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How much does the attacker learn when
she observes a concrete public output?



if S = sl then 0O =

wtions @ @ @
() ()

Public outputs

@O

Program

\ 4

® ¢

a else O = Db

How much does
the attacker learn when

she observes output b?



if S = sl then O = a else O = b

=2) (3
O,

Secret inputs

Public outputs

©O®

How much does
the attacker learn when
she observes output b?

sl

(&)

Program




Existing measures of info leakage

Average measures Belief tracking
e Shannon Entropy ° BeliefTraCking
* Min Entropy
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A need for a new measure

Average measures Belief tracking

1V

Dynamic Leakage?

O

A



if S = sl then O = a else O = b

a priori a posteriori after a a posteriori after b
T Psja Psib
sl [ 0.875 sl |1 sl |0
s2 | 0.0625 s2 |0 s2 [0.5
s3 [ 0.0625 s3 |0 s3 (0.5




Average measure: Shannon Entropy
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Average measure: Shannon Entropy
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Dynamic Leakage for Shannon Entropy

Lynamic = H (1) - H (Pgyp)

a posteriori for concrete output b
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Dynamic Leakage for Shannon Entropy
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A need for a new measure

Average measures Belief tracking
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Belief tracking

concrete secret
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Belief tracking

concrete secret
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Belief tracking is suitable for
deterministic programs

Theorem 1. | LPelief = - Jog p(0)

Lbelief — [belief



Belief tracking is suitable for
deterministic programs

Lhelief = _ oo p(b)

= - log (m(s2) + m(s3))

Initial probabilities of secrets that
can produce output b
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A need for a new measure
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Belief tracking for probabilistic programs?
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Belief tracking for probabilistic programs?

Lbelief -+ Lbelief
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Conclusions

¥ Average measures become negative

v/ Belief tracking is suitable for deterministic programs

Which measure is suitable for probabilistic programs?
— Operational scenario?
— Reasonable evaluation criteria?



