
Scoping
Subprograms

Lecture 7-8

1

Data control
  Problem: how to provide data to operations and subprograms?

Or what is the “environment” of the reference by name?

  Two major problems:
1.  one name can denote different objects (e.g. local variables)

2.  one object can be denoted by several names (e.g. passing
parameters)

  To solve these problems the environments were proposed.

  Environment: binding between the names (Ide) and values:

Formal languages and compilers 2011

2

€

Env : Ide → Loc ∪ Val

Environments
Operations in programming language that affect the environment:

1.  Creation of binding <name, object>
  Example: declarations, parameters… in the beginning of execution and

when entering the subprogram

2.  Use of the environment
  Example: reference to the identifier (variables, names of subprograms)

3.  Deactivation the binding
  Example: when P calls Q, some bindings of P are deactivated

4.  Reactivation the binding
  Example: when Q returns control to P

5.  Destruction the binding
  Example: return from subprogram, the end of execution

Formal languages and compilers 2011

3

Blocks and local variables
 A block consists of local declarations and commands:

!! !begin!

!! ! D !=> local declarations!

!! ! C !=> commands!

!! !end!

  Example (C):

!! !x:=5;!

!! !{ int x; x:=7;!

!! ! printf(“%d”, x);!=> 7 ! !!

!! !}!

!! !printf(“%d”, x); !=>5

 A block is like a procedure without parameters

Formal languages and compilers 2011

4

Scoping
  The “scoping” solves the problem of determining…
  … when a particular binding <name, object> is active?

  … or which bindings are valid in a particular moment of execution?

  …or which is the environment?

 Different environments:
  local environment (LE) : all bindings created/activated in a block/

subprogram

  non-local environment (NLE) : all bindings used (active) but not local

  global environment (GE): all bindings shared by all blocks/
subprograms. GE can be considered:
  as a subset of NLE

  separately from NLE

Formal languages and compilers 2011

5

Global Environment (GE)
  Example (C):

 ! ! !int a[20];!

! ! !float b[5];!

! ! !struct { int i; char n[10]; } c, d; !!

! ! !...!

! ! !int main() {...}

  Contains also all the identifiers (constants, functions…) predefined in
the language

  Common table for all the subprograms (including main)

  Concrete implementation:
  treated as a record
  the names are compiled as fields of the record
  in the code, it’s sufficient to know the address of the base of GE

Formal languages and compilers 2011

6

Local Environment
 Notation:

 procedure P calls Q

 procedure P terminates and returns the control to the caller Q

  Let’s consider the computation

what happens to the local environment of Q?

  The simple part:
 when control is passed to R, LE becomes deactivated

 when control is passed back to Q, its LE become reactivated

Formal languages and compilers 2011

7

€

P ⇓ Q

P ⇑ Q

€

P ⇓ Q ⇓ R ⇑ Q ⇑ P

€

Q ⇓ R

R ⇑ Q

Local Environment (cont.)
  The management of environment in Q

is more delicate.

Two possible solutions:

1.  DLE: Dynamic Local Environment

 LE of Q is created

 LE of Q is destroyed

2.  SLE: Static Local Environment

 LE of Q is reactivated

 LE of Q is deactivated

Formal languages and compilers 2011

8

€

P ⇓ Q and Q ⇑ P

€

P ⇓ Q

Q ⇑ P

€

P ⇓ Q

Q ⇑ P

Local Environment (cont.)
  Example: static option in C creates static local environment

! !void f()!

! !{!

! ! static int x = 0; !

! ! x++; !

! ! printf("%d ", x); !

! ! f();!

! !} !

! !··· !

! !while(1) { f(); } ! !⇒ 1 2 3 4 5 ...!

 What happens without static?

Formal languages and compilers 2011

9

Local environment:
Implementation
1.  Static local environment

  The table of static local environment: it’s memorized only once
and divided by all the calls of subprogram

  SLE is simply a sequence of r-value

  The names are offset inside the SLE

Formal languages and compilers 2011

10

x:=…

r-value x

SC

SLE x:

Local environment:
Implementation
2.  Dynamic local environment

  The local environment is a part of the activation record (AR);
different calls of subprogram correspond to different instances of
the local environment

  Also in this case the local name of the subprogram is compiled as
offset, but this time inside the AR

Formal languages and compilers 2011

11

r-value x

AR
0
1
.
:

k
:

x:=… SC

stack AR

Non local references
  Example

  If x is not local, which binding is used for x?

 Answer: rules of scoping
  Dynamic scoping: rules of visibility are related to the execution (Lisp)

  Static scoping: rules of visibility are related to the structure (syntax) of
the program: it’s the most used technique in the modern languages
(C, C++, Java, Pascal, ML,…)

Formal languages and compilers 2011

12

procedure Q() !

!begin !

! !...!

! !x!

! !...!

!end !

Static scoping
  Every identifier has a declaration that statically binds it. This

binding is constant at runtime.
  The type of the identifier is known at compile time

  The location for the value of identifier can change at runtime
(dynamic local environment) or not (static local environment)

  For more rigorous analysis, for every program let’s associate a
tree called scoping tree:
  [we give different names to blocks (the subprograms already have

different names)]

  nodes of the tree -> names of the blocks and subprograms

  Q is a child of P if
  Q is a direct block of P

  Q is a subprogram declared in P

Formal languages and compilers 2011

13

Static scoping (cont.)

Formal languages and compilers 2011

14

A: begin !

!proc B;!

! begin!

! !E: begin...end!

! !F: begin...end !

! end {B}!

!C: begin !

! ! G: begin...end!

 ! ! proc H;!

! ! !begin L: begin...end!

! ! ! ! V: begin...end!

! ! !end {H} !

! !end {C}!

end {A}!

A

B C

E F G H

L V

Rule of static scoping
  If x occurs in non local reference in

the subprogram/block P

1.  non local environment that provides
correct binding for x is the parent Q
nearest to P in which x is declared

2.  if there is no parent Q that declares x,
the error is generated (this control is
made at compile time)

Note: Here the global environment is the
environment of the outermost
subprogram/block

Formal languages and compilers 2011

15

A

Q

G H

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!

Rule of static scoping (cont)
  If the language defines a global

environment outside of
subprograms/blocks, then scoping
rule is rewritten:

1.  non local environment that provides
correct binding for x is the parent Q
nearest to P in which x is declared
[as above]

2.  if there is no parent Q of P that
declares x, then x is searched in the
global environment

3.  if not found an error is generated (at
compile time)

Formal languages and compilers 2011

16

A

Q

G H

P V …!
x := 0; y := 3; !
…!

…!
var x : int; !
…!

Static scoping: semantics

  Let’s change the definition of the environment: an environment
(global) becomes a sequence of local environments:

Formal languages and compilers 2011

17

€

Env = List(Ide → DVal) r = [r0,r1,...,rk]

DVal = (Val ∪ Loc)

  Rule of scoping: r(x) is defined as
follows:
  if rk(x) is defined, then rk(x), otherwise:
  if rk-1(x) is defined, then rk-1(x),

otherwise:
  …
  if r0(x) is defined, then r0(x), otherwise:
  ERROR

  Also DVal is changed, in order to keep track
of the declarations of subprograms:

€

DVal = (Val ∪ Loc ∪ Com)

A

Q

G H

P V …!
x := 0; !
…!

…!
var x : int; !
…!

Static scoping: semantics (cont.)

Formal languages and compilers 2011

18

€

D const v = n [r0,r1,...,rk]s
= [r0,r1,...,rkʹ′]s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

n if y = v

⎧
⎨
⎪

⎩ ⎪

€

D proc P = C
[r0,r1,...,rk]s

= [r0,r1,...,rkʹ′]s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ P

C if y = P

⎧
⎨
⎪

⎩ ⎪

€

D var v := n [r0,r1,...,rk]s
= [r0,r1,...,rkʹ′] ʹ′ s where :

rkʹ′(y) =
rkʹ′(y) if y ≠ v

l if y = v

⎧
⎨
⎪

⎩ ⎪
sʹ′(x) =

s(x) if x ≠ l

n if x = l

⎧
⎨
⎩

where l=(newmem s) is a new location in s!

Static scoping: implementation
  Problem: the stack of AR provides a temporal order between

local environments (useless for static scoping), but gives no
indication on the structure of the program.

  Solution:
  To each AR the static chain pointer (SCP) is added.

  The "static" information on the syntactic structure (scoping tree) is
implemented through the SCP.

  Let’s assume that a subprogram/block Q is a parent of subprogram/
block P in the scoping tree. Then, the SCP of an AR of P points to AR
of Q according to the rule of static scoping.

 Note: we consider the case of dynamic local environment.

Formal languages and compilers 2011

19

Static scoping: implementation
(cont.)
Suppose that

then, the AR of P is pushed in the stack of AR

R is a child of Q but in the stack there are several occurrences of Q.

Formal languages and compilers 2011

20

€

Q ⇓ R

???

P

Q

R

P

Q

R

Q

R

stack of AR

  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

Algorithm to determine SCP

Formal languages and compilers 2011

21

€

α ⇓ β

  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

Algorithm to determine SCP

Formal languages and compilers 2011

22

€

α ⇓ β

P

Q

R

S

P: begin !

!proc S; begin...end {S}!

!proc Q;!

! begin!

! !proc R; begin...end {R}!

! end {Q}!

end {P}!

Algorithm to determine SCP
  Suppose α and β are nodes of the scoping tree

  Suppose that

 then, the parent of β should be an ancestor of α

 (otherwise β would not be visible from α)

  Let’s define ♯(α, β)= depth(α) – depth(parent(β))	

  Example:

23

€

α ⇓ β

P

Q

R

 then ♯(Q, R) = 1 - 1 = 0

 then ♯(R, Q) = 2 - 0 = 2

0

1

2

€

Q ⇓ R

€

R ⇓ Q

Algorithm to determine SCP
  If then

1.  The AR of Q (ARQ) is put in the stack

2.  The distance ♯(P, Q) is calculated

3.  The address a is reached by making ♯(P, Q) steps starting from SCP
of AR of the caller P.

 This is the address of an AR corresponding to a subprogram/block T
that declares Q.

4.  SCP of ARQ has a value a

Formal languages and compilers 2011

24

€

P ⇓ Q

Determining SCP: Examples

Formal languages and compilers 2011

25

P

Q

R

S

0

1

2

♯(P, Q) = 0
P

Q

R

Q

R

€

P ⇓ Q ⇓ R ⇓ Q ⇓ R ⇓ S

♯(Q, R) = 0

♯(R, Q) = 2

♯(R, S) = 2

S

Determining SCP: Examples

Formal languages and compilers 2011

26

P

Q

R

S

0

1

2

♯(P, Q) = 0
P

Q

R

Q

€

P ⇓ Q ⇓ R ⇓ Q ⇓ S

♯(Q, R) = 0

♯(R, Q) = 2

♯(Q, S) = 1
S

Calling a subprogram:
semantics
  If , then

where

  program P is declared as proc P = Cmd
  .
  where:

h =depth(r,P), or rh is “the deepest” environment where P is defined:

  rh(P) is defined,

  rh+1(P), rh+2(P),..., rk(P) are not defined

  rε is a new local (empty) environment for Cmd

Formal languages and compilers 2011

27

€

C call P rs = C Cmd ʹ′ r s

€

r = [r0,r1,...,rk]

€

Cmd = r(P) ∈ Com

€

r'= [r0,r1,...,rh,rε]

Non local references
  Suppose that a subprogram/block P is using a name n

  Define:

	
♯(P, n) = depth(P) – depth(subprg./blk that declares n)

  Example:

Formal languages and compilers 2011

28

A

Q

G H

P V …!
n := 5;!
…!

…!
var n : int; !
…!

♯(P, n) = depth(P) – depth(Q) = 2

Non local references (cont.)
  Every non local reference n in the subprogram/block P is

represented as

 <x,y>

 where

  x = 	
♯(P, n)

  y = position (offset) of n in the template of AR of the subprogram/
block that declares n

  If x=0 then n is local and is compiled simply as y.

Formal languages and compilers 2011

29

Non local references:
Implementation
 Observation: given a subprogram P,

  the length of the static chain when P is executing is statically fixed

  the non-local reference to a variable n is resolved always at the same
point in the chain

  For the reason of efficiency, the static chain is often
implemented as a vector (we call it display)

  The access to the identifier with the “coordinates” <x,y> is
calculated as:

 display[x] + y

 Cost: it is necessary to create the whole display all the times
when the execution of subprogram starts (but often the HW
machine gives the corresponding instructions)

Formal languages and compilers 2011

30

Passing the parameters
  Let’s assume:

  dynamic local environment
  static scoping

  Notation:
  proc P(x) – x is a formal parameter
  call P(e) – e is an actual parameter or an argument

  The formal parameters are treated as local variables (they are then
allocated to the activation record).

  Example:

The local variables are x and y.

Formal languages and compilers 2011

31

proc P(x) !

 begin!

!int y;!

!···!

 end !

Notation means that

Passing the parameters
(cont.)

  P is declared as proc P(x) …

  P is invoked as call P(e)!

  α is type of passing the parameters

Formal languages and compilers 2011

32

€

call P(x ⇐α e)

€

call P(x ⇐Val e)

€

call P(x ⇐Ref y)

€

call P(x ⇐Res y)

€

call P(x ⇐Val- res y)

€

call P(x ⇐Const e)

€

call P(x ⇐Name e)

Note: x, y are variables, e is an arithmetical expression

Value

Reference

Result
Value-result

Constant
Name

Passing by value

  The expression e is evaluated in the environment of the caller

  In the AR of P the value e is assigned to the variable x!

 where

Formal languages and compilers 2011

33

€

call P(x ⇐Val e)

€

C call P(x ⇐Val e)
rs

= C Cmd ʹ′ r ʹ′ s

€

l = newmem s

v = E e rs

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

Note: x is local in P!

It is already implemented in crème CAraMeL.

Passing by value-result

  The value of y is evaluated in the environment of the caller

  this value is assigned to the local variable x in P!

  when P terminates, the value of x is copied to the variable y of the
caller

 where

Formal languages and compilers 2011

34

€

call P(x ⇐Val- res y)

€

C call P(x ⇐Val- res y)
rs

= ʹ′ ʹ′ ʹ′ s

€

v = E y
rs

l = newmem s

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

ʹ′ s = updatemem(s,l, v)

Cmd = r(P)

C Cmd ʹ′ r ʹ′ s = ʹ′ ʹ′ s

ʹ′ ʹ′ ʹ′ s = update(ʹ′ ʹ′ s ,Λ y
rs
, ʹ′ ʹ′ s (l))

Passing by result

 when P terminates, x is copied to the variable y!

  initial value of x is not specified

  the semantics is like in passing by value-result without the
evaluation of y

Formal languages and compilers 2011

35

€

call P(x ⇐Res y)

Passing by reference

  The location l of y is evaluated in the environment of the caller

  The location of x in P is set to l

 where

Formal languages and compilers 2011

36

€

call P(x ⇐Ref y)

€

C call P(x ⇐Ref y)
rs

= C Cmd ʹ′ r s

€

l = Λ y
rs

ʹ′ r = [r0,...,rdepth(r,P), rP] with rP(x) = l

Cmd = r(P)

Passing by constant

  The value of e is evaluated in the environment of the caller

  this value is assigned to the local variable x in P!

  x cannot be assigned values in P!

  It can be implemented in a similar way to the passing by
reference

Formal languages and compilers 2011

37

€

call P(x ⇐Const e)

Passing by name

  create a new couple <e, r>, where r is an environment of the
caller

  every time when x should be evaluated, e is getting evaluated
instead in the environment r and put instead of x.

  x cannot be assigned values in P!

Formal languages and compilers 2011

38

€

call P(x ⇐Name e)

