
To Extend or not to Extend: on the Uniqueness of Browser
Extensions and Web Logins

Gábor György Gulyás
INRIA

gabor.gulyas@inria.fr

Dolière Francis Somé
INRIA

doliere.some@inria.fr

Nataliia Bielova
INRIA

nataliia.bielova@inria.fr

Claude Castelluccia
INRIA

claude.castelluccia@inria.fr

ABSTRACT
Recent works showed that websites can detect browser extensions
that users install and websites they are logged into. This poses sig-
nificant privacy risks, since extensions and Web logins that reflect
user’s behavior, can be used to uniquely identify users on the Web.
This paper reports on the first large-scale behavioral uniqueness
study based on 16,393 users who visited our website. We test and
detect the presence of 16,743 Chrome extensions, covering 28%
of all free Chrome extensions. We also detect whether the user is
connected to 60 different websites.
We analyze how unique users are based on their behavior, and find
out that 54.86% of users that have installed at least one detectable
extension are unique; 19.53% of users are unique among those who
have logged into one or more detectable websites; and 89.23% are
unique among users with at least one extension and one login.
We use an advanced fingerprinting algorithm and show that it is
possible to identify a user in less than 625 milliseconds by selecting
the most unique combinations of extensions.
Because privacy extensions contribute to the uniqueness of users,
we study the trade-off between the amount of trackers blocked by
such extensions and how unique the users of these extensions are.
We have found that privacy extensions should be considered more
useful than harmful. The paper concludes with possible counter-
measures.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and untrace-
ability; Browser security;Web protocol security;

KEYWORDS
web tracking, uniqueness, anonymity, fingerprinting

ACM Reference Format:
Gábor György Gulyás, Dolière Francis Somé, Nataliia Bielova, and Claude
Castelluccia. 2018. To Extend or not to Extend: on the Uniqueness of Browser
Extensions and Web Logins. In 2018 Workshop on Privacy in the Electronic
Society (WPES’18), October 15, 2018, Toronto, ON, Canada. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3267323.3268959

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
WPES’18, October 15, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5989-4/18/10. . . $15.00
https://doi.org/10.1145/3267323.3268959

1 INTRODUCTION
In the last decades, researchers have been actively studying users’
uniqueness in various fields, in particular biometrics and privacy
communities hand-in-hand analyze various characteristics of peo-
ple, their behavior and the systems they are using. Related research
showed that a person can be characterized based on her typing
behavior [53, 61], mouse dynamics [52], and interaction with web-
sites [33]. Furthermore, Internet and mobile devices provide rich
environment where users’ habits and preferences can be automat-
ically detected. Prior works showed that users can be uniquely
identified based on websites they visit [50], smartphone apps they
install [23] and mobile traces they leave behind them [29].

Since the web browser is the tool people use to navigate through
the Web, privacy research community has studied various forms
of browser fingerprinting [22, 27, 30, 32, 34, 49]. Researchers have
shown that a user’s browser has a number of “physical” charac-
teristics that can be used to uniquely identify her browser and
hence to track it across the Web. Fingerprinting of users’ devices is
similar to physical biometric traits of people, where only physical
characteristics are studied.

Similar to previous demonstrations of user uniqueness based on
their behavior [23, 50], behavioral characteristics, such as browser
settings and the way people use their browsers can also help to
uniquely identify Web users. For example, a user installs web
browser extensions she prefers, such as AdBlock [1], LastPass [14]
or Ghostery [8] to enrich her Web experience. Also, while brows-
ing the Web, she logs into her favorite social networks, such as
Gmail [13], Facebook [7] or LinkedIn [15]. In this work, we study
users’ uniqueness based on their behavior and preferences on the
Web: we analyze how unique are Web users based on their browser
extensions and logins.

In recent works, Sjösten et al. [56] and Starov andNikiforakis [58]
explored two complementary techniques to detect extensions. Sánchez-
Rola et al. [54] then discovered how to detect any extension via a
timing side channel attack. These works were focused on the tech-
nical mechanisms to detect extensions, but what was not studied
is how browser extensions contribute to uniqueness of users at large
scale. Linus [46] showed that some social websites are vulnerable
to the “login-leak” attack that allows an arbitrary script to detect
whether a user is logged into a vulnerable website. However, it
was not studied whether Web logins can also contribute to users’
uniqueness.

In this work, we performed the first large-scale study of user
uniqueness based on browser extensions and Web logins, collected

https://doi.org/10.1145/3267323.3268959
https://doi.org/10.1145/3267323.3268959

from more than 16,000 users who visited our website (see the break-
down in Fig. 6). Our experimental website identifies installed Google
Chrome [9] extensions via Web Accessible Resources [56], and de-
tects websites where the user is logged into, by methods that rely
on URL redirection and CSP violation reports. Our website is able
to detect the presence of 13k Chrome extensions on average per
month (the number of detected extensions varied monthly between
12, 164 and 13, 931), covering approximately 28% of all free Chrome
extensions1 . We also detect whether the user is connected to one
or more of 60 different websites. Our main contributions are:

• A large scale study on how unique users are based on their
browser extensions and website logins. We discovered that
54.86% of users that have installed at least one detectable
extension are unique; 19.53% of users are unique among those
who have logged into one or more detectable websites; and
89.23% are unique among users with at least one extension
and one login. Moreover, we discover that 22.98% of users
could be uniquely identified by Web logins, even if they
disable JavaScript.

• We study the privacy dilemma on Adblock and privacy ex-
tensions, that is, how well these extensions protect their users
against trackers and how they also contribute to uniqueness.
We evaluate the statement “the more privacy extensions you
install, the more unique you are” by analyzing how users’
uniqueness increases with the number of privacy extensions
they install; and by evaluating the tradeoff between the pri-
vacy gain of the blocking extensions such as Ghostery [8]
and Privacy Badger [17].

We furthermore show that browser extensions and Web logins
can be exploited to fingerprint and track users by only checking
a limited number of extensions and Web logins. We have applied
an advanced fingerprinting algorithm [38] that carefully selects
a limited number of extensions and logins. For example, Figure 1
shows the uniqueness of users we achieve by testing a limited
number of extensions. The last column shows that 54.86% of users
are unique based on all 16,743 detectable extensions. However, by
testing 485 carefully chosen extensions we can identify more than
53.96% of users. Besides, detecting 485 extensions takes only 625ms.

Finally, we give suggestions to the end users as well as website
owners and browser vendors on how to protect the users from the
fingerprinting based on extensions and logins.

In our study we did not have enough data to make any claims
about the stability of the browser extensions andweb logins because
only few users repeated an experiment on our website (to be precise,
only 66 users out of 16,393 users have made more than 4 tests on
our website). We leave this as a future work.

2 BACKGROUND
2.1 Detection of browser extensions
A browser extension is a program, typically written in JavaScript,
HTML and CSS. An extension may alter the context of the webpage,
intercept HTTP requests, or provide extra functionality. Examples

1The list of detected extensions and websites are available on our website: https:
//extensions.inrialpes.fr/faq.php

Figure 1: Results of general fingerprinting algorithm. Testing
485 carefully selected extensions provides a very similar uniqueness
result to testing all 16,743 extensions. Almost unique means that
there are 2–5 users with the same fingerprint.

of browser extensions are ad blockers, such as AdBlock [1] and
password managers, such as LastPass [14].

In the Google Chrome web browser, each extension comes with
a manifest file [11], which contains metadata about the exten-
sion. Each extension has a unique and permanent identifier, and
the manifest file of an extension with identifier extID is located
at chrome-extension://[extID]/manifest.json. The manifest
file has a section web_accessible_resources (WARs) that declares
which resources of an extension are accessible in the content of any
webpage [10]. The WARs section specifies a list of paths to such
resources, presented by the following type of URL:
chrome-extension://[extID]/[path], where path is the path
to the resource in the extension.

Therefore, a script that tries to load such an accessible resource
in the context of an arbitrary webpage is able to check whether
an extension is installed with a 100% guarantee: if the resource is
loaded, an extension is installed, otherwise it is not. Figure 2 shows
an example of AdBlock extension detection: the script tries to load
an image, which is declared in the web_accessible_resources section
of AdBlock’s manifest file. If the image from AdBlock, located at
chrome-extension://[AdBlockID]/icons/icons24.png is suc-
cessfully loaded, then AdBlock is installed in the user’s browser.

Sjösten et al. [56] were the first to crawl the Google ChromeWeb
Store and to discover that 28% of all free Chrome extensions are de-
tectable by WARs. An alternative method to detect extensions that
was available at the beginning of our experiment, was a behavioral
method from XHOUND [58], but it had a number of false positives
and detected only 9.2% of top 10k extensions (see Sec. 9 for more
details). Therefore, we decided to reuse the code from Sjösten et
al. [56] with their permission to crawl Chrome Web Store and iden-
tify detectable extensions based on WARs. During our experiment,
we discovered that WARs could be detected in other Chromium-
based browsers like Opera [16] and the Brave Browser [3] (we could
even detect Brave Browser since it is shipped with several default
extensions detectable by WARs). We have chosen to work with
Chrome, as it was the most affected.

https://extensions.inrialpes.fr/faq.php
https://extensions.inrialpes.fr/faq.php

Figure 2: Detection of browser extensions and Web logins. A user visits a benign website test.com which embeds third party code (the
attacker’ script) from attacker.com. The script detects an icon of Adblock extension and concludes that Adblock is installed. Then the script
detects that the user is logged into Facebook when it successfully loads Facebook favicon.ico. It also detects that the user is logged into
LinkdedIn through a CSP violation report triggered because of a redirection from https://fr.linkedin.com to https://www.linkedin.com. All
the detection of extensions and logins are invisible to the user.

2.2 Detection of Web logins
In general, a website cannot detect whether a user is logged into
other websites because of Web browser security mechanisms, such
as access control and Same-Origin Policy [18]. In this section, we
present two advanced methods that, despite browser security mech-
anisms, allow an attacker to detect the websites where the user is
logged into. Figure 2 presents all the detection mechanisms.
RedirectionURLhijacking.The first requirement for thismethod
to work is the login redirection mechanism: when a user is not
logged into Facebook, and tries to access an internal Facebook re-
source, she automatically gets redirected to the URL http://www.
facebook.com/login.php?next=[path], where path is the path to the
resource. The second requirement is that the website should have
an internal image available to all the users. In the case of Facebook,
it is a favicon.ico image.

By dynamically embedding an image pointing to https://www.
facebook.com/login.php?next=https%3A%2F%2Fwww.facebook.com%
2Ffavicon.ico into the webpage, an attacker can detect whether the
user is logged into Facebook or not. If the image loads, then the user
is logged into Facebook, otherwise she is not. This method has been
shown to successfully detect logins on dozens of websites [46].
AbusingCSPviolation reporting.Content-Security-Policy (CSP) [5,
57] is a security mechanism that allows programmers to control
which client-side resources can be loaded and executed by the
browser. CSP (version 2) is an official W3C candidate recommenda-
tion [60], and is currently supported by major web browsers.

A CSP delivered with a page controls the resources of the page.
For example, CSP can set a rule to allow the browser to load images
only from a particular domain. If a webpage tries to load an image

from a different domain, CSP will block such request and can send
a violation report back to the web server.

An attacker can misuse CSP to detect redirections [41]. We ex-
tend this idea to detect logins. For this method to work, a website
should redirect its logged in users to a different domain. In the case
of LinkedIn, the users, who are not logged in, visit fr.linkedin.com,
while the users, who are logged in, are automatically redirected to
a different domain www.linkedin.com. The lowest block of Fig. 2
presents an example of such attack on LinkedIn. Initially, the at-
tacker embeds a hidden iframe from his own domain with the CSP
that restricts loading images only from fr.linkedin.com. Then,
the attacker dynamically embeds a new image on the testing web-
site, pointing to fr.linkedin.com. If the user is logged in, LinkedIn
will redirect her to the www.linkedin.com, and thus the browser
will fire a CSP violation report because images can be loaded only
from fr.linkedin.com. By receiving the CSP report, the attacker
deduces that the user is logged in LinkedIn.

3 DATASET
We launched an experiment website in April 2017 to collect browser
extensions and Web logins with the goal of studying users’ unique-
ness at a large scale. We have advertised our experiment by all
possible means, including social media and in press. In this section,
we first present the set of attributes that we collect in our experi-
ment and the rules we applied to filter out irrelevant records. Then,
we provide data statistics and show which extensions and logins
are popular among our users.

test.com
attacker.com
https://fr.linkedin.com
https://www.linkedin.com
http://www.facebook.com/login.php?next=[path]
http://www.facebook.com/login.php?next=[path]
https://www.facebook.com/login.php?next=https%3A%2F%2Fwww.facebook.com%2Ffavicon.ico
https://www.facebook.com/login.php?next=https%3A%2F%2Fwww.facebook.com%2Ffavicon.ico
https://www.facebook.com/login.php?next=https%3A%2F%2Fwww.facebook.com%2Ffavicon.ico

3.1 Experiment website and data collection
The goal of our website is both to collect browser extensions and
Web logins, and to inform users about privacy implications of this
particular type of fingerprinting. Using the various detection tech-
niques described in Section 2, we collect the following attributes:

• The list of installed browser extensions, using web accessible
resources. For each user we tested around 13k extensions
detectable at the moment of testing (see Figure 3).

• The list of Web logins: we test for 44 logins using redirection
URL hijacking and 16 logins using CSP violation report.

• Standard fingerprinting attributes [45], such as fonts in-
stalled, Canvas fingerprint [21], and WebGL [48]. To col-
lect these attributes, we use FingerprintJS2, which is an
open-source browser fingerprinting library [39]. We col-
lected these attributes in order to clean our data and compare
entropy with other studies (see Table 3).

To recognize users that perform several tests on our website, we
have stored a unique identifier for each user in the HTML5 local-
Storage. We have communicated our website via forums and social
media channels related to science and technology, and got press
coverage in 3 newspapers. We have collected 22,904 experiments
performed by 19,814 users between April and August 2017.

Ethical concerns.Our studywas validated by an IRB-equivalent
service at our institution. All visitors are informed of our goal, and
are provided with both Privacy Policy and FAQ sections of the
website. The visitors have to explicitly click on a button to trigger
the collection of their browser attributes. In our Privacy Policy,
we explain what data we are collecting, and give a possibility to
opt-out of our experiment. The data collected is used only for our
own research, will be held until December 2019 and will not be
shared with anyone.

Table 1: Users filtered out of the final dataset

Initial users 19,814
Mobile browser users 1,042
Chrome browser users with extension detection error 6
Non Chrome users with at least one extension de-
tected

261

Brave browser users 31
Users whose browser has an empty user-agent string,
screen resolution, fonts, or canvas fingerprint

2,015

Users with more than 4 experiments 66
Final dataset 16,393
Chrome browser users in the final dataset 7,643

Data cleaning.We applied a set of cleaning rules over our initial
data, to improve the quality of the data. The final dataset contains
16,393 valid experiments (one per user). Table 1 shows the initial
number of users and which users have been removed from our ini-
tial dataset. We have removed all 1,042 users with mobile browsers.
At the time of writing this paper, browser extensions were not
supported on Chrome for mobiles. Since extensions detection were
designed for Chrome, we then excluded mobile browsers. More-
over, mobile users tend to prefer native apps rather than their web

versions2. In fact, the popular logins in our dataset, such as Gmail,
Facebook, Youtube, all have a native mobile version.

We have also removed 2,015 users that have deliberately tam-
pered with their browsers: for example, users with empty user-
agent string, empty screen resolution or canvas fingerprint. We
think that it is reasonable not to trust information received from
those users, as they may have tampered with it. We also needed
this information to compare our study with previous works on
browser fingerprinting. Finally, we have excluded users who have
tampered with extension detection. This includes Chrome users for
whom extension detection did not successfully complete, and users
of other browsers with at least 1 extension detected.

For users who visited our website and performed up to 4 ex-
periments, we kept only one experiment, the one with the biggest
number of extensions and logins. We then removed 66 users with
more than 4 experiments. We suspect that the goal of such users
with numerous experiments was just to use our website in order
to test the uniqueness of their browsers with different browser
settings.

Figure 3: Evolution of detected extensions in Chrome

Evolution of browser extensions. From November 2016 to
July 2017, we crawled on a montly basis the free extensions on the
Chrome Web Store in order to keep an up-to-date set of extensions
for our experiment. Figure 3 presents the evolution of extensions
throughout the period of our experiment. Since some extensions
got removed from the Chrome Web Store, the number of stable
extensions decreased.

Out of 12,164 extensions that were detectable in November 2016,
8,810 extensions (72.4%) remained stable throughout the 9-months-
long experiment. In total, 16,743 extensions were detected at some
point during these 9 months. Since every month the number of
detectable extensions was different, on average we have tested
around 13k extensions during each month.

3.2 Data statistics
Our study is the first to analyze uniqueness of users based on
their browser extensions and logins at large scale. Only uniqueness
based on browser extensions was previously measured, but on very
2https://jmango360.com/wiki/mobile-app-vs-mobile-website-statistics/

https://jmango360.com/wiki/mobile-app-vs-mobile-website-statistics/

Table 2: Previous studies onmeasuring uniqueness based on
browser extensions and our estimation of uniqueness.

Study Fingerprints
collected
in a study

Extensions
targeted
in a study

Unique
finger-
prints in
a study

Unique fin-
gerprints in
our dataset

Timing
leaks [54]

204 2,000 56.86% 55.64%

XHOUND
[58]

854 1,656 14.10% 49.60%

Ours 7,643 13k 39.29% 39.29%

small datasets of 204 [54] and 854 [58] participants. We measure
uniqueness of 16,393 users for all attributes, and of 7,643 Chrome
browser users for browser extensions.

Comparison to previous studies. To compare our findings
with the previous works on browser extensions, we randomly pick
subsets of 204 (as in [54]) and 854 (as in [58]) Chrome users 100 times
(we found that picking 100 times provided a stable result). Table 2
shows uniqueness results from previous works and an estimated
uniqueness using our dataset.

The last column in Table 2 shows our evaluation of uniqueness
for a given subset of users. Our estimation for 204 random users is
55.64%, which is close to the 56.86% from the original study [54]. For
854 random users, we estimate that 49.60% of them are unique, while
in the original XHOUND study [58] the percentage of unique users
is only 14.1%. We think that such small percentage of unique users
in [58] is due to (1) a smaller number of extensions detected (only
174 extensions were detected for 854 users); (2) a different user base:
while our experiments and [54] targeted colleagues, students and
other likely privacy-aware experts, XHOUND [58] used Amazon
Mechanical Turk, where users probably have different habits to
installing extensions. Out of 7,643 users of the Chrome browser,
where we detected extensions, 39.29% of users were unique. This
number shows a more realistic estimation of users’ uniqueness
based on browser extensions than previous works because of a
significantly larger dataset.

To the best of our knowledge, our study is the first to analyze
uniqueness of users based on their web logins, and on combination
of extensions and logins.

Normalized Shannon’s entropy.We compare our dataset with
the previous studies on browser fingerprinting: AmIUnique [44,
Table B.3] (contains 390,410 fingerprints, collected between Novem-
ber 2014 and June 2017) and Hiding in the Crowd [34] (contains
1,816,776 users collected in 2017). Entropy measures the amount of
identifying information in a fingerprint – the higher the entropy is,
the more unique and identifiable a fingerprint will be. To compare
with previous datasets, which are of different sizes, we compute
normalized Shannon’s entropy:

HN (X) =
H (X)

log2 N
= −

1
log2 N

·
∑
i
P(xi) log2 P(xi) (1)

whereX is a discrete randomvariablewith possible values {x1, ...,xn },
P(X) is a probability mass function and N is the size of the dataset.

Table 3: Normalized entropy of extensions and logins com-
pared to previous studies.

Standard fingerprinting studies
Attribute Ours AmIUnique

[44]
Hiding [34]
Desktop

User Agent 0.474 0.601 0.304
List of Plugins 0.343 0.523 0.494
Timezone 0.168 0.187 0.005
Screen Resolution 0.271 0.276 0.213
List of Fonts 0.652 0.370 0.335
Canvas 0.611 0.503 0.387

Studies on extensions and logins
Attribute Ours Timing

leaks [54]
XHOUND
[58]

Extensions 0.641 0.869 0.437
Logins 0.441 N/A N/A

Table 3 compares the entropy values of well-known attributes
for standard fingerprinting and for logins for all 16,393 users in our
dataset and for browser extensions for 7,643 Chrome users. All the
attributes in standard fingerprinting are similar to previous works,
except for fonts and plugins. Unsurprisingly, plugins entropy is
very small because of decreasing support of plugins in Firefox [51]
and Chrome [55]. Differently from previous studies that detected
fonts with Flash, we used JavaScript based font detection, relying
on a list of 500 fonts shipped along with the FingerprintJS2 library.
As those fonts are selected for fingerprinting, this could explain
why our list of fonts provides a very high entropy.

In our dataset, as well as in previous studies, browser extensions
are one of themost discriminating attributes of a user’s browser. The
computed entropy of 0.641, computed for the 7,643 Chrome users,
lays between the findings of Timing leaks [54] and XHOUND [58].
One possible explanation is the size of the user base. For instance,
users in XHOUND had few and probably often the same extensions
detected (out of 1,656 targeted extensions, only 174 were detected
for 854 users), making only 14.1% of them unique. This explains
why the entropy in XHOUND is smaller. Sánchez-Rola et al. [54]
computed a very high entropy, but on a very small dataset of 204
users: 116 of them had a unique set of installed extensions, and thus
the computed entropy was very high.

3.3 Usage of extensions and logins
Figure 4 shows the distribution of users in our dataset according
to the number of detected extensions and logins (users having
between 1 and 13 logins or extensions detected), and the number of
unique users as they are grouped by number of detected extensions
and logins. The maximum number of extensions we detected for a
single user was 33. The number of users decreases with the number
of extensions. The largest group of users have only 1 extension
detected, followed by users with 2 detected extensions, etc. We
notice that the more extensions a user has, the more unique she is.
We analyze this phenomenon further in Section 4.2. Among users
with exactly 1 extension detected, 7.39% are unique. This percentage
rises to 45.35% and 85.89% for groups of users with exactly 2 and 3
detected extensions respectively.

Figure 4: Usage of browser extensions and logins by all users.

Figure 4 also shows the distribution of users per number of
detected logins. We found that most users have between 1 and 10
logins, with a maximum number of 40 logins detected for one user.
On our website, we were able to detect the presence of 60 logins,
which is rather small with respect to the large number of extensions
we tested (around 13k per user). This explains why fewer users
are unique based on their logins: for example, among users with
exactly 1 login detected, 0.10% are unique, and 7.82% are unique
among users with exactly 2 logins detected.

Table 4: Top seven most popular extensions in our dataset
and their popularity on Chrome Web Store

Extension Dataset Chrome
AdBlock 1,557 10,000,000+
LastPass: Free Password Manager 1,081 7,297,730
Ghostery 735 2,665,427
Privacy Badger 594 771,804
Adobe Acrobat 585 10,000,000+
Cisco WebEx Extension 482 10,000,000+
Save to Pocket 428 2,752,642

Table 5: Top seven most popular logins in our dataset and
their ranking according to Alexa

Website Dataset Alexa Rank
Gmail (subdomain of Google) 6,828 1
Youtube 6,780 2
Facebook 5,493 3
LinkedIn 3,913 13
Blogger 3,393 53
Twitter 3,274 8
eBay.com 2,220 33

What extensions are the most popular among our users?
Table 4 presents the seven most detected extensions in our dataset
of 16,393 users. The three most popular extensions are AdBlock [1],
password manager LastPass [14] and tracker blocker Ghostery [8].
These extensions are also very popular according to their downloads
statistics on Chrome Web Store.

What websites users are logging into the most? Table 5
shows the seven most detected websites in our experiment. These

Figure 5: Distribution of anonymity set sizes for 16,393 users
based on detected extensions and logins.

websites are also highly rated according to Alexa3. For instance,
Google [12], Facebook [7] and Youtube [20] are regularly ranked as
the top 3 most popular websites by Alexa4. Being able to detect such
popular websites further strengthen our study as they represent
websites that are widely used by users in the wild.

4 UNIQUENESS ANALYSIS
In this section we present the results for user’s uniqueness based
on all 16,743 extensions and 60 logins. We first show uniqueness
for the full dataset of 16,393 users, and then present more specific
results for various subsets of our dataset.

Uniqueness results for the full dataset. Figure 5 shows the
uniqueness of users according to their extensions and logins, and a
combination of both attributes. Out of the 16,393 users, 11.30% are
unique based on their logins. For 42.1% of users in our dataset, we
did not detect any logins. These users either did not log into any
of the 60 websites we could detect or blocked third party cookies,
that prevented our login detection from working properly.

Considering only detected extensions, 18.38% of users in our
dataset are unique. This result is also influenced by the 66.61%
of users who did not have any extension detected: these are ei-
ther Chrome users with no extensions detected, or users of other
browsers.

An attacker willing to fingerprint users can also use their de-
tected logins and extensions combined. Interestingly, by combining
extensions and logins, we found that 34.51% of users are uniquely
identifiable. It is worth mentioning that 32.61% of users have no
extensions and no logins detected. This impacts significantly the
computed uniqueness.

Figure 6: Four final datasets. DExt contains users, who have in-
stalled at least one detected extension andDLog contains users, who
have at least one login detected.

Figure 7: Anonymity sets for different datasets

4.1 Four final datasets
In our full dataset of 16,393 users, we have observed 7,643 users of
Chrome browser, for whom testing of browser extensions worked
properly. In this subsection we consider various subsets of our full
dataset that demonstrate uniqueness results for users who have at
least one extension or one login detected. Figure 6 shows four final
datasets that we further analyze in this section:

• DExt contains 5,474 Chrome users, who have installed at
least one extension that we can detect.

• DLog contains 9,492 users, who have logged into at least one
website that we detect.

• DExt ∩ DLog contains 3,919 Chrome users who have at least
one extension and one login detected.

• DExt ∪ DLog contains 11,047 users who have either at least
one extension or at least one login detected.

4.2 Uniqueness results for final datasets
Figure 7 presents results for the four datasets. DExt dataset shows
that 54.86% of users are uniquely identifiable among Chrome users,
who have at least one detectable extension. This demonstrates
that browser extensions detection is a serious privacy threat as a
fingerprinting technique.

Among 9,492 users with at least one login detected (DLog dataset)
only 19.53% are uniquely identifiable. This result can be explained
by a very small diversity of attributes (only 60 websites).

Whenwe analyzed Chrome userswho have at least one extension
and one login detected (DExt ∩ DLog dataset), we found out that
89.23% of them are uniquely identifiable. This means that without
3Alexa ranking extracted on the the 28th of June 2018
4Note that Gmail is a subdomain of Google, that is why it is ranked 1 in Table 5.

Figure 8: Anonymity sets for users with respect to the num-
ber of detected extensions

any other fingerprinting attributes, the mere installation of at least
one extension, in addition to being logged into at least one website
imply that the majority of users in this dataset can be tracked by
their fingerprint based solely on extensions and logins!

Furthermore, for dataset DExt ∪DLog that contains users with at
least one extension or at least one login, we compute that 51.15% of
users can be uniquely identified. This result becomes particularly
interesting when we compare the size of the DExt ∪ DLog dataset,
which contains 11,047 users, with the size of the DExt dataset, that
has 5,474 users. The size of DExt ∪ DLog is almost twice as large as
DExt . Nevertheless, the percentage of unique users and the distribu-
tion of anonymity set sizes in these datasets are very similar: 54.86%
of unique users in DExt and 51.15% of unique users in DExt ∪ DLog .
We believe this is due to the fact that extensions and logins are
orthogonal properties. We checked the cosine similarity between
these attributes as binary vectors, and found that all attribute pairs
had a very low similarity score, all below 0.34, with 11 exceptions
below 0.2.

The last row DExt(Stable) shows uniqueness of users in the DExt
dataset, but considering only stable extensions (see more details in
Section 3). Interestingly, 50.35% of users are uniquely identifiable
with their stable extensions only and the distribution of anonymity
set sizes is very similar too. This result shows that browser exten-
sions that were added or removed throughout the 9-months-long
experiment do not influence the result of users’ uniqueness.

Themore extensions you install, themore unique you are.
In the beginning of this section, we have shown that 54.86% of users
are unique among those who have at least one extension detected
(DExt dataset). Figure 8 shows how uniquely identifiable users are
when they have more extensions detected. Among users with at
least two extensions detected, 76.25% are uniquely identifiable. This
percentage rises quickly to 92.22% and 95.85% when we consider
users with at least three and four extensions detected respectively.

We made a similar analysis for logins: likewise, the percentage
of unique users grows if we consider users with a higher number
of detected logins. 31.58% users with at least 5 logins are uniquely
identifiable with their logins only. This percentage rises to 38.98%
when we detected at least 8 logins. Intuitively, the more exten-
sions or logins a user has, the more unique he becomes. It is worth
mentioning that the subsets of users considered decreases as we
increase the number of extensions or logins detected, as shown in
Figure 4.

Uniqueness if JavaScript is disabled. Users might decide to
protect themselves from fingerprinting by disabling JavaScript in

Figure 9: Anonymity sets when JavaScript is disabled

their browsers. However evenwhen JavaScript is disabled, detection
of logins via a CSP violation attack still works. Among 60 websites
in our experiment, we discovered that such an attack works for 18
websites. Figure 9 shows anonymity sets for 9,492 users of DLog
dataset assuming users have disabled JavaScript. By considering
only logins detectable with CSP, 1.63% of users are uniquely identi-
fiable, and 4.10% are unique based on a user agent string that is sent
with every request by the browser. However, when we combine the
user agent string with the list of logins detectable with CSP, 22.98%
of users become uniquely identifiable.

5 FINGERPRINTING ATTACKS
According to the uniqueness analysis from Section 4, 54.86% of users
that have installed at least one detectable extension are unique;
19.53% of users are unique among those who have logged into one
or more detectable websites; and 89.23% are unique among users
with at least one extension and one login. Therefore, extensions
and logins can be used to track users across websites. In this section
we present the threat model, discuss and evaluate two algorithms
that optimize fingerprinting based on extensions and logins.

5.1 Threat model
The primary attacker is an entity that wishes to uniquely identify
a user’s browser across websites. An attacker is recognizing the
user by his browser fingerprint, a unique set of detected browser
extensions andWeb logins (we call them attributes), without relying
on cookies or other stateful information. A single JavaScript library
that is embedded on a visited webpage can check what extensions
and Web logins are present in the user’s browser. By doing so, an
attacker is able to uniquely identify the user and track her activities
across all websites where the attacker’s code is present. We assume
that an attacker has a dataset of users’ fingerprints, either previously
collected by the attacker or bought from data brokers.

5.2 How to choose optimal attributes?
The most straightforward way to track a user via browser finger-
printing is to check all the attributes (browser extensions and logins)
of her browser. However, testing all 13k extensions takes around
30 seconds5 and thus may be unfeasible in practice. Therefore, the
number of tested attributes is one of the most important property of
fingerprinting attacks – the attack is faster when fewer attributes
are checked. But testing fewer attributes may lead to worse unique-
ness results, because more users will share the same fingerprint.

While it was shown that finding the optimal fingerprint is an NP-
hard problem [38], finding approximate solutions is neither a trivial
task. For example, choosing the most popular attributes worked in

5We evaluate performance in Section 6.

the case of tracking based on Web history, but this strategy is not
necessarily the globally optimal case.

Following the theoretical results of Gulyás et al. [38], we con-
sider these two strategies: (1) to target a specific user, and thus
to select attributes that makes her unique with high probability –
called targeted fingerprinting algorithm, and (2) to uniquely iden-
tify a majority of users in a dataset, and thus select the same set
of attributes for all users – we call it general fingerprinting algo-
rithm. Targeted fingerprinting mainly uses popular attributes if
they are not detectable (e.g., popular extensions are not installed)
or unpopular ones if they are detectable. General fingerprinting
instead, considers attributes that are detectable roughly at half of
the population (this allows to chose more independent attributes
which makes a fingerprint based on these attributes more unique).

Using the algorithms developed in [38], we performed exper-
iments with general and targeted fingerprinting. Our goal is to
achieve results close to those in Section 4, but by testing a smaller
number of attributes6.

5.3 Targeted fingerprinting
Attack outline. The attacker aims to identify a specific user with
high probability. In order to do this, the attacker needs to have
information about the targeted user in her dataset of fingerprints.
The attacker generates a fingerprint pattern that consists of a list
of attributes with a known value, such as fj = [AdBlock=yes, Last-
Pass=No, ...]. Notice that a fingerprint pattern contains not only
extensions that the user installed, but also extensions that are not
installed. This information also helps to uniquely identify the user.

Let us denote the user database as D of n users andm attributes,
each row i corresponding to userUi and each column j correspond-
ing to attributeAj . Let the algorithm target userUi . First, we need to
find her most distinguishing attribute Aj , shared among the small-
est number of other users. Let us denote these users as Si, j . Then
we need to find a second most distinguishing property Ak which
separates Ui from Si, j . Then the algorithm continues searching for
the most distinguishing attributes, until the given pattern makes
Ui unique (or there are no more acceptable choices left).

Evaluation. We applied targeted fingerprinting algorithm [38]
on our datasets DExt ,DLoд , DExt ∩ DLoд and DExt ∪ DLoд , and
computed a fingerprint pattern for each user. By using these pat-
terns, we have computed the anonymity sets for all datasets, that are
identical to those shown in Figure 7. We therefore omit repeating
these results in a new figure.

For each unique user, the fingerprint pattern contains a smaller
number of attributes than the number of attributes detected for
the user. For example, it is enough to test only 2 extensions for a
user who has installed 4 detectable extensions. Figure 10 shows the
distribution of fingerprint pattern sizes of unique users (marked
with “targeted”), and compares them to the number of attributes
detected for each user. The figure clearly shows that fingerprint
patterns are typically smaller than the number of detected attributes
users have.

For non-unique users, the size of the fingerprint pattern is often
bigger than the number of detected attributes the user has. Let
us discuss this on our largest dataset DExt ∪ DLoд , but note that

6We reused the implementation of Gulyás et al., who shared their code [37].

Figure 10: Comparison of fingerprint pattern size (targeted)
and the total number of detected attributes (detected) for
unique users.

other datasets exhibit the same phenomena. For unique users, on
average we have 7.94 attributes detected, while the average size of
fingerprint pattern is 3.94 attributes only. For non-unique users, the
average number of detected attributes is 5.41, while the average size
of fingerprint pattern grew up to 30.17. This result is not surprising:
with less information it is more difficult to distinguish users, and
the fingerprint pattern may also include negative attributes (i.e.,
LastPass=No means an extension should not be detected), which
can extend the length greatly.

The targeted fingerprint is efficient, as it provides almost maxi-
mal uniqueness while reducing the number of attributes. However,
it cannot be used for new users, because the attacker does not have
any background knowledge about them. To reach a wider usability
with a trade-off in the fingerprint pattern size, we also consider
general fingerprinting [38].

5.4 General fingerprinting
Attack outline. The purpose of this algorithm is to provide a
short list of attributes, called fingerprint template. If the attributes
in a fingerprint template are tested for a certain user, she will be
uniquely identified with high probability. Similarly to the example
of targeted fingerprinting, we consider the fingerprint template F =
[AdBlock, LastPass, ...], that would yield the fingerprint f Fj =[yes,
no, . . .] for the userUj .

The algorithm first groups all users into a set S . Then it looks
for an attribute Ai that will separate S into roughly equally sized
subsets S1 and S2 if we group users based on their attribute Ai . In
the next round, it looks for anotherAj , Ai that splits S1, S2 further
into roughly equally sized sets. This step is repeated until we run
out of applicable attributes or the remaining sets could not be sliced
further.

Evaluation. To apply general fingerprinting, we first measure
uniqueness by using all attributes, which will be our target level
A. Then, we run the algorithm until either it stops by itself (e.g.,

fingerprint cannot be extended further), or we terminate it early
when the actual level of uniqueness B is less than 1% from level A.

Figure 11 shows the anonymity sets for different fingerprint
lengths for our datasets DExt ,DLoд , DExt ∩ DLoд and DExt ∪

DLoд , generated by the general fingerprinting algorithm. For DExt
and DLoд , the algorithm provided fingerprint templates of 485
extensions and 35 logins. In these cases the algorithm stopped since
no more attributes could be used for achieving better uniqueness –
hence the final anonymity sets are very close to those in Figure 7.
In the cases of DExt ∩ DLoд and DExt ∪ DLoд , we observed slow
convergence in uniqueness, thus we could stop the algorithm earlier
(shown as white dots in Figure 11). As a result, for DExt ∩ DLoд ,
we can obtain 86.19% of unique users by testing 270 extensions and
logins. For DExt ∪ DLoд , we can obtain 48.31% of unique users by
testing 419 extensions and logins.

We conclude that the general fingerprint can achieve a significant
decrease in the fingerprint length while maintaining the level of
uniqueness almost at maximum. In the next section we discuss the
performance of these results.

For DExt dataset, general fingerprinting algorithm provides 485
extensions, but we found out that 20 of these extensions were not
stable (see Figure 3) and were not present in the last month of our
experiment. Using all extensions, including unstable ones, can be
useful to maintain fingerprint comparability with older data or with
users having older versions of extensions. However, if we constrain
general fingerprinting to stable extensions only, we get a fingerprint
template of 465 extensions, leading to 50.33% uniqueness – still
very close to the results of baseline uniqueness results, which was
50.35% with stable extensions only.

6 IMPLEMENTATION AND PERFORMANCE
In this section we discuss the design choices we made for our
experimental website and analyze whether browser extensions and
Web logins fingerprinting is efficient enough to be used by tracking
companies.

To collect extensions installed in the user’s browser, we first
needed to collect the extensions’ signatures from the Chrome Web
Store. We collected 12,497 extensions in August 2017, using the
code shared by Sjösten et al. [56]. To detect whether an extension
was installed, we tested only one WAR per extension (see more
details on WARs in Section 2). Because the extensions’ signatures
size was 40Mb and could take a lot of time to load on the client side,
we reorganized and compressed them to 600kb. However, testing
all the 12,497 extensions at once took 11.3–12.5 seconds and was
freezing the UI of a Chrome browser. To avoid freezing, we split
all the extensions in batches of 200 extensions, and testing all the
12,497 extensions ran in approximately 30s.

Since testing all the extensions takes too long, trackers may not
be using this technique in practice. Therefore, we measured how
much time it takes to apply the optimized fingerprinting algorithms
from Section 5. Targeted fingerprinting addresses each user sepa-
rately, hence the number of tested extensions differs a lot from user
to user. General fingerprinting instead provides a generic optimiza-
tion for all users. Based on our results from Section 5, an attacker
can test 485 extensions and obtain the same uniqueness results as
with testing all 12,497 extensions. Such testing can be run in 625

(a) DExt - 5,474 users (b) DLoд - 9,492 users (c) DExt ∩ DLoд - 3,919 users (d) DExt ∪ DLoд - 11,047 users

Figure 11: Anonymity sets for different numbers of attributes tested by general fingerprinting algorithm.

milliseconds with the signature file size below 25Kb, which make
real-life tracking feasible. For websites with limited traffic volumes,
extension detection alone could be used for tracking, or for websites
with a higher traffic load, it could contribute supplementary infor-
mation for fingerprinting. Regarding targeted fingerprinting the
attacker can do even better, as such short patterns can be detected
in less than 10 milliseconds.

Compared to extension detection, Web login detection methods
depend on more external factors (such as network speed and how
fast websites respond), thus they should be used with caution. For
redirection URL hijacking detection, we observed that the majority
of Web logins can be detected in 0.9–2.0 seconds, however the
timing was much harder to measure for the method based on CSP
violation report. We observed that if the network was overloaded
and requests were delayed, then the results of login detection were
not reliable; however, it is likely that unreliable results can be easily
discarded by checking timings of results (e.g., large delays appearing
only in few cases).

Moreover, we found a bug in the CSP reporting implementation
in the Chrome browser that makes this kind of detection even more
difficult. In fact, without a system reboot for more than a couple
of days (we observed that this varies between one day to multiple
weeks), the browser stopped sending CSP reports. We reported the
issue to Chrome developers, as this bug not only makes CSP-based
detection unreliable, but more importantly CSP itself.

7 THE DILEMMA OF PRIVACY EXTENSIONS
Various extensions exist that block advertisement content, such
as AdBlock [1], or block content that tracks users, such as Discon-
nect [6]. Such extensions undoubtedly protect users’ privacy, but if
they are easily detectable on an arbitrary webpage, then they can
contribute to users’ fingerprint and can be used to track the user
across websites. In our experiment based on detecting extensions
via WARs, we could detect four privacy extensions: AdBlock [1],
Disconnect [6], Ghostery [8] and Privacy Badger [17]. The goal
of this section is to analyze the tradeoff between the privacy loss
(how fingerprintable users with such extensions are) and the level
of protection provided by these extensions.

To understand this tradeoff, we computed (i) how unique are
the users who install privacy extensions; (ii) how many third-party
cookies are stored in the user’s browser when a privacy extension

Figure 12: Uniqueness of users vs. number of unblocked
third-party cookies

is activated (the smaller the number of third-party cookies, the
better the privacy protection). We analyzed four privacy exten-
sions detectable by WARs and 16 combinations of these extensions:
AdBlock [1], Disconnect [6], Ghostery [8] and Privacy Badger [17].

First, we measured how a combination of privacy extensions
contributes to fingerprinting. To measure uniqueness of users for a
combination of extensions (i.e., AdBlock+Ghostery), we removed
other privacy extensions from the DExt dataset7 (i.e., Disconnect
and Privacy Badger), and then evaluated the percentage of unique
users for each combination.

Second, we measured how many third-party cookies were set
in the browser, even if privacy extensions were enabled. We per-
formed an experiment, where for each combination of extensions,
we crawled the top 1,000 Alexa domains, visiting homepage and
4 additional pages in each domain8. We kept the browsing profile
while visiting pages in the same domain, and used a fresh profile
when we visited a new domain. We explicitly activated Ghostery,
which is deactivated by default, and trained Privacy Badger on
7The total number of users does not change since we simply remove certain extensions
from the user’s record in our dataset.
8We have extracted the first 4 links on the page that refers to the same domain.

homepages of 1,000 domains before performing our experiment.
We collected all the third-party cookies that remained in the user’s
browser for each setting and divided it by the number of domains
crawled.

Figure 12 reports on the average number of cookies that re-
mained in the browser for each combination of extensions, and the
corresponding percentage of unique users.

Similarly to the results of Merzdovnik et al. [47], Ghostery blocks
most of the third-party cookies, and the least blocking extension
is AdBlock. Surprisingly, some combinations such as Disconnect +
Ghostery resulted in more third-party cookies being set than for
Ghostery alone – even after double checking the settings, and re-
running the measurements, we do not have an explanation for this
phenomena. However, as this can have a serious counter-intuitive
effect on user privacy, it would be important to investigate this in
future work.

More privacy extensions indeed increase user’s unicity. All of
these privacy extensions are also part of the general fingerprint
we calculated in Section 5.4. However, this has little importance
in practice. If we ban the general fingerprint algorithm from using
privacy extensions, it will generate a fingerprint template of 531
(instead of 485) extensions, leading to a uniqueness level of 51.27%.
While 46 is a significant increase in the number of extensions for
fingerprinting, aswe have seen it already, this would only contribute
very little to the overall timing of the attack.

On the other hand, as this experiment revealed, these exten-
sions are also very useful to block trackers. We could therefore
conclude that using Ghostery is a good trade-off between blocking
trackers and avoiding extension-based tracking. However, in or-
der to efficiently solve the trade-off dilemma, we believe that such
functionality should be included by default in all browsers.

8 COUNTERMEASURES
We provide recommendations for users who want to be protected
from extensions- and logins-based fingerprinting. We also provide
to developers recommendations to improve browser and extensions
architecture in order to reduce the privacy risk for their users.
Countermeasures for extension detection. Extension detection
method based on Web Accessible Resources detects 28% of Google
Chrome extensions, while for Firefox the number is much smaller:
6.73% of extensions are detectable by WARs [56]. Firefox gives a
good example of browser architecture that makes extensions detec-
tion difficult. The upcoming Firefox extensions API, WebExtensions,
which is compatible with Chrome extensions API [4], is designed to
prevent extensions fingerprinting based on WARs: each extension
is assigned a new random identifier for each user who installs the
extension [19]. To protect the users, developers of Chrome exten-
sions could avoid Web Accessible Resources by hosting them on an
external server, however this could lead to potential privacy and
security problems [56]. Developers of the Chrome browser could
nonetheless improve the privacy of their users by adopting the
random identifiers for extensions as in WebExtensions API.

Most of the browsers are vulnerable to extension detection, and
websites could also detect extensions by their behavior [58]. There-
fore today users cannot protect themselves completely, but they

still can minimize the risk by using browsers such as Firefox, where
a smaller fraction of extensions are detectable.
Countermeasures for login. Users may opt for tracker-blocking
and adblocking extensions, such as Ghostery [8], Disconnect [6] or
AdBlockPlus [2]. But these extensions block requests to well-known
trackers, while Web logins detection sends requests to completely
legitimate websites, where the user has logged into anyway. An-
other option is to install extensions that block cookies arriving
from unknown or undesirable domains. These extensions do not
protect users for the same reason: cookies that belong to websites
that the user visits (and treated as first-party cookies) are the same
cookies used for login detection (with the only difference that the
same cookies are treated as third-party cookies). For example so-
cial websites, such as Facebook or Twitter, use first-party cookies.
Their social button widgets with third-party cookies may still be
allowed by the browser extensions in the context of other websites.
Therefore, users can protect themselves from Web logins detection,
only by disabling third-party cookies in their browsers.

Website owners could also react to such potential privacy risk
for their users. In our case, this would simply mean filtering login
URL redirection, and sanity checking other redirection mechanisms
against the CSP-based attack. Unfortunately, this issue has been
known for a while, but website owners do not patch it because they
do not consider this as a serious privacy risk [46].

Browser vendors could help avoid login detection by blocking
third-party cookies by default. The new intelligent tracking protec-
tion of the Safari browser takes a step in the right direction, as it
blocks access to third-party cookies and deletes them after a while.

9 RELATEDWORK
Since 2006, there have been multiple proposals to detect and enu-
merate user’s browser extensions [26, 28, 35, 43]. Most of them
were blog posts that were meant to raise awareness in the security
community, but they did not aim either to scientifically evaluate
extension detection at large scale, nor to perform user studies, that
could explain how extensions contribute to browser fingerprint-
ing. Similarly, there has been an ongoing discussion on Web login
detection in the security community [24, 31, 36, 41, 42, 46], but no
quantitative studies have been made until this work.

Sjösten et al. [56] provided the first large scale study on enumer-
ating all free browser extensions that were available to Chrome and
Firefox. While their work lacked the evaluation of user uniqueness
or fingerprintability, it disclosed the fact that 28 of the Alexa top
100k sites already used extensions detection. This result made it
clear that extension detection is more than a theoretical privacy
threat, thus deserving further studying.

Starov and Nikiforakis [58] were the first to analyze fingerprint-
ability of browser extensions and evaluating how unique users
are based on their extensions. Differently from our method, they
detected extensions based on the changes extensions make to the
webpages. They examined top 10,000 Chrome extensions and found
that 9.2% of them were detectable on any website, and 16,6% made
detectable changes on specific domains with 90% accuracy. In con-
trast, we used Web Accessible Resources [56] to detect extensions,
and analyzed all free ChromeWeb Store extensions. In our measure-
ment period, we observed that 27−28% of all free Chrome extensions

were detectable on any website with 100% accuracy. While we did
not measure this, in the study of [56] the authors found that 38.96%
of top 10k extensions in the Chrome Web Store are detectable with
WARs. Sánchez-Rola et al. [54] detected browser extensions through
a timing side-channel attack, and were able to detect all extensions
in Firefox and Chrome that use access control settings, regardless
of the visited site.

Both us and Starov and Nikiforakis analyzed the stability of
the proposed detection method. For a sample of 1,000 extensions,
Starov and Nikiforakis concluded that 88% of extensions were still
detectable after 4 months. In our study, we analyzed 12,164 ex-
tensions, and conclude that 72.4% of them are detectable in every
month during 9-months period.

To evaluate uniqueness of users based on their browser exten-
sions, Starov and Nikiforakis have collected installed extensions
for 854 users. In total, their users had 174 extensions that were
fingerprintable. Sánchez-Rola et al.[54] collected fingerprints from
only 204 users and tested for 2,000 Chrome and Firefox extensions.
In our study, we have 7,643 Chrome users, for whom we tested
16,743 extensions, among them 1,110 extensions were installed by
our users.

Regarding performance, Starov and Nikiforakis [58] reported
that to detect 5 extensions, their testing website needed roughly 250
ms. Sánchez-Rola et al.[54] are using timing attack, which works in
a very similar way as detecting WARs. When querying a non-exist
(fake) WAR of an extension, the authors observed a difference in
the time the browser takes to respond to the query, depending on
whether the extension is installed in the user’s browser or not. The
difference is caused by the access control mechanism of the browser
when the concerned extension is installed or not in the browser.
Because of this timing method, Sánchez-Rola et al. had to make 10
calls per extension, while in our work we made only one single call
per extension. We measured that the checking time of non-existing
resources and loading existing WARs are very close to each other
(around 1 ms), thus we argue that our approach is significantly
faster.

10 DISCUSSION AND FUTUREWORK
Realistic datasets. To compare our study with previous works on
fingerprinting by browser extensions, we analyzed different ran-
dom subsets of 7,643 users, who run Chrome web browser (where
browser extension detection is possible in our experiment). Fig-
ure 13 shows how user uniqueness based on extensions changes
with respect to the various subsets of our dataset. It clearly demon-
strates an intuition that the smaller the user set is, the smaller is
the diversity of users, and the easier it is to uniquely identify them.

Figure 13 compares our results to previous studies on browser
extensions fingerprinting: we have 7,643 Chrome users, while pre-
vious studies had 204 [54] and 854 [58] users, and therefore draw
different conclusions about uniqueness of users based on browser
extensions.

We reported on the number of unique users in subsets of 204 and
854 users in Section 3.2 (see Table 2). By exploring this comparison,
we raise a fundamental question: What is the “right” size for the
dataset?

Figure 13: Uniqueness of Chrome users based on their exten-
sions only vs. number of users - 204 is the number of users
used in [54] and 854 the number of users considered in [58]

Taking a look at research on standard fingerprinting, in 2010 Eck-
ersley showed that 95% of browsers were unique based on their prop-
erties [30], which was backed by several papers since then [25, 45].
However, a recent study states that by looking at 2 million finger-
prints in 2018, the authors only found 33.6% of those fingerprints
to be unique [34].

It is extremely difficult for computer scientists to get access to
such large datasets – in our experience, we advertised our exper-
iment website through all possible channels, including Twitter,
Reddit, and press coverage. We experienced that having larger, high
quality datasets is a highly nontrivial research task. It is important
to re-evaluate our results over time while also aiming to obtain
larger dataset sizes.

Stability of fingerprints While studying uniqueness based on
various behavioural features, it is very important to know how sta-
ble these features are, as the ability to use some of this information
as part of a fingerprint does not solely depend on its anonymity set
of overall entropy, but also on the information stability (i.e., how
frequently it changes over time). Vastel et al. [59] recently analyzed
the evolution of fingerprints of 1,905 browsers over two years. They
concluded that fingerprints’ evolution strongly depends on the type
of the device (laptop vs mobile) and how it is used. Overall, they
observed that 50% of browsers changed their fingerprints in less
than 5 days.

In our study we did not have enough data to make any claims
about the stability of the browser extensions andweb logins because
only few users repeated an experiment on our website (to be precise,
only 66 users out of 16,393 users have made more than 4 tests on our
website). We would expect that browser extensions are more stable
than logins since users do not seem to change extensions very often,
while they may log in and log out of various websites during the
day. However, studying the stability of extensions and logins would
require all our users to install a tool (probably a browser extension)
in their browsers that would monitor the extensions they install and
logins they perform. This kind of experiment would be even harder
to perform at large scale since users do not easily trust to install new

browser extensions. In AmIUnique experiment, Laperdrix [44] was
trying to measure stability of browser fingerprints – he collected
data from 3,528 devices over a twenty-month-long experiment. We
managed to have 16,393 users testing our website in 9 months. This
shows that users have more trust in testing their browser on a
website than installing new extensions.

We therefore keep the study of fingerprints stability for future
work and raise an important question in privacy measurement
community: How can we ensure a large scale coverage of users for
our privacy measurement experiments?

11 CONCLUSION
This paper reports on a large-scale study of a new form of browser
fingerprinting technique based on browser extensions and website
logins. The results show that 18.38% of users are unique because
of the extensions they install (54.86% of users that have installed
at least one detectable extension are unique); 11.30% of users are
unique because of the websites they are logged into (19.53% are
unique among those who have logged into one or more detectable
websites); and 34.51% of users are unique when combining their
detected extensions and logins (89.23% are unique among users
with at least one extension and one login). It also shows that the
fingerprinting techniques can be optimized and performed in 625
ms.

This paper illustrates, one more time, that user anonymity is
very challenging on the Web. Users are unique in many different
ways in the real life and on theWeb. For example, it has been shown
that users are unique in the way they browse the Web, the way
they move their mouse or by the applications they install on their
device [40]. This paper shows that users are also unique in the
way they configure and augment their browser, and by the sites
they connect to. Unfortunately, although uniqueness is valuable in
society because it increases diversity, it can be misused by malicious
websites to fingerprint users and can therefore hurt privacy.

Another important contribution of this paper is the definition
and the study of the trade-off that exists when a user decides to
install a “privacy” extension, for example, an extension that blocks
trackers. This paper shows that some of these extensions increase
user’s unicity and can therefore contribute to fingerprinting, which
is counter-productive. We argue that these “privacy” extensions are
very useful, but they should be included by default in all browsers.
“Privacy by default”, as advocated by the new EU privacy regulation,
should be enforced to improve privacy of all Web users.

ACKNOWLEDGMENT
First of all, we would like to thank the valuable comments and
suggestions of the anonymous reviewers of our paper. This research
has been partially supported by the ANR projects AJACS ANR-14-
CE28-0008 and CISC ANR- 17-CE25-0014-01. We are grateful for
Alexander Sjösten, Steven Van Acker, Andrei Sabelfeld, who shared
their code and signature database for Chrome browser extension
detection [56], and also for Robin Linus, who allowed us to build
on his script on social media presence detection. We thank Imane
Fouad and Natasa Sarafijanovic-Djukic for their help in evaluating
the effect of browser extensions on third-party cookies.

REFERENCES
[1] AdBlock Official website. https://getadblock.com/.
[2] Adblockplus official website. https://adblockplus.org/.
[3] Brave browser. https://brave.com/.
[4] Chrome Extensions API. https://developer.chrome.com/extensions.
[5] Content security policy (csp).
[6] Disconnect Official website. https://disconnect.me/.
[7] Faceboook website. https://www.facebook.com/.
[8] Ghostery Official website. https://www.ghostery.com/.
[9] Google Chrome browser. https://www.google.com/chrome/.
[10] Google. manifest - web accessible resources.
[11] Google. manifest file format.
[12] Google website. https://www.google.com/.
[13] Google’s Gmail. https://gmail.com.
[14] Lastpass official website. https://www.lastpass.com/business.
[15] Linkedin website. https://www.linkedin.com/.
[16] Opera browser. http://www.opera.com/.
[17] Privacy Badger - Electronic Frontier Foundation. https://www.eff.org/fr/

privacybadger.
[18] Same Origin Policy. https://www.w3.org/Security/wiki/Same_Origin_Policy.
[19] WebExtensions web_accessible_resources. https://developer.mozilla.org/en-US/

Add-ons/WebExtensions/manifest.json/web_accessible_resources.
[20] Youtube website. https://www.youtube.com/.
[21] G. Acar, C. Eubank, S. Englehardt, M. Juárez, A. Narayanan, and C. Díaz. The

web never forgets: Persistent tracking mechanisms in the wild. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 674–689, 2014.

[22] G. Acar, M. Juárez, N. Nikiforakis, C. Díaz, S. F. Gürses, F. Piessens, and B. Preneel.
Fpdetective: dusting the web for fingerprinters. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, pages 1129–1140, 2013.

[23] J. P. Achara, G. Ács, and C. Castelluccia. On the unicity of smartphone applica-
tions. CoRR, abs/1507.07851, 2015.

[24] T. Anthony. Detect if visitors are logged into twitter, facebook or google+.
http://www.tomanthony.co.uk/blog/detect-visitor-social-networks/, 2012.

[25] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre. User tracking on the web via
cross-browser fingerprinting. In Information Security Technology for Applications
- 16th Nordic Conference on Secure IT Systems, NordSec 2011, Tallinn, Estonia,
October 26-28, 2011, Revised Selected Papers, pages 31–46, 2011.

[26] M. Bryant. Dirty browser enumeration tricks - using chrome://
and about: to detect firefox and addons. https://thehackerblog.com/
dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/
index.html, 2014.

[27] Y. Cao, S. Li, and E. Wijmans. (cross-)browser fingerprinting via os and hardware
level features. In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, 26 February - 1 March, 2017, 2017. To
Appear.

[28] G. Cattani. The evolution of chrome extensions detection. http://blog.beefproject.
com/2013/04/the-evolution-of-chrome-extensions.html, 2013.

[29] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the
crowd: The privacy bounds of human mobility. Scientific Reports, 3:1376 EP –,
2013.

[30] P. Eckersley. How unique is your web browser? In Privacy Enhancing Technolo-
gies, 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23, 2010.
Proceedings, pages 1–18, 2010.

[31] A. Elsobky. Novel techniques for user deanonymization attacks. https://0xsobky.
github.io/novel-deanonymization-techniques/, 2016.

[32] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement
and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 1388–1401,
2016.

[33] H. Gamboa, A. L. N. Fred, and A. K. Jain. Webbiometrics: User verification via
web interaction. In 2007 Biometrics Symposium, pages 1–6, 2007.

[34] A. Gómez-Boix, P. Laperdrix, and B. Baudry. Hiding in the Crowd: an Analysis
of the Effectiveness of Browser Fingerprinting at Large Scale. In Web Conference
(WWW 2018), Lyon, France, 2018.

[35] J. Grossman. I know what you’ve got (firefox extensions). http://blog.
jeremiahgrossman.com/2006/08/i-know-what-youve-got-firefox.html, 2006.

[36] J. Grossman. Login detection, whose problem is it? http://blog.jeremiahgrossman.
com/2008/03/login-detection-whose-problem-is-it.html, 2008.

[37] G. G. Gulyás, G. Acs, and C. Castelluccia. Code repository for paper titled
’near-optimal fingerprinting with constraints’. https://github.com/gaborgulyas/
constrainted_fingerprinting, 2016.

[38] G. G. Gulyás, G. Acs, and C. Castelluccia. Near-optimal fingerprinting with
constraints. Proceedings on Privacy Enhancing Technologies, 2016(4):470–487,
2016.

[39] J. Haag. Modern and flexible browser fingerprinting library. https://github.com/
Valve/fingerprintjs2.

https://getadblock.com/
https://adblockplus.org/
https://brave.com/
https://developer.chrome.com/extensions
https://disconnect.me/
https://www.facebook.com/
https://www.ghostery.com/
https://www.google.com/chrome/
https://www.google.com/
https://gmail.com
https://www.lastpass.com/business
https://www.linkedin.com/
http://www.opera.com/
https://www.eff.org/fr/privacybadger
https://www.eff.org/fr/privacybadger
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://www.youtube.com/
http://www.tomanthony.co.uk/blog/detect-visitor-social-networks/
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
https://0xsobky.github.io/novel-deanonymization-techniques/
https://0xsobky.github.io/novel-deanonymization-techniques/
http://blog.jeremiahgrossman.com/2006/08/i-know-what-youve-got-firefox.html
http://blog.jeremiahgrossman.com/2006/08/i-know-what-youve-got-firefox.html
http://blog.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it.html
http://blog.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it.html
https://github.com/gaborgulyas/constrainted_fingerprinting
https://github.com/gaborgulyas/constrainted_fingerprinting
https://github.com/Valve/fingerprintjs2
https://github.com/Valve/fingerprintjs2

[40] B. Hayes. Uniquely me! how much information does it take to single out one
person among billions? 102:106–109, 2014.

[41] E. Homakov. Using content-security-policy for evil. http://homakov.blogspot.fr/
2014/01/using-content-security-policy-for-evil.html, 2014.

[42] E. Homakov. Profilejacking - legal tricks to detect user profile. https://sakurity.
com/blog/2015/03/10/Profilejacking.html, 2015.

[43] K. Kotowitz. Intro to chrome addons hacking: fingerprinting. http://blog.kotowicz.
net/2012/02/intro-to-chrome-addons-hacking.html, 2012.

[44] P. Laperdrix. Browser Fingerprinting: Exploring Device Diversity to Augment
Authentication and Build Client-Side Countermeasures. PhD thesis, INSA Rennes,
2017.

[45] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and the beast: Diverting
modern web browsers to build unique browser fingerprints. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA,May 22-26, 2016, pages 878–894,
2016.

[46] R. Linus. Your social media fingerprint. https://robinlinus.github.io/
socialmedia-leak/, 2016.

[47] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl. Block me if you can: A large-scale study of tracker-blocking tools.
In 2nd IEEE European Symposium on Security and Privacy, Paris, France, 2017. To
appear.

[48] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in HTML5. In
M. Fredrikson, editor, Proceedings of W2SP 2012. IEEE Computer Society, May
2012.

[49] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 541–555, 2013.

[50] Ł. Olejnik, C. Castelluccia, and A. Janc. Why johnny can’t browse in peace:
On the uniqueness of web browsing history patterns. In Hot Topics in Privacy
Enhancing Technologies (HotPETs 2012), 07 2012.

[51] I. Paul. Firefox will stop supporting plugins by end of 2016, follow-
ing chrome’s lead. https://www.pcworld.com/article/2990991/browsers/
firefox-will-stop-supporting-npapi-plugins-by-end-of-2016-following-chromes-lead.
html.

[52] M. Pusara and C. Brodley. User re-authentication via mouse movements. In ACM
Workshop Visualizat. Data Mining Comput. Security, page 1–8, 2004.

[53] J. Roth, X. Liu, and D. Metaxas. On continuous user authentication via typing
behavior. 23(10):4611–4624, 2014.

[54] I. Sánchez-Rola, I. Santos, and D. Balzarotti. Extension breakdown: Security
analysis of browsers extension resources control policies. In 26th USENIX Security
Symposium, pages 679–694, 2017.

[55] J. Schuh. Canvas DefendeSaying Goodbye to Our Old Friend
NPAPI, September 2013. https://blog.chromium.org/2013/09/
saying-goodbye-to-our-old-friend-npapi.html.

[56] A. Sjösten, S. Van Acker, and A. Sabelfeld. Discovering browser extensions via
web accessible resources. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, CODASPY ’17, pages 329–336, New
York, NY, USA, 2017. ACM.

[57] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content security
policy. In Proceedings of the 19th International Conference on World Wide Web,
WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 921–930, 2010.

[58] O. Starov and N. Nikiforakis. Xhound: Quantifying the fingerprintability of
browser extensions. In Proceedings of the 38th IEEE Symposium on Security and
Privacy, pages 941–956, 2017.

[59] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-STALKER: Tracking
Browser Fingerprint Evolutions. In 39th IEEE Symposium on Security and Privacy
(S&P 2018), 2018.

[60] M. West, A. Barth, and D. Veditz. Content Security Policy Level 2. W3C Candidate
Recommendation, 2015.

[61] Y. Zhong, Y. Deng, and A. K. Jain. Keystroke dynamics for user authentication. In
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Providence, RI, USA, June 16-21, 2012, pages 117–123, 2012.

http://homakov.blogspot.fr/2014/01/using-content-security-policy-for-evil.html
http://homakov.blogspot.fr/2014/01/using-content-security-policy-for-evil.html
https://sakurity.com/blog/2015/03/10/Profilejacking.html
https://sakurity.com/blog/2015/03/10/Profilejacking.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html
https://robinlinus.github.io/socialmedia-leak/
https://robinlinus.github.io/socialmedia-leak/
https://www.pcworld.com/article/2990991/browsers/firefox-will-stop-supporting-npapi-plugins-by-end-of-2016-following-chromes-lead.html
https://www.pcworld.com/article/2990991/browsers/firefox-will-stop-supporting-npapi-plugins-by-end-of-2016-following-chromes-lead.html
https://www.pcworld.com/article/2990991/browsers/firefox-will-stop-supporting-npapi-plugins-by-end-of-2016-following-chromes-lead.html
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html

	Abstract
	1 Introduction
	2 Background
	2.1 Detection of browser extensions
	2.2 Detection of Web logins

	3 Dataset
	3.1 Experiment website and data collection
	3.2 Data statistics
	3.3 Usage of extensions and logins

	4 Uniqueness analysis
	4.1 Four final datasets
	4.2 Uniqueness results for final datasets

	5 Fingerprinting attacks
	5.1 Threat model
	5.2 How to choose optimal attributes?
	5.3 Targeted fingerprinting
	5.4 General fingerprinting

	6 Implementation and performance
	7 The dilemma of privacy extensions
	8 Countermeasures
	9 Related work
	10 Discussion and future work
	11 Conclusion
	References

