  Dynamic scoping: rules of visibility are related to the execution (Lisp) 

  Static scoping: rules of visibility are related to the structure (syntax) of 
the program: it’s the most used technique in the modern languages 
(C, C++, Java, Pascal, ML,…) 
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procedure Q() !

!begin !

! !...!

! !x!

! !...!

!end !



Static scoping 
  Every identifier has a declaration that statically binds it. This 

binding is constant at runtime. 
  The type of the identifier is known at compile time 

  The location for the value of identifier can change at runtime 
(dynamic local environment) or not (static local environment) 

  For more rigorous analysis, for every program let’s associate a 
tree called scoping tree: 
  [we give different names to blocks (the subprograms already have 

different names)] 

  nodes of the tree -> names of the blocks and subprograms 

  Q is a child of P if 
  Q is a direct block of P 

  Q is a subprogram declared in P 
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Static scoping (cont.) 
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A: begin !

!proc B;!

!  begin!

! !E: begin...end!

! !F: begin...end !

!  end {B}!

!C: begin !

! !  G: begin...end!

 ! !  proc H;!

! ! !begin L: begin...end!

! ! ! !   V: begin...end!

! ! !end {H} !

! !end {C}!

end {A}!

A 

B C 

E F G H 

L V 



Rule of static scoping 
  If x occurs in non local reference in 

the subprogram/block P 

1.  non local environment that provides 
correct binding for x is the parent Q 
nearest to P in which x is declared 

2.  if there is no parent Q that declares x, 
the error is generated (this control is 
made at compile time) 

Note: Here the global environment is the 
environment of the outermost 
subprogram/block 
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Q 

G H 

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!



Rule of static scoping (cont) 
  If the language defines a global 

environment outside of 
subprograms/blocks, then scoping 
rule is rewritten: 

1.  non local environment that provides 
correct binding for x is the parent Q 
nearest to P in which x is declared 
[as above] 

2.  if there is no parent Q of P that 
declares x, then x  is searched in the 
global environment 

3.  if not found an error is generated (at 
compile time) 
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A 

Q 

G H 

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!



Static scoping: semantics 

  Let’s change the definition of the environment: an environment 
(global) becomes a sequence of local environments: 
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Env = List(Ide → DVal) r = [r0,r1,...,rk ]

DVal = (Val ∪ Loc)

  Rule of scoping: r(x) is defined as 
follows: 
  if rk(x) is defined, then rk(x), otherwise: 
  if rk-1(x) is defined, then rk-1(x), 

otherwise: 
  … 
  if r0(x) is defined, then r0(x), otherwise: 
  ERROR 

  Also DVal is changed, in order to keep track 
of the declarations of subprograms: 

    

€ 

DVal = (Val ∪ Loc ∪ Com)

A 

Q 

G H 

P V …!
x := 0; !
…!

…!
var x : int; !
…!



Static scoping: semantics (cont.) 
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D const v = n [r0,r1,...,rk ]s
= [r0,r1,...,rkʹ′]s  where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

n if y = v

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

    

€ 

D proc P = C
[r0,r1,...,rk ]s

= [r0,r1,...,rkʹ′]s  where :

rkʹ′(y) =
rkʹ′(y) if y ≠ P

C if y = P

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

    

€ 

D var v := n [r0,r1,...,rk ]s
= [r0,r1,...,rkʹ′] ʹ′ s  where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

l if y = v

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
sʹ′(x) =

s(x) if x ≠ l

n if x = l

⎧ 
⎨ 
⎩ 

where l=(newmem s) is a new location in s!



Static scoping: implementation 
  Problem: the stack of AR provides a temporal order between 

local environments (useless for static scoping), but gives no 
indication on the structure of the program. 

  Solution:  
  To each AR the static chain pointer (SCP) is added. 

  The "static" information on the syntactic structure (scoping tree) is 
implemented through the SCP. 

  Let’s assume that a subprogram/block Q is a parent of subprogram/
block  P in the scoping tree. Then, the SCP of an AR of P points to AR 
of Q according to the rule of static scoping. 

 Note: we consider the case of dynamic local environment. 
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Static scoping: implementation 
(cont.) 
Suppose that  

then, the AR of P is pushed in the stack of AR 

R is a child of Q but in the stack there are several occurrences of Q. 

Formal languages and compilers 2011 

20 

  

€ 

Q ⇓ R

??? 

P 

Q 

R 

P 

Q 

R 

Q 

R 

stack of AR 



  Suppose α and β are nodes of the scoping tree 

  Suppose that 

 then, the parent of β should be an ancestor of α 

  (otherwise β would not be visible from α)  

Algorithm to determine SCP 
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α ⇓ β



  Suppose α and β are nodes of the scoping tree 

  Suppose that 

 then, the parent of β should be an ancestor of α 

  (otherwise β would not be visible from α)  

Algorithm to determine SCP 
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α ⇓ β

P 

Q 

R 

S 

P: begin !

!proc S; begin...end {S}!

!proc Q;!

!  begin!

! !proc R; begin...end {R}!

!  end {Q}!

end {P}!



Algorithm to determine SCP 
  Suppose α and β are nodes of the scoping tree 

  Suppose that 

 then, the parent of β should be an ancestor of α 

  (otherwise β would not be visible from α)  

  Let’s define ♯(α, β )= depth(α) – depth(parent(β ))	



  Example: 
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α ⇓ β

P 

Q 

R 

  then ♯(Q, R) = 1 - 1 = 0 

  then ♯(R, Q) = 2 - 0 = 2 

0 

1 

2 

  

€ 

Q ⇓ R

  

€ 

R ⇓ Q



Algorithm to determine SCP 
  If         then 

1.  The AR of Q (ARQ) is put in the stack 

2.  The distance ♯(P, Q)  is calculated 

3.  The address a is reached by making ♯(P, Q)  steps starting from SCP 
of AR of the caller P.  

 This is the address of an AR corresponding to a subprogram/block T 
that declares Q. 

4.  SCP of ARQ has a value a 
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P ⇓ Q



Determining SCP: Examples 
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P 

Q 

R 

S 

0 

1 

2 

♯(P, Q) = 0 
P 

Q 

R 

Q 

R 

  

€ 

P ⇓ Q ⇓ R ⇓ Q ⇓ R ⇓ S

♯(Q, R) = 0 

♯(R, Q) = 2 

♯(R, S) = 2 

S 



Determining SCP: Examples 
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Q 

R 

S 

0 

1 

2 

♯(P, Q) = 0 
P 

Q 

R 

Q 

  

€ 

P ⇓ Q ⇓ R ⇓ Q ⇓ S

♯(Q, R) = 0 

♯(R, Q) = 2 

♯(Q, S) = 1 
S 



Calling a subprogram: 
semantics 
  If    , then 

where 

  program P is declared as proc P = Cmd 
  . 
       where: 

h =depth(r,P), or rh is “the deepest” environment where P is defined: 

  rh(P) is defined, 

  rh+1(P), rh+2(P),..., rk(P)  are not defined 

  rε  is a new local (empty) environment for Cmd 
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€ 

C call P rs = C Cmd ʹ′ r s

  

€ 

r = [r0,r1,...,rk ]

    

€ 

Cmd = r(P) ∈ Com

  

€ 

r'= [r0,r1,...,rh,rε ]



Non local references 
  Suppose that a subprogram/block P is using a name n 

  Define: 

	

♯(P, n) = depth(P) – depth(subprg./blk that declares n) 

  Example: 
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A 

Q 

G H 

P V …!
n := 5;!
…!

…!
var n : int; !
…!

♯(P, n) = depth(P) – depth(Q) = 2 



Non local references (cont.) 
  Every non local reference n in the subprogram/block P is 

represented as     

    <x,y> 

 where 

  x = 	

♯(P, n)  

  y = position (offset) of n in the template of AR of the subprogram/
block that declares n 

  If x=0 then n is local and is compiled simply as y.    
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Non local references: 
Implementation 
 Observation: given a subprogram P, 

  the length of the static chain when P is executing is statically fixed 

  the non-local reference to a variable n is resolved always at the same 
point in the chain 

  For the reason of efficiency, the static chain is often 
implemented as a vector (we call it display) 

  The access to the identifier with the “coordinates” <x,y> is 
calculated as: 

    display[x] + y 

 Cost: it is necessary to create the whole display all the times 
when the execution of subprogram starts (but often the HW 
machine gives the corresponding instructions) 
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Passing the parameters 
  Let’s assume: 

  dynamic local environment 
  static scoping 

  Notation: 
  proc P(x) – x is a formal parameter 
  call P(e) – e is an actual parameter or an argument 

  The formal parameters are treated as local variables (they are then 
allocated to the activation record). 

  Example: 

The local variables are x and y. 
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proc P(x) !

  begin!

!int y;!

!···!

  end !



Notation      means that 

Passing the parameters 
(cont.) 

  P is declared as proc P(x) … 

  P is invoked as call P(e)!

  α  is type of passing the parameters     
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call P(x ⇐α e)

  

€ 

call P(x ⇐Val e)

  

€ 

call P(x ⇐Ref y)
  

€ 

call P(x ⇐Res y)
  

€ 

call P(x ⇐Val- res y)

  

€ 

call P(x ⇐Const e)

  

€ 

call P(x ⇐Name e)

Note: x, y are variables, e is an arithmetical expression 

Value 

Reference 

Result  
Value-result 

Constant 
Name 



Passing by value 

  The expression e is evaluated in the environment of the caller 

  In the AR of P the value e is assigned to the variable x!

             where 
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€ 

call P(x ⇐Val e)

    

€ 

C call P(x ⇐Val e)
rs

= C Cmd ʹ′ r ʹ′ s 

    

€ 

l = newmem s

v = E e rs

ʹ′ r = [r0,...,rdepth(r,P), rP ] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

Note: x is local in P! 

It is already implemented in crème CAraMeL. 



Passing by value-result 

  The value of y is evaluated in the environment of the caller 

  this value is assigned to the local variable x in P!

  when P terminates, the value of x is copied to the variable y of the 
caller  

          where 
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call P(x ⇐Val- res y)

    

€ 

C call P(x ⇐Val- res y)
rs

= ʹ′ ʹ′ ʹ′ s 

    

€ 

v = E y
rs

l = newmem s

ʹ′ r = [r0,...,rdepth(r,P), rP ] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

C Cmd ʹ′ r ʹ′ s = ʹ′ ʹ′ s 

ʹ′ ʹ′ ʹ′ s = update( ʹ′ ʹ′ s ,Λ y
rs
, ʹ′ ʹ′ s (l))



Passing by result 

 when P terminates, x is copied to the variable y!

  initial value of x is not specified 

  the semantics is like in passing by value-result without the 
evaluation of y  
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call P(x ⇐Res y)



Passing by reference 

  The location l of y is evaluated in the environment of the caller 

  The location of x in P is set to l   

            where 
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€ 

call P(x ⇐Ref y)

    

€ 

C call P(x ⇐Ref y)
rs

= C Cmd ʹ′ r s

    

€ 

l = Λ y
rs

ʹ′ r = [r0,...,rdepth(r,P), rP ] with rP(x) = l

Cmd = r(P)



Passing by constant 

  The value of e is evaluated in the environment of the caller 

  this value is assigned to the local variable x in P!

  x cannot be assigned values in P!

  It can be implemented in a similar way to the passing by 
reference 
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€ 

call P(x ⇐Const e)



Passing by name 

  create a new couple <e, r>, where r is an environment of the 
caller 

  every time when x should be evaluated, e is getting evaluated 
instead in the environment r and put instead of x. 

  x cannot be assigned values in P!
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€ 

call P(x ⇐Name e)


