

Better enforce than verify! How to ensure compliance of business processes at runtime

Nataliia Bielova^{1,3}

joint work with Fabio Massacci¹ and reality checks by Andrea Micheletti²

¹University of Trento, Italy

²Hospital San Raffaele, Italy

BPMN: drug dispensation from Hospital

BPMN: drug dispensation from Hospital

Hospital security policy

Security policy

- The doctor selects the drug.
- ■If the therapeutical notes needed ⇒ doctor reviews them.
- •If patient is using prescribed drug for the research program purposes ⇒ doctor inserts the research protocol number.
- Doctor inserts all the prescription details.
- ■If drug is available in the stock ⇒ doctor takes it.
- ■If drug is available in the ward ⇒ doctor takes it.

Security policy as FSA

Executions in Drug Selection Process are iterations

Good iteration: starts in q0 and finishes in q0

Bad iteration: "Drug is for research but doctor "forgot" to insert research protocol number"

Runtime Enforcement Theory

- Security policy P compliant executions
 - Only security properties evaluated on a trace
- Runtime enforcer controls the execution and ensures compliance with P
 - Security Automaton [Schneider TISSEC'00]
 - halts the execution when violation is detected

modifies the execution when violation is detected

Use this theory in practice?

- We want to enforce Hospital security policy...
 - Q1: Is our policy enforceable by these mechanisms?
 - Q2: How to construct an enforcement mechanism for our policy?
 - Q3: What formal guarantees do we get?

Safety property

[Schneider, TISSEC'05]

"Doctors are not allowed to make mistakes"

- 1 Nontermination
- 2 Trivial
- 3 Stack inspection
- 4 Eventually audits
- 5 All sequences with fixed length

Liveness property

"A doctor can always add the right actions to a finite execution"

- 1 Nontermination
- 2 Trivial
- 3 Stack inspection
- 4 Eventually audits
- 5 All sequences with fixed length
- 6 Termination
- 7 Transaction property σ∞

Renewal property

[Ligatti, Bauer, Walker IJIS'05, TISSEC'09]

"Good infinite executions could have had finitely many bad parts"

- 1 Nontermination
- 2 Trivial
- 3 Stack inspection
- 4 Eventually audits
- 5 All sequences with fixed length
- 6 Termination
- 7 Transaction property σ∞
- 8 Termination + file access control

Hospital security policy

Good infinite execution: sequence of iterations

Finite number of bad prefixes: while interation is not finished

=> Hospital security policy is a (particular kind of) renewal property!

Hospital security policy

Good infinite execution: sequence of iterations

Finite number of bad prefixes: while interation is not finished

mechanism for our policy?

Q3: What formal guarantees do we get?

=> Hospital security policy is a (particular kind of) renewal property!

How to construct an Enforcement mechanism?

- Requirements on Enforcement mechanism E:
 - Soundness: everything it outputs is secure

$$\forall \sigma \in \Sigma^{\infty} : P(E(\sigma))$$

• Transparency: all secure inputs are not modified

$$\forall \sigma \in \Sigma^{\infty} : P(\sigma) \Rightarrow E(\sigma) = \sigma$$

Construction 1: E outputs the longest valid prefix

Occasionally doctors make mistakes and forget to insert Research protocol number

 Longest valid prefix: "all the iterations before the doctor makes a mistake"

Formal guarantees:

- Soundness: $\forall \sigma \in \Sigma^{\infty}$: $P(E(\sigma))$
- Transparency: $\forall \sigma \in \Sigma^{\infty}$: $P(\sigma) \Rightarrow E(\sigma) = \sigma$

Construction 2: E suppresses invalid parts

Occasionally doctors make mistakes and forget to insert Research protocol number

 Iterative suppression automaton [Bielova, Massacci, Micheletti NordSec'09, JCS'11]

Formal guarantees:

- Soundness: $\forall \sigma \in \Sigma^{\infty}$: $P(E(\sigma))$
- Transparency: $\forall \sigma \in \Sigma^{\infty}$: $P(\sigma) \Rightarrow E(\sigma) = \sigma$

Construction 2: E suppresses invalid parts

Occasionally doctors make mistakes and forget to insert Research protocol number

 Iterative suppression automaton [Bielova, Massacci, Micheletti NordSec'09, JCS'11]

✓ Q2: How to construct an enforcement mechanism for our policy? 2 WAYS...

Q3: What formal guarantees do we get? THE SAME

• Transparency: $\forall \sigma \in \Sigma^{\infty} : P(\sigma) \Rightarrow E(\sigma) = \sigma$

Are the enforcement mechanisms different?

- Key idea: the mechanism is a trace transformer
 - It is evident the two mechanisms are different!
- Key requirements:
 - Soundness both are sound
 - Transparency both are transparent
- But they are different!
 - Hospital San Raffaele would not definitely pay the same money for both of them
- What distinguishes enforcement mechanisms is not what happens when traces are good (because nothing should happen) but what precisely happens when the sequence does not respect the policy

Soundness and transparency are not sufficient

- Soundness: for valid and invalid input
- Transparency: for valid input

Predictability [Bielova, Massacci ESSoS'11]

- "No surprises": for invalid input
 - input doesn't respect the policy => output is close to good input

Predictability [Bielova, Massacci ESSoS'11]

• E is **predictable** within k if for every trace $\sigma_p \in P$

$$\forall \ \nu \geq k : \exists \delta > 0 : \forall \sigma \in \Sigma^* :$$

$$(d(\sigma, \sigma_p) \leq \delta \implies d'(E(\sigma), E(\sigma_p)) \leq \nu)$$

How to define the distance?

- Suppressing distance $d_s(\sigma, \sigma')$
 - Reality check OK: suppress some bad actions, bring back to the stable state
- Replacing distance $d_R(\sigma, \sigma')$
 - Reality check OK: correct small errors, don't change the protocol
- No way to transform σ into $\sigma' \rightarrow d_S(\sigma, \sigma') = \infty / d_R(\sigma, \sigma') = \infty$
- Levenshtein distance $d_1(\sigma, \sigma')$ (suppresion, replacement, insertion)
 - Reality check NOT OK: insertion of new actions is not acceptable, medical and legal consequences

Suppression distance for drug dispensation

- σ_p : Good
- σ : **Dis**; Good
- $d_S(\sigma, \sigma_P) = 1$

- E1 outputs the longest valid prefix
 - $E1(\sigma) = \bullet$
 - $d_S(E1(\sigma), E1(\sigma_P)) = d_S(\bullet, Good) = \infty$
- E2 suppresses bad parts of execution
 - $E2(\sigma) = Good$
 - $d_S(E2(\sigma), E2(\sigma_P)) = d_S(Good, Good) = 0$
- Result: Suppression distance distinguishes E1 and E2

Enforcement of Error-tolerant policies

Mechanism E_P enforces the policy P

• Mechanism $E_{Tolerate(P, k)}$ enforces the policy P and tolerates up to k errors

What kind of errors/deviations?

Venial errors

- Doctor forgot to <u>Review therapeutical notes</u> (no <u>Rtn</u>)
- Close therapeutical notes window instead (Ctw)
- Only a limited number of times, e.g., k times per day

Amendable errors

- Doctor did not Insert research protocol number (no Irpn, Cpw instead)
- the whole reimbursement process can go wrong!
- Should be "corrected" by Inserting special number for Audit (InA)

Construction 3: E tolerates up to k errors

[Bielova, Massacci POLICY'11]

- Example
 - σ: Dis; Tnn; Ctw; Dr; Cpw; Dpres 1 venial and 1 amendable
 - E(σ): Dis; Tnn; Ctw; Dr; InA; Dpres 2 venial

Formal guarantees:

- Transparency: $\forall \sigma \in \Sigma^* : P(\sigma) \Rightarrow E(\sigma) = \sigma$
- Predictability for $k: \forall v \ge k : \exists \delta > 0 : \forall \sigma \in \Sigma^*$:

$$(d^{va}(\sigma, \sigma_p) \le \delta \implies d^{v}(E(\sigma), E(\sigma_p)) \le v)$$

- where
 - $d^{va}(\sigma, \sigma')$ number venial and amendable errors
 - $d^{v}(\sigma, \sigma')$ number of venial errors
 - amendable errors get transformed into venial errors or fixed

Conclusions

Q1: Is our policy enforceable by these mechanisms?

Hospital policy can be enforced at runtime

Q2: How to construct an enforcement mechanism for our policy?

- 1. Longest valid prefix
- 2. Suppress bad iterations
- 3. Tolerate up to k errors

Q3: What formal guarantees do we get?

- Soundness and transparency are not sufficient!
 - what distinguishes enforcement mechanisms in reality is what precisely happens when the input does not respect the policy
- New notion: Predictability
 - your input doesn't respect the policy => your output is close to your input

New developments in the field...

- Extensions to the theory
 - Non-controllable actions [Basin, Juge, <u>Klaedtke</u>, Zalinescu POST'12, TISSEC'13]
 - Mandatory results [Ligatti, Reddy ESORICS'10]
 - Target aware [Mallios, <u>Bauer</u>, Kaynar, Ligatti STM'12]
 - Corrective Enforcement [Khoury, Tawbi FAST'10, TISSEC'12]
- Inexact enforcement: quantitative approach
 - Assigned cost to enforcement actions [Drábik, Martinelli, Morisset STM'12]
 - Probabilistic cost enforcement [Mallios, <u>Bauer</u>, Kaynar, Martinelli, <u>Morisset</u> STM'13]

You've got a paper ready in 26 days?

International Symposium on Engineering Secure Software and Systems

February 26-28, 2014

Munich, Germany

- Program co-chairs:
 - Jan Juerjens (Technical University Dortmund, DE)
 - Frank Piessens (KU Leuven, BE)
- Important Dates
 - Abstract submission: September 6, 2013
 - Paper submission: September 13, 2013
- https://distrinet.cs.kuleuven.be/events/essos/2014/

Publications

- [BM-IJIS'11] N. Bielova and F. Massacci. Do you really mean what you actually enforced? Edit Automata revisited. IJIS'11.
- [BM-JCS'12] N. Bielova and F. Massacci. Iterative Enforcement by Suppression: Towards Practical Enforcement Theories. JCS'12.
- [BM-FAST'08] N. Bielova and F. Massacci. Do you really mean what you actually enforced? Edit Automata revisited. FAST'08.
- [BMM-NordSec'09] N. Bielova, F. Massacci and A. Micheletti.
 Towards Practical Enforcement Theories. NordSec'09.
- [BM-ESSoS'11] N. Bielova and F. Massacci. Predictability of Enforcement. ESSoS'11.
- [BM-POLICY'11] N. Bielova and F. Massacci. Computer-Aided Generation of Enforcement Mechanisms for Error-Tolerant Policies. POLICY'11.