
Scoping
Subprograms

Lecture 7-8

1

Data control
  Problem: how to provide data to operations and subprograms?

Or what is the “environment” of the reference by name?

  Two major problems:
1.  one name can denote different objects (e.g. local variables)

2.  one object can be denoted by several names (e.g. passing
parameters)

  To solve these problems the environments were proposed.

  Environment: binding between the names (Ide) and values:

Formal languages and compilers 2011

2

€

Env : Ide → Loc ∪ Val

Environments
Operations in programming language that affect the environment:

1.  Creation of binding <name, object>
  Example: declarations, parameters… in the beginning of execution and

when entering the subprogram

2.  Use of the environment
  Example: reference to the identifier (variables, names of subprograms)

3.  Deactivation the binding
  Example: when P calls Q, some bindings of P are deactivated

4.  Reactivation the binding
  Example: when Q returns control to P

5.  Destruction the binding
  Example: return from subprogram, the end of execution

Formal languages and compilers 2011

3

Blocks and local variables
 A block consists of local declarations and commands:

!! !begin!

!! ! D !=> local declarations!

!! ! C !=> commands!

!! !end!

  Example (C):

!! !x:=5;!

!! !{ int x; x:=7;!

!! ! printf(“%d”, x);!=> 7 ! !!

!! !}!

!! !printf(“%d”, x); !=>5

 A block is like a procedure without parameters

Formal languages and compilers 2011

4

Scoping
  The “scoping” solves the problem of determining…
  … when a particular binding <name, object> is active?

  … or which bindings are valid in a particular moment of execution?

  …or which is the environment?

 Different environments:
  local environment (LE) : all bindings created/activated in a block/

subprogram

  non-local environment (NLE) : all bindings used (active) but not local

  global environment (GE): all bindings shared by all blocks/
subprograms. GE can be considered:
  as a subset of NLE

  separately from NLE

Formal languages and compilers 2011

5

Global Environment (GE)
  Example (C):

 ! ! !int a[20];!

! ! !float b[5];!

! ! !struct { int i; char n[10]; } c, d; !!

! ! !...!

! ! !int main() {...}

  Contains also all the identifiers (constants, functions…) predefined in
the language

  Common table for all the subprograms (including main)

  Concrete implementation:
  treated as a record
  the names are compiled as fields of the record
  in the code, it’s sufficient to know the address of the base of GE

Formal languages and compilers 2011

6

Local Environment
 Notation:

 procedure P calls Q

 procedure P terminates and returns the control to the caller Q

  Let’s consider the computation

what happens to the local environment of Q?

  The simple part:
 when control is passed to R, LE becomes deactivated

 when control is passed back to Q, its LE become reactivated

Formal languages and compilers 2011

7

€

P ⇓ Q

P ⇑ Q

€

P ⇓ Q ⇓ R ⇑ Q ⇑ P

€

Q ⇓ R

R ⇑ Q

Local Environment (cont.)
  The management of environment in Q

is more delicate.

Two possible solutions:

1.  DLE: Dynamic Local Environment

 LE of Q is created

 LE of Q is destroyed

2.  SLE: Static Local Environment

 LE of Q is reactivated

 LE of Q is deactivated

Formal languages and compilers 2011

8

€

P ⇓ Q and Q ⇑ P

€

P ⇓ Q

Q ⇑ P

€

P ⇓ Q

Q ⇑ P

Local Environment (cont.)
  Example: static option in C creates static local environment

! !void f()!

! !{!

! ! static int x = 0; !

! ! x++; !

! ! printf("%d ", x); !

! ! f();!

! !} !

! !··· !

! !while(1) { f(); } ! !⇒ 1 2 3 4 5 ...!

 What happens without static?

Formal languages and compilers 2011

9

Local environment:
Implementation
1.  Static local environment

  The table of static local environment: it’s memorized only once
and divided by all the calls of subprogram

  SLE is simply a sequence of r-value

  The names are offset inside the SLE

Formal languages and compilers 2011

10

x:=…

r-value x

SC

SLE x:

Local environment:
Implementation
2.  Dynamic local environment

  The local environment is a part of the activation record (AR);
different calls of subprogram correspond to different instances of
the local environment

  Also in this case the local name of the subprogram is compiled as
offset, but this time inside the AR

Formal languages and compilers 2011

11

r-value x

AR
0
1
.
:

k
:

x:=… SC

stack AR

Non local references
  Example

  If x is not local, which binding is used for x?

 Answer: rules of scoping
  Dynamic scoping: rules of visibility are related to the execution (Lisp)

  Static scoping: rules of visibility are related to the structure (syntax) of
the program: it’s the most used technique in the modern languages
(C, C++, Java, Pascal, ML,…)

Formal languages and compilers 2011

12

procedure Q() !

!begin !

! !...!

! !x!

! !...!

!end !

Static scoping
  Every identifier has a declaration that statically binds it. This

binding is constant at runtime.
  The type of the identifier is known at compile time

  The location for the value of identifier can change at runtime
(dynamic local environment) or not (static local environment)

  For more rigorous analysis, for every program let’s associate a
tree called scoping tree:
  [we give different names to blocks (the subprograms already have

different names)]

  nodes of the tree -> names of the blocks and subprograms

  Q is a child of P if
  Q is a direct block of P

  Q is a subprogram declared in P

Formal languages and compilers 2011

13

Static scoping (cont.)

Formal languages and compilers 2011

14

A: begin !

!proc B;!

! begin!

! !E: begin...end!

! !F: begin...end !

! end {B}!

!C: begin !

! ! G: begin...end!

 ! ! proc H;!

! ! !begin L: begin...end!

! ! ! ! V: begin...end!

! ! !end {H} !

! !end {C}!

end {A}!

A

B C

E F G H

L V

Rule of static scoping
  If x occurs in non local reference in

the subprogram/block P

1.  non local environment that provides
correct binding for x is the parent Q
nearest to P in which x is declared

2.  if there is no parent Q that declares x,
the error is generated (this control is
made at compile time)

Note: Here the global environment is the
environment of the outermost
subprogram/block

Formal languages and compilers 2011

15

A

Q

G H

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!

Rule of static scoping (cont)
  If the language defines a global

environment outside of
subprograms/blocks, then scoping
rule is rewritten:

1.  non local environment that provides
correct binding for x is the parent Q
nearest to P in which x is declared
[as above]

2.  if there is no parent Q of P that
declares x, then x is searched in the
global environment

3.  if not found an error is generated (at
compile time)

Formal languages and compilers 2011

16

A

Q

G H

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!

Static scoping: semantics

  Let’s change the definition of the environment: an environment
(global) becomes a sequence of local environments:

Formal languages and compilers 2011

17

€

Env = List(Ide → DVal) r = [r0,r1,...,rk]

DVal = (Val ∪ Loc)

  Rule of scoping: r(x) is defined as
follows:
  if rk(x) is defined, then rk(x), otherwise:
  if rk-1(x) is defined, then rk-1(x),

otherwise:
  …
  if r0(x) is defined, then r0(x), otherwise:
  ERROR

  Also DVal is changed, in order to keep track
of the declarations of subprograms:

€

DVal = (Val ∪ Loc ∪ Com)

A

Q

G H

P V …!
x := 0; !
…!

…!
var x : int; !
…!

Static scoping: semantics (cont.)

Formal languages and compilers 2011

18

€

D const v = n [r0,r1,...,rk]s
= [r0,r1,...,rkʹ′]s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

n if y = v

⎧
⎨
⎪

⎩ ⎪

€

D proc P = C
[r0,r1,...,rk]s

= [r0,r1,...,rkʹ′]s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ P

C if y = P

⎧
⎨
⎪

⎩ ⎪

€

D var v := n [r0,r1,...,rk]s
= [r0,r1,...,rkʹ′] ʹ′ s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

l if y = v

⎧
⎨
⎪

⎩ ⎪
sʹ′(x) =

s(x) if x ≠ l

n if x = l

⎧
⎨
⎩

where l=(newmem s) is a new location in s!

Static scoping: implementation
  Problem: the stack of AR provides a temporal order between

local environments (useless for static scoping), but gives no
indication on the structure of the program.

  Solution:
  To each AR the static chain pointer (SCP) is added.

  The "static" information on the syntactic structure (scoping tree) is
implemented through the SCP.

  Let’s assume that a subprogram/block Q is a parent of subprogram/
block P in the scoping tree. Then, the SCP of an AR of P points to AR
of Q according to the rule of static scoping.

 Note: we consider the case of dynamic local environment.

Formal languages and compilers 2011

19

Static scoping: implementation
(cont.)
Suppose that

then, the AR of P is pushed in the stack of AR

R is a child of Q but in the stack there are several occurrences of Q.

Formal languages and compilers 2011

20

€

Q ⇓ R

???

P

Q

R

P

Q

R

Q

R

stack of AR

  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

Algorithm to determine SCP

Formal languages and compilers 2011

21

€

α ⇓ β

  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

Algorithm to determine SCP

Formal languages and compilers 2011

22

€

α ⇓ β

P

Q

R

S

P: begin !

!proc S; begin...end {S}!

!proc Q;!

! begin!

! !proc R; begin...end {R}!

! end {Q}!

end {P}!

Algorithm to determine SCP
  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

  Let’s define ♯(α, β)= depth(α) – depth(parent(β))	

  Example:

23

€

α ⇓ β

P

Q

R

 then ♯(Q, R) = 1 - 1 = 0

 then ♯(R, Q) = 2 - 0 = 2

0

1

2

€

Q ⇓ R

€

R ⇓ Q

Algorithm to determine SCP
  If then

1.  The AR of Q (ARQ) is put in the stack

2.  The distance ♯(P, Q) is calculated

3.  The address a is reached by making ♯(P, Q) steps starting from SCP
of AR of the caller P.

 This is the address of an AR corresponding to a subprogram/block T
that declares Q.

4.  SCP of ARQ has a value a

Formal languages and compilers 2011

24

€

P ⇓ Q

Determining SCP: Examples

Formal languages and compilers 2011

25

P

Q

R

S

0

1

2

♯(P, Q) = 0
P

Q

R

Q

R

€

P ⇓ Q ⇓ R ⇓ Q ⇓ R ⇓ S

♯(Q, R) = 0

♯(R, Q) = 2

♯(R, S) = 2

S

Determining SCP: Examples

Formal languages and compilers 2011

26

P

Q

R

S

0

1

2

♯(P, Q) = 0
P

Q

R

Q

€

P ⇓ Q ⇓ R ⇓ Q ⇓ S

♯(Q, R) = 0

♯(R, Q) = 2

♯(Q, S) = 1
S

Calling a subprogram:
semantics
  If , then

where

  program P is declared as proc P = Cmd
  .
  where:

h =depth(r,P), or rh is “the deepest” environment where P is defined:

  rh(P) is defined,

  rh+1(P), rh+2(P),..., rk(P) are not defined

  rε is a new local (empty) environment for Cmd

Formal languages and compilers 2011

27

€

C call P rs = C Cmd ʹ′ r s

€

r = [r0,r1,...,rk]

€

Cmd = r(P) ∈ Com

€

r'= [r0,r1,...,rh,rε]

Non local references
  Suppose that a subprogram/block P is using a name n

  Define:

	

♯(P, n) = depth(P) – depth(subprg./blk that declares n)

  Example:

Formal languages and compilers 2011

28

A

Q

G H

P V …!
n := 5;!
…!

…!
var n : int; !
…!

♯(P, n) = depth(P) – depth(Q) = 2

Non local references (cont.)
  Every non local reference n in the subprogram/block P is

represented as

 <x,y>

 where

  x = 	

♯(P, n)

  y = position (offset) of n in the template of AR of the subprogram/
block that declares n

  If x=0 then n is local and is compiled simply as y.

Formal languages and compilers 2011

29

Non local references:
Implementation
 Observation: given a subprogram P,

  the length of the static chain when P is executing is statically fixed

  the non-local reference to a variable n is resolved always at the same
point in the chain

  For the reason of efficiency, the static chain is often
implemented as a vector (we call it display)

  The access to the identifier with the “coordinates” <x,y> is
calculated as:

 display[x] + y

 Cost: it is necessary to create the whole display all the times
when the execution of subprogram starts (but often the HW
machine gives the corresponding instructions)

Formal languages and compilers 2011

30

Passing the parameters
  Let’s assume:

  dynamic local environment
  static scoping

  Notation:
  proc P(x) – x is a formal parameter
  call P(e) – e is an actual parameter or an argument

  The formal parameters are treated as local variables (they are then
allocated to the activation record).

  Example:

The local variables are x and y.

Formal languages and compilers 2011

31

proc P(x) !

 begin!

!int y;!

!···!

 end !

Notation means that

Passing the parameters
(cont.)

  P is declared as proc P(x) …

  P is invoked as call P(e)!

  α is type of passing the parameters

Formal languages and compilers 2011

32

€

call P(x ⇐α e)

€

call P(x ⇐Val e)

€

call P(x ⇐Ref y)

€

call P(x ⇐Res y)

€

call P(x ⇐Val- res y)

€

call P(x ⇐Const e)

€

call P(x ⇐Name e)

Note: x, y are variables, e is an arithmetical expression

Value

Reference

Result
Value-result

Constant
Name

Passing by value

  The expression e is evaluated in the environment of the caller

  In the AR of P the value e is assigned to the variable x!

 where

Formal languages and compilers 2011

33

€

call P(x ⇐Val e)

€

C call P(x ⇐Val e)
rs

= C Cmd ʹ′ r ʹ′ s

€

l = newmem s

v = E e rs

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

Note: x is local in P!

It is already implemented in crème CAraMeL.

Passing by value-result

  The value of y is evaluated in the environment of the caller

  this value is assigned to the local variable x in P!

  when P terminates, the value of x is copied to the variable y of the
caller

 where

Formal languages and compilers 2011

34

€

call P(x ⇐Val- res y)

€

C call P(x ⇐Val- res y)
rs

= ʹ′ ʹ′ ʹ′ s

€

v = E y
rs

l = newmem s

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

C Cmd ʹ′ r ʹ′ s = ʹ′ ʹ′ s

ʹ′ ʹ′ ʹ′ s = update(ʹ′ ʹ′ s ,Λ y
rs
, ʹ′ ʹ′ s (l))

Passing by result

 when P terminates, x is copied to the variable y!

  initial value of x is not specified

  the semantics is like in passing by value-result without the
evaluation of y

Formal languages and compilers 2011

35

€

call P(x ⇐Res y)

Passing by reference

  The location l of y is evaluated in the environment of the caller

  The location of x in P is set to l

 where

Formal languages and compilers 2011

36

€

call P(x ⇐Ref y)

€

C call P(x ⇐Ref y)
rs

= C Cmd ʹ′ r s

€

l = Λ y
rs

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

Cmd = r(P)

Passing by constant

  The value of e is evaluated in the environment of the caller

  this value is assigned to the local variable x in P!

  x cannot be assigned values in P!

  It can be implemented in a similar way to the passing by
reference

Formal languages and compilers 2011

37

€

call P(x ⇐Const e)

Passing by name

  create a new couple <e, r>, where r is an environment of the
caller

  every time when x should be evaluated, e is getting evaluated
instead in the environment r and put instead of x.

  x cannot be assigned values in P!

Formal languages and compilers 2011

38

€

call P(x ⇐Name e)

