

Dynamic Leakage

A Need for a New Quantitative Information Flow Measure

Nataliia Bielova

24 October 2016 PLAS'16

Noninterference

Quantitative Information Flow

How much does the attacker learn when she observes a concrete public output?

if S = s1 then O = a else O = b

Secret inputs s1 s2 s3

Public outputs a b

How much does the attacker learn when she observes **output b**? if S = s1 then O = a else O = b

Secret inputs s1 s2 s3

Public outputs a b

How much does the attacker learn when she observes **output b**?

Existing measures of info leakage

Average measures

- Shannon Entropy
- Min Entropy
- Guessing Entropy
- g-leakage
- Channel capacity

Belief tracking

Belief Tracking

A need for a new measure

Average measures

Belief tracking

Dynamic Leakage?

if S = s1 then O = a else O = b

a priori

	π
s1	0.875
s2	0.0625
s3	0.0625

a posteriori after a

	$p_{S a}$
s1	1
s2	0
s3	0

a posteriori after b

	$p_{S b}$
s1	0
s2	0.5
s3	0.5

Average measure: Shannon Entropy

	π
s1	0.875
s2	0.0625
s3	0.0625

Uncertainty about the secret

$$\mathcal{H}(\pi) = -\sum_{s \in \mathcal{S}} \pi(s) \cdot \log \pi(s)$$

Leakage:

$$\mathcal{L} = \mathcal{H}(\pi) - \mathcal{H}(p_{S|0})$$

average for all possible outputs

$$\underline{\mathcal{H}(p_{S|O})} = -\sum_{o \in \mathcal{O}} p(o) \cdot \log \underline{\mathcal{H}(p_{S|o})}$$

entropy for one output

Average measure: Shannon Entropy

	π
s1	0.875
s2	0.0625
s3	0.0625

$$\begin{array}{c|cc} & p_{S|a} \\ \hline s1 & 1 \\ s2 & 0 \\ s3 & 0 \\ \end{array}$$

	p _{S b}
s1	0
s2	0.5
s3	0.5

$$\mathcal{H}(\pi) = 0.67$$

$$\mathcal{H}(\mathbf{p}_{\mathsf{S}|\mathsf{a}}) = 0$$

$$\mathcal{H}(\mathbf{p}_{S|\mathbf{b}}) = 1$$

$$\mathcal{H}(\mathbf{p}_{S|O}) = 0.13$$

$$\mathcal{L} = 0.67 - 0.13 = 0.54$$

average information leakage for all possible outputs

Dynamic Leakage for Shannon Entropy

$$\mathcal{L}^{\text{dynamic}} = \mathcal{H}(\pi) - \mathcal{H}(p_{S|b})$$

a posteriori for concrete output b

Dynamic Leakage for Shannon Entropy

	π
s1	0.875
s2	0.0625
s3	0.0625

$$\mathcal{H}(\pi) = 0.67$$

	$p_{S b}$
s1	0
s2	0.5
s3	0.5

$$\mathcal{H}(\mathbf{p}_{S|b}) = 1$$

$$\mathcal{L}^{\text{dynamic}} = 0.67 - 1 = -0.33$$

no leakage!

A need for a new measure

Average measures

Belief tracking

Belief tracking

	π
s1	0.875
s2	0.0625
s3	0.0625

	$p_{S b}$
s1	0
s2	0.5
s3	0.5

$$\mathcal{D}(p_{S|b} \to p')$$

concrete secret

	p'
s1	0
s2	1
s3	0

$$\mathcal{L}^{\text{belief}} = \mathcal{D}(\pi \to p') - \mathcal{D}(p_{S|b} \to p')$$

concrete secret input

 $\mathcal{D}(\pi \rightarrow p')$

a posteriori for one output

Belief tracking

	π
s1	0.875
s2	0.0625
s3	0.0625

	$p_{S b}$
s1	0
s2	0.5
s3	0.5

concrete secret

	p'
s1	0
s2	1
s3	0

$$\mathcal{D}(\pi \to p') = 4$$

$$\mathcal{D}(p_{S|b} \to p') = 1$$

$$\mathcal{L}^{\text{belief}} = 4 - 1 = 3$$

Belief tracking is suitable for deterministic programs

Theorem 1. $\mathcal{L}^{\text{belief}} = -\log p(o)$

$$\mathcal{L}^{ ext{belief}}$$
 = $\mathcal{L}^{ ext{belief}}$

Belief tracking is suitable for deterministic programs

$$\mathcal{L}^{\text{belief}} = -\log p(b)$$

$$= -\log (\pi(s2) + \pi(s3))$$

Initial probabilities of secrets that can produce output b

A need for a new measure

Average measures

is suitable for deterministic programs

Belief tracking for probabilistic programs?

	π
s1	0.25
s2	0.75

	$p_{S b}$
s1	0.75
s2	0.25

concrete secret s2

Belief tracking for probabilistic programs?

Conclusions

- *Average measures become negative
- ✓ Belief tracking is suitable for deterministic programs
- ? Which measure is suitable for probabilistic programs?
 - Operational scenario?
 - Reasonable evaluation criteria?