
Revisiting OCaml
Lecture 2

Formal Languages and Compilers 2011

Nataliia Bielova

2

How to run OCaml
  Run the interpreter with

ocaml

  Save the file in “myfile.ml”, let the interpreter run it from file

 ocaml

 #use “myfile.ml”

  Compilation of a single module
ocamlc –c myfile.ml

Results in myfile.cmo

  Then use the compiled file in the interpeter:
ocaml

#load “myfile.cmo”;;

open Myfile;;

3

Formal languages and compilers 2011

Value binding and
pattern matching
  let (x, y) = (“hi”,(1,2));;
  let (a, (b,c)) = (z, (3,4));;

Formal languages and compilers 2011

4

Value binding and
pattern matching
  let (x, y) = (“hi”,(1,2));;
  let (a, (b,c)) = (z, (3,4));;

  let h::t = [4;5;6];;
  let h::t = [4]::[5;6];;

Formal languages and compilers 2011

5

Value binding and
pattern matching
  let (x, y) = (“hi”,(1,2));;
  let (a, (b,c)) = (z, (3,4));;

  let h::t = [4;5;6];;
  let h::t = [4]::[5;6];;

  let x = 1 and y = 2 in x*y;;
  let a = 3 and b = 4 in c=a+b;;
  let a = 3 and b=4 in c=a+b in c+2;;

Formal languages and compilers 2011

6

Functions
  fun x -> (x*2, x*4, x*8);;

  let f x = x*2;;

  let y = (f 2) in y*2;;

Formal languages and compilers 2011

7

Functions
  fun x -> (x*2, x*4, x*8);;

  let f x = x*2;;

  let y = (f 2) in y*2;;

  let f x = if x>0 then x

 else 0;;

Formal languages and compilers 2011

8

Functions
  fun x -> (x*2, x*4, x*8);;

  let f x = x*2;;

  let y = (f 2) in y*2;;

  let f x = if x>0 then x

 else 0;;

  String.length;;

  String.contains;;

Formal languages and compilers 2011

9

Lists
  List.rev;;

  List.hd;;

  List.tl;;

Formal languages and compilers 2011

10

Lists
  List.rev;;

  List.hd;;

  List.tl;;

  List.hd [1;2;3];;

  List.hd (List.tl [4;5;6]);;

Formal languages and compilers 2011

11

Lists
  List.rev;;

  List.hd;;

  List.tl;;

  List.hd [1;2;3];;

  List.hd (List.tl [4;5;6]);;

  List.append;;

  the same as list1@list2

  [1;2;3]@[4;5];;
Formal languages and compilers 2011

12

Recursive functions

let rec f1 = function
 |0 -> 0
 |n -> n + f1(n-1)

Formal languages and compilers 2011

13

let rec f2 n = match n with
 |0 -> 0
 |n -> n + f2 n-1

let rec f3 n m = match n with
 |0 -> m
 |n -> f3 (n-1) m+n

Try an exercise!
 Given a list of string l, define a function find that

builds a new list that contains elements from l
such that the length of each element is less or
equal than 3.

  The order of elements should be preserved.

  For example, if l = ["12"; "abcd"; "www"; "456"]

 then result is [“12”; “www”; “456”]

Formal languages and compilers 2011

14

Compilers and
Interpreters

Lection 2

15

Running OCaml
  Run the interpreter with

  ocaml

  Exit the interpreter:
  # quit;;

  Compilers:
  ocamlc compiles in bytecode

  Compilation of a single module
  ocamlc –c <fileName>.ml

  Produces <fileName>.cmo

16

Formal languages and compilers 2011

Interpeter

Compiler

What’s the
difference?

Compiler

Formal languages and compilers 2011

17

Source
code

Executable
code

in high-level
language

in machine
language

  If an error is found, the source code is not converted

Single translation

Interpreter

Formal languages and compilers 2011

18

Source
code

Intermediate
code

in high-level
language

in some intermediate
language

  If an error is found in a statement, the interpreter stops working
and shows an error

Statement by
statement

Compiler vs. Interpreter

Formal languages and compilers 2011

19

Source
code

Executable
code

Machine
f

Source
code

Intermediate
code

Interpreter
f

Compilation

processing

processing

Interpretation

preprocessing

preprocessing

Compiler vs. Interpreter

 Compiler characteristics:
  spends a lot of time analyzing and processing the program

  the resulting executable is some form of machine- specific binary
code

  the computer hardware interprets (executes) the resulting code

  program execution is fast

Formal languages and compilers 2011

20

Compiler vs. Interpreter

  Interpreter characteristics:
  relatively little time is spent analyzing and processing the program

  the resulting code is some sort of intermediate code

  the resulting code is interpreted by another program

  program execution is relatively slow

Formal languages and compilers 2011

21

Some real life examples
 C++ compiler

  Java with its Java Virtual Machine (JVM) is something in
between, more similar to interpreter

  Java compiler transforms source program to Java bytecode

  JVM is an interpreter of the bytecode

  JIT (Just-In-Time) compiles parts of the bytecode to executable
code

Formal languages and compilers 2011

22

Java
source
code

Java
bytecode

Java compiler

JVM
f

JIT

Structure of a compiler

Formal languages and compilers 2011

23

Source
code

Executable
code

Front-end
(analysis)

Intermediate
Language

Back-end
(synthesis)

Front-end structure

Formal languages and compilers 2011

24

Source
code Lexer Parser

tokens
IC generator

syntax
tree IC

C generator C

Front-end

Intermediate Language

Back-end

Back-end structure
  is responsible for emitting the final (executable)

version of the source program. Typical parts of
the back end are responsible for:
  instruction selection

  register allocation

  memory management

  instruction scheduling

Formal languages and compilers 2011

25

Front-end and back-end

  Reuse the same front-end for different machines

  Reuse the same back-end for different source languages
Formal languages and compilers 2011

26

L1

L2

LN

Front-end 1

Front-end 2

Front-end N

…

Intermediate
Language

Back-end 1 M1

Back-end 2 M2

Back-end K Mk

…

References
 CS544:

http://web.cs.wpi.edu/~gpollice/cs544-f05/
CourseNotes/maps/Class1/
Compilervs.Interpreter.html

Formal languages and compilers 2011

27

