
On the Content Security Policy Violations due to the
Same-Origin Policy

Dolière Francis Some
Université Côte d’Azur

Inria, France
doliere.some@inria.fr

Nataliia Bielova
Université Côte d’Azur

Inria, France
nataliia.bielova@inria.fr

Tamara Rezk
Université Côte d’Azur

Inria, France
tamara.rezk@inria.fr

ABSTRACT
Modern browsers implement different security policies such
as the Content Security Policy (CSP), a mechanism designed
to mitigate popular web vulnerabilities, and the Same Ori-
gin Policy (SOP), a mechanism that governs interactions
between resources of web pages.
In this work, we describe how CSP may be violated due

to the SOP when a page contains an embedded iframe from
the same origin. We analyse 1 million pages from 10,000 top
Alexa sites and report that in 94% of cases, CSP may be vio-
lated in presence of the document.domain API and in 23.5%
of cases CSP may be violated without any assumptions.
During our study, we also identified a divergence among

browsers implementations in the enforcement of CSP in sr-
cdoc sandboxed iframes, which actually reveals an inconsis-
tency between the CSP and the HTML5 specification sand-
box attribute for iframes. To ameliorate the problematic
conflicts of the security mechanisms, we discuss measures to
avoid CSP violations.

1. INTRODUCTION
Modern browsers implement different specifications to se-

curely fetch and integrate content. One widely used specifi-
cation to protect content is the Same Origin Policy (SOP) [1].
SOP allows developers to isolate untrusted content from a
different origin. An origin here is defined as protocol, do-
main, and port number. If an iframe’s content is loaded
from a different origin, SOP controls the access to the em-
bedder resources. In particular, no script inside the iframe
can access content of the embedder page. However, if the
iframe’s content is loaded from the same origin as the em-
bedder page, there are no privilege restrictions w.r.t. the
embedder resources. In such a case, a script executing in-
side the iframe can access content of the embedder web-
page. Scripts are considered trusted and the iframe becomes
transparent from a developer view point. A more recent
specification to protect content in webpages is the Content
Security Policy (CSP) [15]. The primary goal of CSP is to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW ’17 April 3–7, 2017, Perth, Western Australia
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-2138-9. . . $15.00

DOI: 10.1145/1235

Figure 1: An XSS attack despite CSP.

mitigate cross site scripting attacks (XSS), data leaks at-
tacks, and other types of attacks. CSP allows developers to
specify, among other features, trusted domain sources from
which to fetch content. One of the most important features
of CSP, is to allow a web application developer to specify
trusted JavaScript sources. This kind of restriction is meant
to permit execution of only trusted code and thus prevent
untrusted code to access content of the page.

In this work, we report on a new fundamental problem
of CSP. CSP defines how to protect content in an isolated
page. However, it does not take into consideration the page’s
context, that is its embedder or embedded iframes. In par-
ticular, CSP is unable to protect content of its corresponding
page if the page embeds (using the src attribute) an iframe
of the same origin. The CSP policy of a page will not be
applied to an embedded iframe. However, due to SOP, the
iframe has complete access to the content of its embedder.
Because same origin iframes are transparent due to SOP,
this opens loopholes to attackers whenever the CSP policy
of an iframe and that of its embedder page are not compat-
ible (see Fig. 1).

We analysed 1 million pages from the top 10,000 Alexa
sites and found that 5.29% of sites contain some pages with
CSPs (as opposed to 2% of home pages in previous stud-
ies [16]). We have identified that in 94% of cases, CSP
may be violated in presence of the document.domain API
and in 23.5% of cases CSP may be violated without any
assumptions (see Table 3). During our study, we also iden-
tified a divergence among browsers implementations in the
enforcement of CSP [24] in sandboxed iframes embedded
with srcdoc, which actually reveals an inconsistency between
the CSP and HTML5 sandbox attribute specification for

10.1145/1235

iframes. We identify and discuss possible solutions from the
developer point of view as well as new security specifications
that can help prevent this kind of CSP violations. We have
made publicly available the dataset that we used for our
results in http://webstats.inria.fr/?cspviolations. We have
installed an automatic crawler to recover the same dataset
every month to repeat the experiment taking into account
the time variable. An accompanying technical report with
a complete account of our analyses can be found at [14].
In summary, our contributions are:(i) We describe a new

class of vulnerabilities that lead to CSP violations. (Sec-
tion 2). (ii) We perform a large and depth scale crawl of
top sites, highlighting CSP adoption at sites-level, as well
as sites origins levels. Using this dataset, we report on the
possibilities of CSP violations between the SOP and CSP
in the wild. (Section 3). (iii) We propose guidelines in
the design and deployment of CSP. (Section 4). (iv) We
reveal an inconsistency between the CSP specification and
HTML5 sandbox attribute specification for iframes. Differ-
ent browsers choose to follow different specifications, and we
explain how any of these choices can lead to new vulnera-
bilities. (Section 5).

2. CONTENT SECURITY POLICY AND SOP
The Content Security Policy (CSP) [15] is a mechanism

that allows programmers to control which client-side re-
sources can be loaded and executed by the browser. CSP
(version 2) is an official W3C candidate recommendation [24],
and is currently supported by major web browsers. CSP is
delivered in the Content-Security-Policy HTTP response
header, or in a <meta> element of HTML.
CSP applicability A CSP delivered with a page controls

the resources of the page. However it does not apply to the
page’s embedding resources [24]. As such, CSP does not
control the content of the iframes even if the iframe is from
the same origin as the main page according to SOP. Instead,
the content of the iframe is controlled by the CSP delivered
with it, that can be different from the CSP of the main page.
CSP directives CSP allows a programmer to specify

which resources are allowed to be loaded and executed in
the page. These resources are defined as a set of origins
and known as a source list. Additionally to controlling re-
sources, CSP allows to specify allowed destinations of the
AJAX requests by the connect-src directive. A special
header Content-Security-Policy-Report-Only configures
a CSP in a report-only mode: violations are recorded, but
not enforced. The directive default-src is a special fallback
directive that is used when some directive is not defined.
The directive frame-ancestors controls in which pages the
current page may be included as an iframe, to prevent click-
jacking attacks [12]. See Table 1 for the most commonly
used CSP directives [19].
Source lists CSP source list is traditionally defined as a

whitelist indicating which domains are trusted to load the
content, or to communicate. For example, a CSP from List-
ing 1 allows to include scripts only from third.com, requires
to load frames only over HTTPS, while other resource types
can only be loaded from the same hosting domain.

1 Content-Security-Policy:
2 default-src ’self’; script-src third.com;
3 child-src https:

Listing 1: Example of a CSP policy.

Directive Controlled content
script-src Scripts
default-src All resources (fallback)
style-src Stylesheets
img-src Images
font-src Fonts
connect-src XMLHttpRequest, WebSocket or

EventSource
object-src Plug-in formats (object, embed)
report-uri URL where to report CSP violations
media-src Media (audio, video)
child-src Documents (frames), [Shared] Workers
frame-ancestors Embedding context

Table 1: Most common CSP directives [19].

A whitelist can be composed of concrete hostnames (third.com),
may include a wildcard * to extend the policy to subdomains
(*.third.com), a special keyword ’self’ for the same host-
ing domain, or ’none’ to prohibit any resource loading.

Restrictions on scripts Directive script-src is the
most used feature of CSP in today’s web applications [19].
It allows a programmer to control the origin of scripts in
his application using source lists. When the script-src

directive is present in CSP, it blocks an execution of any
inline script, JavaScript event handlers and APIs that ex-
ecute string data code, such as eval() and other related
APIs. To relax the CSP, by allowing the execution of in-
line <script> and JavaScript event handlers, a script-src

whitelist should contain a keyword ’unsafe-inline’. To
allow eval()-like APIs, the CSP should contain a ’unsafe-

eval’ keyword. Because ’unsafe-inline’ allows execution
of any inlined script, it effectively removes any protection
against XSS. Therefore, nonces and hashes were introduced
in CSP version 2 [24], allowing to control which inline scripts
can be loaded and executed.

Sandboxing iframes Directive sandbox allows to load
resources but execute them in a separate environment. It
applies to all the iframes present on the page, and can be
either very restrictive (when specified without any flags), or
may relax its restrictions via allow-* flags in the directive’s
value. For example, allow-scripts will allow executions of
scripts in an iframe, and allow-same-origin will allow the
code of the iframe be executed in the environment as the
main page if it has the same origin as the main page.

Same-Site and Same-Origin Definitions.
In our terminology, we distinguish the web pages that be-

long to the same site from the pages that belong to the
same origin. By page we refer to any HTML document –
for example, the content of an iframe we call iframe page.
In this case, the page that embeds an iframe is called a par-
ent page or embedder. By site we refer to the highest level
domain that we extract from Alexa top 10,000 sites, usu-
ally containing the domain name and a TLD, for example
main.com. All the pages that belong to a site, and to any of
its subdomains as sub.main.com, are considered same-site
pages. According to the Same Origin Policy, an origin of a
page is protocol, domain and port of its URL. For example,
in http://main.com:81/dir/p.html, the protocol is “http”,
the domain is “main.com” and the port is 81. If URLs of
two pages differ in at least one of these three elements, then
their origin is considered to be different. The Same-Origin

http://webstats.inria.fr/?cspviolations

Policy implementation in the majority of web browsers uses
this definition1.
The origin of a web page loaded in a browser, can be

retrieved by executing

1 document.location.origin

2.1 CSP violations due to SOP
Consider a web application, where the main page A.html

and its iframe B.html are located at http://main.com, and
therefore belong to the same origin according to the same-
origin policy. A.html, shown in Listing 2, contains a script
and an iframe from main.com. The local script secret.js

contains sensitive information given in Listing 3. To protect
against XSS, the developer behind http://main.com have
installed the CSP for its main page A.html, shown in List-
ing 4.

1 <html>
2 <script src="secret.js"></script>
3 ...
4 <iframe src="B.html"></iframe>
5 </html>

Listing 2: Source code of http://main.com/A.html.

1 var secret = "42";

Listing 3: Source code of secret.js.

1 Content-Security-Policy:
2 default-src ’none’; script-src ’self’;
3 child-src ’self’

Listing 4: CSP of http://main.com/A.html.

This CSP provides an effective protection against XSS:

• script-src ’self’; disallows any script execution from
any origin except for http://main.com. This only al-
lows the local scripts (secret.js) to be executed. In-
lined scripts are also blocked because of the absence of
’unsafe-inline’ keyword in script-src directive.

• child-src ’self’ permits to load iframes only from
http://main.com, therefore an iframe B.html is loaded
in the browser.

• default-src ’none’ disallows loading of any other re-
sources.

2.1.1 Only parent page has CSP
According to the latest version of CSP2, only the CSP of

the iframe applies to its content, and it ignores completely
the CSP of the including page. In our case, if there is no
CSP in B.html then its resource loading is not restricted.
As a result, an iframe B.html without CSP is potentially
vulnerable to XSS, since any injected code may be executed
within B.html with no restrictions. Assume B.html was ex-
ploited by an attacker injecting a script injected.js. Be-
sides taking control over B.html, this attack now propagates
to the including page A.html, as we show in Fig. 1. The
XSS attack extends to the including parent page because of
the inconsistency between the CSP and SOP. When a par-
ent page and an iframe are from the same origin according

1In Internet Explorer an origin is just a protocol and domain.
2https://www.w3.org/TR/CSP2/#which-policy-applies

to SOP, a parent and an iframe share the same privileges
and can access each other’s code and resources. For our
example, injected.js is shown in Listing 5. This script
executed in B.html retrieves the secret value from its par-
ent page (parent.secret) and transmits it to an attacker’s
server http://attacker.com via XMLHttpRequest3.

1 function sendData(obj , url){
2 var req = new XMLHttpRequest ();
3 req.open(’POST’, url , true);
4 req.send(JSON.stringify(obj));
5 }
6 sendData ({ secret: parent.secret}, ’http: //

attacker.com/send.php ’);

Listing 5: Source code of injected.js.

A straightforward solution to this problem is to ensure
that the protection mechanism for the parent page also prop-
agates to the iframes from the same domain. Technically, it
means that the CSP of the iframe should be the same or
more restrictive than the CSP of the parent. In the next
example we show that this requirement does not necessarily
prevent possible CSP violations due to SOP.

2.1.2 Only iframe page has CSP
Consider a different web application, where the including

parent page A.html does not have a CSP, while its iframe
B.html contains a CSP from Listing 4. In this example,
B.html, shown in Listing 6 now contains some sensitive in-
formation stored in secret.js (see Listing 3).

1 <html>
2 ...
3 <script src="secret.js"></script>
4 </html>

Listing 6: Source code of http://main.com/B.html.

Since the including page A.html now has no CSP, it is po-
tentially vulnerable to XSS, and therefore may have a mali-
cious script injected.js. The iframe B.html has a restric-
tive CSP, that effectively contributes to protection against
XSS. Since A.html and B.html are from the same origin,
the malicious injected script can profit from this and steal
sensitive information from B.html. For example, the script
may call the sendData function with the secret information:

1 sendData ({ secret: children [0]. secret}, ’
http:// attacker.com/send.php ’);

Thanks to SOP, the script injected.js fetches the secret
from it’s child iframe B.html and sends it to http://attacker.com.

2.1.3 CSP violations due to origin relaxation
A page may change its own origin with some limitations.

By using the document.domain API, the script can change
its current domain to a superdomain. As a result, a shorter
domain is used for the subsequent origin checks4.

Consider a slightly modified scenario, where the main page
A.html from http://main.com includes an iframe B.html

from its sub-domain http://sub.main.com. Any script in
B.html is able to change the origin to http://main.com by
executing the following line:
3The XMLHttpRequest is not forbidden by the SOP
for B.html because an attacker has activated the Cross-
Origin Resource Sharing mechanism [18] on her server
http://attacker.com.
4https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin policy#Changing origin

https://www.w3.org/TR/CSP2/#which-policy-applies
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin

1 document.domain = "main.com";

If A.com is willing to communicate with this iframe, it should
also execute the above-written code so that the communica-
tion with B.html will be possible. The content of B.html is
now treated by the web browser as the same-origin content
with A.html, and therefore any of the previously described
attacks become possible.

2.1.4 Categories of CSP violations due to SOP
We distinguish three different cases when the CSP viola-

tion might occur because of SOP:

Only parent page or only iframe has CSP A parent page
and an iframe page are from the same origin, but only
one of them contains a CSP. The CSP may be violated
due to the unrestricted access of a page without CSP
to the content of the page with CSP. We demonstrated
this example in Sections 2.1.1 and 2.1.2.

Parent and iframe have different CSPs A parent page
and an iframe page are from the same origin, but they
have different CSPs. Due to SOP, the scripts from one
page can interfere with the content of another page
thus violating the CSP.

CSP violation due to origin relaxation A parent page
and an iframe page are from the same higher level do-
main, port and protocol, but however they are not
from the same origin. Either CSP is absent in one of
them, or they have different CSPs – in both cases CSP
may be violated because the pages can relax their ori-
gin to the high level domain by using document.domain
API, as we have shown in Section 2.1.3.

3. EMPIRICAL STUDY OF CSP VIOLATIONS
We have performed a large-scale study on the top 10,000

Alexa sites to detect whether CSP may be violated due to
an inconsistency between CSP and SOP. For collecting the
data, we have used CasperJS [11] on top of PhantomJS head-
less browser [6]. The User-Agent HTTP header was instan-
tiated as a recent Google Chrome browser.

3.1 Methodology
The overview of our data collection and CSP comparison

process is given in Figure 2. The main difference in our
data collection process from previous works on CSP mea-
surements in the wild [19, 16] is that we crawl not only the
main pages of each site, but also other pages. First, we
collect pages accessible through links of the main page and
pointing to the same site. Second, to detect possible CSP vi-
olations due to SOP, we have collected all the iframes present
on the home pages and linked pages.

3.1.1 Data Collection
We run PhantomJS using as user agent Mozilla/5.0 (X11;

Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome51.0.2704.63 Safari/537.36. The study was performed
on an internal cluster of 200 cores, using OpenMP to benefit
from parallelization.
Home Page Crawler For each site in top 10,000 Alexa

list, we crawl the home page, parse its source code and ex-
tract three elements: (1) a CSP of the site’s home page
stored in HTTP header as well as in <meta> HTML tag; we

denote the CSPs of the home page by C; (2) to extract more
pages from the same site, we analyse the source of the links
via tag and extract URLs that point to the
same site, we denote this list by L. (3) we collect URLs of
iframes present on the home page via <iframe src=...> tag
and record only those belonging to the same site, we denote
this set by F .

Page Crawler We crawl all the URLs from the list of
pages L, and for each page we repeat the process of extrac-
tion of CSP and relevant iframes, similar to the steps (1)
and (3) of the home page crawler. As a result, we get a set
of CSPs of linked pages CL and a set of iframes URLs FL

that we have extracted from the linked pages in L.
Iframe Crawler For every iframe URL present in the

list of home page iframes FH , and in the list of linked pages
iframes FL, we extract their corresponding CSPs and store
in two sets: CF for home page iframes and CLF for linked
page iframes.

3.1.2 CSP adoption analysis
Since CSP is considered an effective countermeasure for

a number of web attacks, programmers often use it to miti-
gate such attacks on the main pages of their sites. However,
if CSP is not installed on some pages of the same site, this
can potentially leak to CSP violations due to the inconsis-
tency with SOP when another page from the same origin is
included as an iframe (see Figure 1). In our database, for
each site, we recorded its home page, a number of linked
pages and iframes from the same site. This allows us to
analyse how CSP is adopted at every popular site by check-
ing the presence of CSP on every crawled page and iframe
of each site. To do so, we analyse the extracted CSPs: C
for the home page, CL for linked pages, CF for home page
iframes, and CLF for linked pages iframes.

3.1.3 CSP violations detection
To detect possible CSP violations due to SOP, we have

analysed home pages and linked pages from the same site,
as well as iframes embedded into them.

CSP Selection To detect CSP violations, we first re-
move all the sites where no parent page and no iframe page
contains a CSP. For the remaining sites, we pointwise com-
pare (1) the CSPs of the home pages C and CSPs of iframes
present on these pages CF ; (2) the CSPs of the linked pages
CL and CSPs of their iframes CLF . To check whether a par-
ent page CSP and an iframe CSP are equivalent, we have
applied the CSP comparison algorithm (Figure 2)

CSP Preprocessing We first normalise each CSP policy,
by splitting it into its directives.

• If default-src directive is present (default-src is a
fallback for most of the other directives), then we ex-
tract the source list s of default-src . We analyse
which directives are missing in the CSP, and explicitly
add them with the source list s.

• If default-src directive is absent, we extract miss-
ing directives from the CSP. In this case, there are
no restrictions in CSP for every absent directive. We
therefore explicitly add them with the most permis-
sive source list * ’unsafe-inline’ ’unsafe-eval’ data:
blob: mediastream: filesystem:

• In each source list, we modify the special keywords: (i)
’self ’ is replaced with the origin of the page containing

Figure 2: Data Collection and Analysis Process

Sites successfully crawled 9,885
Pages visited 1,090,226
Pages with iframe(s) from the same site 648,324
Pages with same-origin iframe(s) 92,430
Pages with same-origin iframe(s) where
page and/or iframe has CSP

692

Pages with CSP 21,961 (2.00%)
Sites with CSP on home page 228 (2.3%)
Sites with CSP on some pages 523 (5.29%)

Table 2: Crawling statistics

the CSP; (ii) in case of ’unsafe-inline’ with hash or
nonce, we remove ’unsafe-inline’ from the directive
since it will be ignored by the CSP2. (iii) ’none’ key-
words are removed from all the directives; (iv) nonces
and hashes are removed from all the directives since
they cannot be compared; (iv) each whitelisted domain
is extended with a list of schemes and port numbers
from the URL of the page includes the CSP5.

CSP Comparison We compare all the directives present
in the two CSPs to identify whether the two policies require
the same restrictions. Whenever the two CSPs are different,
our algorithm returns the names of directives that do not
match. The demonstration of the comparison is accessible
on http://webstats.inria.fr/?cspviolations.
For each directive in the policies we compare the source

lists and and the algorithm proceeds if the elements of the
lists are identical in the normalised CSPs.

3.2 Results on CSP Adoption
The crawling of Alexa top 10,000 sites was performed in

the end of August, 2016. To extract several pages from the
same site, we have also crawled all the links and iframes on
a page that point to the same site. In total, we have gath-
ered 1,090,226 from 9,885 different sites. On median, from
each site we extracted 45 pages, with a maximum number
of 9,055 pages found on tuberel.com. Our crawling statis-
tics is presented in Table 2. More than half of the pages

5For example, according to CSP2, if the page scheme
is https, and a CSP contains a source example.com,
then the user agent should allow content only from
https://example.com, while if the current scheme is
http, it would allow both http://example.com and
https://example.com.

Figure 3: Percentage of pages with CSP per site

contain an iframe, and 13% of pages do contain an iframe
from the same site. This indicates the potential surface for
the CSP violations, when at least one page on the site has a
CSP installed. We discuss such potential CSP violation in
details in Section 3.3.3. Similarly to previous works on CSP
adoption [19, 16], we have found that CSP is present on only
228 out of 9,885 home pages (2.31%). While extending this
analysis to almost a million pages, we have found a similar
rate of CSP adoption (2.00%).

Differently from previous studies that anlaysed only home
pages, or only pages in separation, we have analysed how
many sites have at least some pages that adopted CSP. We
have grouped all pages by sites, and found that 5.29% of
sites contain some pages with CSPs. It means that CSP is
more known by the website developers, but for some reason
is not widely adopted on all the pages of the site. We have
then analysed how many pages on each site have adopted
CSPs. For each of 523 sites, we have counted how many
pages (including home page, linked pages and iframes) have
CSPs. Figure 3 shows that more than half of the sites have
a very low CSP adoption on their pages: on 276 sites out of
529, CSP is installed on only 0-10% of their pages. However,
it is interesting that around a quarter of sites do profit from
CSP by installing it on 90-100% of their pages.

3.3 Results on CSP violations due to SOP
As described in Section 2.1.4, we distinguish several cate-

http://webstats.inria.fr/?cspviolations
tuberel.com

gories of CSP violations when a parent page and an iframe
on this page are from the same origin according to SOP. To
account for possible CSP violations, we only consider cases
when either parent, or iframe, or both have a CSP installed.
From all the 21,961 pages that have CSP installed, we have
removed the pages, where CSPs are in report-only mode,
having left 18,035 pages with CSPs in enforcement mode.
Table 3 presents possible CSP violations due to SOP. We

have extracted the parent-iframe couples that might cause a
CSP violation because either (1) only parent or only iframe
installed a CSP, or (2) both installed different CSPs. First,
to account for direct violations because of SOP, we distin-
guish couples where parent and iframe are from the same
origin (columns 2,3), we have found 720 cases of such cou-
ples. Second, we analyse possible CSP violations due to ori-
gin relaxation: we have collected 1781 couples that are from
different origins but their origins can be relaxed by docu-

ment.domain API (see more in Section 2.1.3) – these results
are shown in columns 4 and 5. In Table 4 we present the
names of the domains out of top 100 Alexa sites, where we
have found different CSP violations. Each company in this
table have been notified about the possible CSP violation.
Concrete examples of the page and iframe URLs and their
corresponding CSPs for each such violation can be found
in the corresponding technical report [14]. All the collected
data is available online6.

3.3.1 Only parent page or only iframe has CSP
We first consider a scenario when a parent page and an

iframe are from the same origin, but only one of them con-
tains a CSP. Intuitively, if only a parent page has CSP, then
an iframe can violate CSP by executing any code and access-
ing the parent page’s DOM, inserting content, access cook-
ies etc. Among 720 parent-iframe couples from the same
origin, we have found 83 cases (11.5%) when only parent
has a CSP, and 16 cases (2.2%) when only iframe has a
CSP. These CSP violations originate from 13 (for parent)
and 4 (for iframe) sites. For example, such possible viola-
tions are found on some pages of amazon.com, yandex.ru
and imdb.com (see Table 4). CSP of a parent or iframe may
also be violated because of origin relaxation. We have iden-
tified 1388 cases (78%) of parent-iframe couples where such
violation may occur because CSP is present only in the par-
ent page. This was observed on 20 different sites, including
yahoo.com, twitter.com, yandex.ru and others. Finally, in
240 cases (13.5%) only iframe has CSP installed, which was
found on 11 different sites.

3.3.2 Parent and iframe have different CSPs
In a case when a page and iframe are from the same origin,

but their corresponding CSPs are different, may also cause
a violation of CSP. From the 720 same-origin parent-iframe
couples, we have found 70 cases (9.7%) when their CSPs
differ, and for an origin relaxation case, we have identified
only 44 such cases (2.5%). This setting was found on some
pages of twitter.com and dropbox.com.
We have further analysed the differences in CSPs found

on parent and iframe pages. For all the 114 pairs of parent-
iframe (either same-origin or possible origin relaxation), we
have compared CSPs they installed, directive-by-directive.
Figure 4 shows that every parent CSP and iframe CSP dif-
fer on almost every directive – between 90% and 100%. The

6Available online http://webstats.inria.fr/?cspviolations.

Figure 4: Differences in CSP directives for parent
and iframe pages

only exception is frame-ancestors directive, which is al-
most the same in different parent pages and iframes. If
properly set, this directive gives a strong protection against
clickjacking attacks, therefore all the pages of the same ori-
gin are equally protected.

3.3.3 Potential CSP violations
A potential CSP violation may happen when in a site, ei-

ther some pages have CSP and some others do not, or pages
have different CSP. When those pages get nested as parent-
iframe, we can run into CSP violations, just like in the direct
CSP violations cases we have just reported above. To anal-
yse how often such violations may occur, we have analysed
the 18,035 pages that have CSP in enforcement mode. These
pages originate form 729 different origins spread over 442
sites. Table 5 shows that 72% of CSPs (12,899 pages) are
potentially violated, and these CSPs originate from pages
of 379 different sites (85.75%). To detect these violations,
for each page with a CSP in our database, we have analysed
whether there exists another page from the same origin, that
does not have CSP. This page could embed the page with
CSP and violate it because of SOP. We have detected 4381
such pages (24%) from 197 origins. Similarly, we detected
1223 pages (7%) when there are same-origin pages with a
different CSP. Similarly, we have analysed when potential
CSP violations may happen due to origin relaxation. We
have detected 4728 pages (26%), whose CSP may be vio-
lated because of other pages with no CSP, and 2567 pages
(14%), whose CSP may be violated because of different CSP
on other relaxed-origin pages. For the pages that have dif-
ferent CSPs, we have compared how much CSPs differ. Fig-
ure 5 shows that CSPs mostly differ in script-src directive,
which protects pages from XSS attacks. This means, that if
one page in the origin does whitelist an attacker’s domain,
all the other pages in the same origin become vulnerable be-
cause they may be inserted as an iframe to the vulnerable
page and their CSPs can be easily violated.

4. AVOIDING CSP VIOLATIONS
Preventing CSP violations due to SOP can be achieved

by having the same effective CSP for all same-origin pages
in a site, and prevent origin relaxation.

Origin-wide CSP: Using CSP for all same-origin pages
can be manually done but this solution is error-prone. A
more effective solution is the use of a specification such as

http://webstats.inria.fr/?cspviolations

Same-origin parent-iframe Possible to relax origin
Parent-iframe Sites Parent-iframe Sites Total (parent-iframe)

Only parent page CSP 83 13 1388 20 1471
Only iframe CSP 16 4 240 11 256
Different CSP 70 3 44 6 114

CSP violations total 169 (23.5%) 17 1672 (94%) 29 1841

Table 3: Statistics CSP violations due to Same-Origin Policy

Same-origin parent-iframe Possible to relax origin
Only parent page CSP yandex.ru yahoo.com, twitter.com, yandex.ru, mail.ru

Only iframe CSP amazon.com, imdb.com –*
Different CSP twitter.com –*

*Not found in top 100 Alexa sites.

Table 4: Examples CSP violations due to Same-Origin Policy

Pages Origins Sites
A same origin page has no CSP 4381 197 197
A same origin page has a dif-
ferent CSP

1223 23 23

A same origin (after relax-
ation) page has no CSP

4728 340 183

A same origin (after relax-
ation) has a different CSP

2567 135 44

Potential violations total 12899
(72%)

591
(81%)

379
(52%)

Table 5: Potential CSP violations in pages with CSP

Figure 5: Differences in CSP directives for same-
origin and relaxed origin pages

Origin Policy [23] in order to set a header for the whole
origin.
Preventing Origin Relaxation: Having an origin-wide

CSP is not enough to prevent CSP violations. By using ori-
gin relaxation, pages from different origins can bypass the
SOP [13]. Many authors provide guidelines on how to design
an effective CSP [19]. Nonetheless, even with an effective
CSP, an embedded page from a different origin in the same
site can use document.domain to relax its origin. Prevent-
ing origin relaxation is trickier. Programmatically, one could
prevent other scripts from modifying document.domain
by making a script run first in a page [17]. The first script
that runs on the page would be:

1 Object.defineProperty(document , "domain",

{ __proto__: null , writable: false ,
configurable: false});

A parent page can also indirectly disable origin relaxation
in iframes by sandboxing them. This can be achieved by
using sandbox as an attribute for iframes or as directive
for the parent page CSP. Unfortunately, an iframe cannot
indirectly disable origin relaxation in the page that embeds
it. However, the frame-ancestors directive of CSP gives
an iframe control over the hosts that can embed it. Finally,
a more robust solution is the use of a policy to deprecate
document.domain as proposed in the draft of Feature pol-
icy [25]. The feature policy defines a mechanism that allows
developers to selectively enable and disable the use of vari-
ous browser features and APIs.

Iframe sandboxing: Combining attribute allow-scripts
and allow-same-origin as values for sandbox successfully
disables document.domain in an iframe 7. We recom-
mend the use of sandbox as a CSP directive, instead of
an HTML iframe attribute. The first reason is that sand-
box as a CSP directive, automatically applies to all iframes
that are in a page, avoiding the need to manually modify all
HTML iframe tags. Second, the sandbox directive is not
programmatically accessible to potentially malicious scripts
in the page, as is the case for the sandbox attribute (which
can be removed from an iframe programmatically, replac-
ing the sandboxed iframe with another identical iframe but
without the sandbox attribute).

5. INCONSISTENT SPECIFICATIONS
Combining origin-wide CSP with allow-scripts sandbox

directive would have been sufficient at preventing the incon-
sistencies between CSP and the same origin policy. Unfor-
tunately, we have discovered that for some browsers, this
solution is not sufficient. Starting from HTML5, major
browsers, apart from Internet Explorer, supports the new
srcdoc attribute for iframes. Instead of providing a URL
which content will be loaded in an iframe, one provides di-
rectly the HTML content of the iframe in the srcdoc at-
tribute. According to CSP2 [24], §5.2, the CSP of a page
should apply to an iframe which content is supplied in a
srcdoc attribute. This is actually the case for all majors

7We found out that dropbox.com actually puts sandbox
attribute for all its iframes, and therefore avoids the possible
CSP violations.

dropbox.com

browsers, which support the srcdoc attribute. However,
there is a problem when the sandbox attribute is associ-
ated with the srcdoc attribute.
Webkit-based 8 and Blink-based 9 browsers (Chrome,

Chromium, Opera) always comply with CSP. The CSP of a
page will apply to all srcdoc iframes, even in those which
have a different origin than that of the page. The problem
of imposing a CSP to an unknown page is illustrated by
the following example [21]. If a trusted third party library,
whitelisted by the CSP of the page, uses security libraries
inside an isolated context (by sandboxing them in a srcdoc
iframe, setting allow-scripts as sole value for the sandbox
) then, the page’s CSP will block the security libraries and
possibly introduce new vulnerabilities.
In contrast, Gecko-based 10 browsers (Mozilla Firefox)

always comply with SOP, as it is refined by the use of sand-
box . The CSP of the page applies to that of the srcdoc
iframe if and only if allow-same-origin is present as value
for the attribute. Otherwise it does not apply. The prob-
lem with this choice is the following. A third party script,
whitelisted by the CSP of the page, can create a srcdoc
iframe, sandboxing it with allow-scripts only, and load any
resource that would normally be blocked by the CSP of the
page if applied in this iframe. This way, the third party
script successfully bypasses the restrictions of the CSP of
the page. Even though loading additional scripts is consid-
ered harmless in the upcoming version 3 [22, 19] of CSP,
this specification says nothing about violations that could
occur due to the loading of other resources inside a srcdoc
sandboxed iframe.
The differences in the implementations choices made by

the two classes of browsers exhibit an inconsistency between
CSP in presence of srcdoc and the SOP refinement as al-
lowed by sandboxing of HTML5 specification. It states [5]:
sandbox without allow-same-origin creates a unique ori-
gin, while allow-same-origin gives an iframe its real ori-
gin. In the case of srcdoc , the real origin is that of the
page that embeds it. However, CSP is more general when it
states that CSP of the embedding page should apply to that
of the srcdoc iframe, with no further comments. We have
reported this inconsistency to different browser vendors and
to the W3C.

6. RELATED WORK
CSP has been proposed by Stamm et al. [15] as a re-

finement of SOP [1], in order to help mitigate Cross-Site-
Scripting [26] and data exfiltration attacks. The second
version [24] of the specification is supported by all major
browsers, and the third version [22] is under active develop-
ment. Even though CSP is well supported [16], its endorse-
ment by web sites is rather slow. Weissbacher et al. [20]
performed the first large scale study of CSP deployment in
top Alexa sites, and found that around 1% of sites were us-
ing CSP at the time. A more recent study by Calzavara et
al. [16], show that nearly 8% of Alexa top sites now have
CSP deployed in their front pages. Another recent study,
by Weichselbaum et al. [19] come with similar results to the
study of Weissbacher et al. [20]. Our work extends previous
results by analysing the adoption of CSP by site not only

8https://en.wikipedia.org/wiki/WebKit
9https://en.wikipedia.org/wiki/Blink (web engine)

10https://en.wikipedia.org/wiki/Gecko (software)

considering front pages but all the pages in a site. Almost
all authors agree that CSP adoption is not a straightfor-
ward task, and lots of (manual) effort are needed in order
to reorganize and modify web pages to support CSP.

Therefore, in order to help web sites developers in adopt-
ing CSP, Javed proposed CSP Aider, [7] that automatically
crawl a set of pages from a site and propose a site-wide CSP.
Patil and Frederik [10] proposed UserCSP, a framework that
monitors the browser internal events in order to automat-
ically infer a CSP for a web page based on the loaded re-
sources. Weissbacher et al. [20] have evaluated the feasibil-
ity of using CSP in report-only mode in order to generate a
CSP based on reported violations, or semi-automatically in-
ferring a CSP policy based on the resources that are loaded
in web pages. They concluded that automatically generat-
ing a CSP is ineffective. A difficulty which remains is the
use of inline scripts in many pages. The first solution is
to externalize inline scripts, as can be done by systems like
deDacota [3]. Kerschbaumer et al. [9] find that too many
pages are still using ’unsafe-inline’ in their CSPs. They
propose a system to automatically identify legitimate inline
scripts in a page, thereby whitelisting them in the CSP of
the underlying page, using script hashes.

Another direction of research on CSP, has been evaluating
its effectiveness at successfully preventing content injection
attacks. Calzavara et al. [16] found out that many CSP
policies in real web sites have errors including typos, ill-
formed or harsh policies. Even when the policies are well
formed, they have found that almost all currently deployed
CSP policies are bypassable because of a misunderstanding
of the CSP language itself. Patil and Frederik found similar
errors in their study [10]. Hausknecht et al. [4] found that
some browser extensions, modified the CSP policy headers,
in order to whitelist more resources and origins. Van Acker
et al. [2] have shown that CSP fails at preventing data exfil-
tration specially when resources are prefetched, or in pres-
ence of a CSP policy in the HTML meta tag, because the
order in which resources are loaded in a web application is
hard to predict. Johns [8] proposed hashes for static scripts,
and PreparedJS, an extension for CSP, in order to securely
handle server-side dynamically generated scripts based on
user input. Weichselbaum et al. [19] have extended nonces
and hashes, introduced in CSP level 2 [24], to remote scripts
URLs, specially to tackle the high prevalence of insecure
hosts in current CSP policies. Furthermore, they have in-
troduced strict-dynamic. This new keyword states that
any additional script loaded by a whitelisted remote script
URL is considered a trusted script as well. They also pro-
vide guidelines on how to build an effective CSP. To the best
of our knowledge, we are the first to explore the interactions
between CSP and SOP and report possible CSP violations.

7. CONCLUSIONS
In this work, we have revealed a new problem that can

lead to violations of CSP. We have performed an in-depth
analysis of the inconsistency that arises due to CSP and SOP
and identified three cases when CSP may be violated.

To evaluate how often such violations happen, we per-
formed a large-scale analysis of more than 1 million pages
from 10,000 Alexa top sites. We have found that 5.29% of
sites contain pages with CSPs (as opposed to 2% of home
pages in previous studies). Our results show that when a
page includes an iframe from the same origin according to

SOP, in 23.5% of cases their CSPs may be violated. We
identified that a CSP may be violated in presence of docu-
ment.domain API, and found that 94% of pages that include
an iframe are potentially vulnerable to CSP violations. Hav-
ing found such possible violations on 46 popular websites,
including yahoo.com, amazon.com, twitter.com and others,
we reported this problem to website owners. We have also
analysed potential CSP violations that occur when two pages
from the same domain have inconsistent CSPs. Such po-
tential violation occurred on 72% of pages that have CSP
installed, originating from 379 different sites. We discussed
measures to avoid CSP violations in web applications by
installing an origin-wide CSP and using sandboxed iframes.
Finally, our study also reveals an inconsistency between CSP
and HTML5 sandbox attribute for iframes and we are cur-
rently discussing with the W3C to report and, eventually,
fix this inconsistency.

8. ACKNOWLEDGEMENTS
We would like to thank the WebAppSec W3C Working

Group for useful pointers to related resources at the early
stage of this work, and Mike West for fruitful discussions on
CSP and related work.

9. REFERENCES
[1] Same Origin Policy. https:

//www.w3.org/Security/wiki/Same Origin Policy.

[2] S. V. Acker, D. Hausknecht, and A. Sabelfeld. Data
Exfiltration in the Face of CSP. In X. Chen, X. Wang,
and X. Huang, editors, Proceedings of the 11th ACM
on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an,
China, May 30 - June 3, 2016, pages 853–864. ACM,
2016.

[3] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna. deDacota: toward
preventing server-side XSS via automatic code and
data separation. In A. Sadeghi, V. D. Gligor, and
M. Yung, editors, 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages
1205–1216. ACM, 2013.

[4] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May
I? - Content Security Policy Endorsement for Browser
Extensions. In M. Almgren, V. Gulisano, and
F. Maggi, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment - 12th
International Conference, DIMVA 2015, Milan, Italy,
July 9-10, 2015, Proceedings, volume 9148 of Lecture
Notes in Computer Science, pages 261–281. Springer,
2015.

[5] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D.
Navara, E. O’Connor, and S. Pfeiffer. HTML5. A
vocabulary and associated APIs for HTML and
XHTML. W3C Recommendation, 2014.

[6] A. Hidayat. PhantomJS Headless Browser, 2010-2016.

[7] A. Javed. CSP Aider: An Automated
Recommendation of Content Security Policy for Web
Applications. In IEEE Oakland Web 2.0 Security and
Privacy (W2SP’12), 2012.

[8] M. Johns. PreparedJS: Secure Script-Templates for
JavaScript. In K. Rieck, P. Stewin, and J. Seifert,

editors, Detection of Intrusions and Malware, and
Vulnerability Assessment - 10th International
Conference, DIMVA 2013, Berlin, Germany, July
18-19, 2013. Proceedings, volume 7967 of Lecture
Notes in Computer Science, pages 102–121. Springer,
2013.

[9] C. Kerschbaumer, S. Stamm, and S. Brunthaler.
Injecting CSP for Fun and Security. In O. Camp,
S. Furnell, and P. Mori, editors, Proceedings of the 2nd
International Conference on Information Systems
Security and Privacy (ICISSP 2016), Rome, Italy,
February 19-21, 2016., pages 15–25. SciTePress, 2016.

[10] K. Patil and B. Frederik. A measurement study of the
content security policy on real-world applications. I. J.
Network Security, 18(2):383–392, 2016.

[11] N. Perriault. CasperJS navigation and scripting tool
for PhantomJS, 2011-2016.

[12] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In in IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010), 2010.

[13] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On
the incoherencies in web browser access control
policies. In 31st IEEE Symposium on Security and
Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, pages 463–478,
2010.

[14] D. F. Some, N. Bielova, and T. Rezk. On the Content
Security Policy violations due to the Same-Origin
Policy. Technical report. http://www-sop.inria.fr/
members/Nataliia.Bielova/papers/CSP-SOP.pdf.

[15] S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In M. Rappa,
P. Jones, J. Freire, and S. Chakrabarti, editors,
Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 921–930.
ACM, 2010.

[16] A. R. Stefano Calzavara and M. B. U. C. F. Venezia).
Content Security Problems? Evaluating the
Effectiveness of Content Security Policy in the Wild.
In Proceedings of the 23rd ACM Conference on
Computer and Communications Security, Vienna,
Austria, 2016. To appear.

[17] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan,
J. Chen, P. Strub, and G. M. Bierman. Gradual
typing embedded securely in JavaScript. In
S. Jagannathan and P. Sewell, editors, The 41st
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages
425–438. ACM, 2014.

[18] A. van Kesteren. Cross Origin Resource Sharing. W3C
Recommendation, 2014.

[19] L. Weichselbaum, M. Spagnuolo, S. Lekies, and
A. Janc. Csp is dead, long live csp! on the insecurity
of whitelists and the future of content security policy.
In Proceedings of the 23rd ACM Conference on
Computer and Communications Security, Vienna,
Austria, 2016. To appear.

[20] M. Weissbacher, T. Lauinger, and W. K. Robertson.
Why Is CSP Failing? Trends and Challenges in CSP

https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf

Adoption. In A. Stavrou, H. Bos, and G. Portokalidis,
editors, Research in Attacks, Intrusions and Defenses
- 17th International Symposium, RAID 2014,
Gothenburg, Sweden, September 17-19, 2014.
Proceedings, volume 8688 of Lecture Notes in
Computer Science, pages 212–233. Springer, 2014.

[21] M. West. Content Security Policy: Embedded
Enforcement, 2016.

[22] M. West. Content Security Policy Level 3. W3C
Working Draft, 2016.

[23] M. West. Origin Policy. A Collection of Interesting
Ideas, 2016.

[24] M. West, A. Barth, and D. Veditz. Content Security
Policy Level 2. W3C Candidate Recommendation,
2015.

[25] M. West and I. Grigorik. Feature Policy. W3C Draft
Community Group Report, 2016.

[26] I. Yusof and A. K. Pathan. Mitigating Cross-Site
Scripting Attacks with a Content Security Policy.
IEEE Computer, 49(3):56–63, 2016.

10. APPENDICES

10.1 CSP Inclusion Algorithm
Given two content security policies, the goal of this algo-

rithm is to check whether one CSP policy is more restrictive
than the other. Let’s consider the policies in Listings 7, 8
and 9, being enforced on pages which origins are all assumed
to be https://example.com. As one may notice, the policies
differ only in the script-src directive. Therefore, by ana-
lyzing this directive, we conclude that:

• CSP1 is more restrictive than CSP2, because the latter
is whitelisting the host third.com in its source list, while
CSP1 does not whitelist it.

• CSP2 is more restrictive than CSP3, because the lat-
ter allows the execution of inline scripts via the use of
the keyword ’unsafe-inline’ , while CSP2 prevents the
execution of such scripts.

• Transitively, one can conclude that CSP1 is more re-
strictive than CSP3.

1 default-src ’none’; script-src a.com;
child-src https:

Listing 7: CSP1

1 default-src ’none’; script-src a.com
third.com; child-src https:

Listing 8: CSP2

1 default-src ’none’; script-src a.com
third.com ’unsafe-inline ’; child-src
https:

Listing 9: CSP3

We propose an algorithm to check whether a policy CSP2
is more restrictive than a policy CSP1 (CSP2 ⊆ CSP1): we
first normalize the policies and then do the inclusion check
directive by directive.

Normalization.
The goal of the normalization is to prepare a CSP for

inclusion check.

• First, we explicitly add all the directives which do not
appear in the policies. We refer to those as missing di-
rectives. The source list that we associate to a missing
directive depends on whether default-src is present or
not in the CSP. If default-src is present in a CSP, the
source list associated to a missing directive is the same
as that of default-src . Otherwise, the missing direc-
tive is associated a default source list, which is defined
by the CSP specification [24].

• In all the directives, we replace the occurrences of the
keyword ’self ’ by the origin of the page on which the
CSP policy is enforced.

• In a policy, when a directive source list has the keyword
’unsafe-inline’ associated with a nonce or a hash, this
is equivalent to having no ’unsafe-inline’ at all in the
directive. Hence, when we encounter such configura-
tions, we remove ’unsafe-inline’ .

• We remove ’none’ from all the directives. We also
remove nonces: since they are randomly generated, the
same inline script whitelisted in two different pages,
will have different associated nonces. We also remove
hashes since the same inline script whitelisted in two
different pages, may have different hashes, if they only
differ by a white space, a comment, etc.

• Finally, we split directives source lists in two parts: key-
words and host lists. In the keywords, we may have
’unsafe-inline’ ’unsafe-eval’ data: blob: filesys-
tem: mediastream: . In the host list, we may have
incomplete origins such as https://example.com (with-
out port), *.example.com (without protocol and port) or
* (any origin), etc. In order to ease the CSP inclusion
check, we rewrite each directive host list by domains,
associated with their protocols and port numbers. Each
domain may have multiple protocols or port numbers.
Let’s consider the host list https://example.com, *.ex-
ample.com, wss://third.com:440 in a CSP enforced on
a page which origin is https://example.com. There
are 3 domains here: example.com, *.example.com and
third.com

– https://example.com is rewritten in this list as fol-
lows: https://example.com:443 (443 being the de-
fault port for https: protocol).

– *.example.com does not have an explicit protocol.
It is rewritten with the protocol https: (which is
the protocol of the origin of the page) and thus with
the port number 443: https://*.example.com:443

– wss://third.com:440 is kept unchanged.

At the end of the normalization process, all the CSP direc-
tives are present in the policies. Each directive is associated
with a set of keywords and a set of host lists, where each
host is a tuple (domain, protocol and port).

Inclusion check.
The inclusion check, takes 2 normalized CSP policies CSP1

and CSP2 , and computes whether for all the CSP directives,
CSP2 is more restrictive than CSP1 . We ignore default-
src because it is a fallback directive for other directives.
Recall that it is used during the normalization process, to

https://example.com
third.com
https://example.com
example.com
*.example.com
third.com
https://example.com
https://example.com:443
*.example.com
wss://third.com:440

add missing directives in the policies. CSP2 is included in
CSP1 if.

• For each directive in CSP2

– For each keyword kwd in the set of CSP2 keywords,
kwd is present in the set of CSP1 keywords.

– For each triple (domain, protocol, and port num-
ber) in CSP2 hosts list, there is a matching triple
(domain, protocol, and port number) in CSP1 hosts
list. For instance,

1. a.com, *.a.com, * are all matching domains of
a.com

2. * and https: are matching protocols of https:
protocol

3. * and 443 are all matching port numbers of the
port number 443.

An implementation of this algorithm is available at https:
//webstats.inria.fr/scripts/cspinclusion.js The function in-
clusion provided with the following arguments:

• origin1 : origin of the page on which CSP1 will be en-
forced.

• origin2 : origin of the page on which CSP2 will be en-
forced.

• CSP1

• CSP2

returns true is CSP2 ⊆ CSP1 and false otherwise.

10.2 Iframes with sandbox attribute
We found sandboxing only on 3 sites

• dropbox.com: it has 2 iframes. The first one https:
//marketing.dropbox.com is embedded in 20 pages at
https://www.dropbox.com. The value of the sand-
box attribute of this iframe is allow-scripts allow-
same-origin. The second iframe https://snapengage.
dropbox.com/business, is embedded in a single page
https://www.dropbox.com/business. The sandbox at-
tribute has allow-scripts allow-same-origin allow-
popups as value.

• alpha.gr: it has a page at https://www.alpha.gr/e-banking/
landing-pages/demo embedding an iframe at https://
secure.alpha.gr/Login/Login/GrPartial/, sandboxed by
allow-same-origin allow-popups allow-scripts allow-
forms

• salesforce.com: it has a page at https://login.salesforce.
com/ embedding an iframe at https://c.salesforce.com/
login-messages/promos.html sandboxed using allow-
forms allow-pointer-lock allow-popups allow-same-
origin allow-scripts.

10.3 Examples of CSP violations

10.3.1 Only parent page or iframe has a CSP

yandex.ru.
Yandex is a Russian multinational technology company

that operates the largest search engine in Russia and has
more than 50.5 million visitors daily 11. Its main site is
ranked 23rd in top Alexa sites at the time of our study.

11https://en.wikipedia.org/wiki/Yandex

It has 2 pages that embed iframes from the same do-
main. A first page at https://passport.yandex.ru 12 embeds
two iframes: https://yandex.ru/legal/confidential/?mode=
html&lang=ru and https://yandex.ru/legal/confidential/?mode=
html&lang=ru. The second one https://disk.yandex.ru/?source=
services-main embeds an iframe from https://disk.yandex.
ru/tns.html.

As one may notice, the second page and its iframe are from
the same domain. Nonetheless, the iframe is not sandboxed,
meaning that they can directly access each other without
any restrictions.

Only the page has an iframe, which sets restrictions in
almost all the directives including default-src , img-src ,
script-src , connect-src , object-src , frame-ancestors
, media-src , style-src etc.

The iframe does not load any additional resource. It is a
hidden iframe. Even though, a script in the main page can
access the iframe, where it can trigger any action including
loading additional scripts, making connections, changing the
content of the iframe etc.

The complete CSP of the page is

1 default-src blob: ’self’
2 script-src yastatic.net yandex.st

dme0ih8comzn4.cloudfront.net
featherservices.aviary.com mc.yandex.
ru clck.yandex.ru an.yandex.ru bs-meta
.yandex.ru awaps.yandex.ru blob: ’self
’ ’nonce-41412681341171265 ’ ’
unsafe-eval ’

3 style-src yastatic.net yandex.st
dme0ih8comzn4.cloudfront.net fonts.
googleapis.com ’unsafe-inline ’ ’self’

4 media-src ’self’ yandex.st yastatic.net *.
yandex.ru *. yandex.com *. yandex.com.tr
*. yandex.ua *. yandex.net

5 object-src yastatic.net yandex.st www.
tns-counter.ru *.disk.yandex.net *.
disk.yandex.ru *.disk.yandex.com *.
disk.yandex.com.tr *.disk.yandex.ua *.
storage.yandex.net *.video.yandex.net
video.yandex.ru video.yandex.com video
.yandex.com.tr video.yandex.ua
streaming.video.yandex.ru
dme0ih8comzn4.cloudfront.net awaps.
yandex.ru ’self’

6 img-src ’self’ data: yandex.st yastatic.
net *. yandex.ru *. yandex.com *. yandex.
com.tr *. yandex.ua *. yandex.net www.
tns-counter.ru fbcdn-profile-a.
akamaihd.net d2q6aqs27yssdp.cloudfront
.net dme0ih8comzn4.cloudfront.net
yandexgaby.hit.gemius.pl yandexgaua.
hit.gemius.pl *.dsp.yandex.net *.qa.
yandex.net

7 frame-src yandex.ru yandex.com yandex.com.
tr yandex.ua *. yandex.ru *. yandex.com
*. yandex.com.tr *. yandex.ua *.disk.
yandex.net *.mail.yandex.net *. video.
yandex.net *. storage.yandex.net yandex
.st yastatic.net yandexadexchange.net
*. yandexadexchange.net ’self’

8 connect-src ’self’ *. yandex.ru *. yandex.
com *. yandex.com.tr *. yandex.ua *.disk
.yandex.net *.mail.yandex.net *.
storage.yandex.net *.video.yandex.net
featherservices.aviary.com

12https://passport.yandex.ru/registration/mail?from=
mail&origin=home v14 ru&retpath=https%3A%2F%
2Fmail.yandex.ru

https://webstats.inria.fr/scripts/cspinclusion.js
https://webstats.inria.fr/scripts/cspinclusion.js
dropbox.com
https://marketing.dropbox.com
https://marketing.dropbox.com
https://www.dropbox.com
https://snapengage.dropbox.com/business
https://snapengage.dropbox.com/business
https://www.dropbox.com/business
alpha.gr
https://www.alpha.gr/e-banking/landing-pages/demo
https://www.alpha.gr/e-banking/landing-pages/demo
https://secure.alpha.gr/Login/Login/GrPartial/
https://secure.alpha.gr/Login/Login/GrPartial/
salesforce.com
https://login.salesforce.com/
https://login.salesforce.com/
https://c.salesforce.com/login-messages/promos.html
https://c.salesforce.com/login-messages/promos.html
https://passport.yandex.ru
https://yandex.ru/legal/confidential/?mode=html&lang=ru
https://yandex.ru/legal/confidential/?mode=html&lang=ru
https://yandex.ru/legal/confidential/?mode=html&lang=ru
https://yandex.ru/legal/confidential/?mode=html&lang=ru
https://disk.yandex.ru/?source=services-main
https://disk.yandex.ru/?source=services-main
https://disk.yandex.ru/tns.html
https://disk.yandex.ru/tns.html
https://passport.yandex.ru/registration/mail?from=mail&origin=home_v14_ru&retpath=https%3A%2F%2Fmail.yandex.ru
https://passport.yandex.ru/registration/mail?from=mail&origin=home_v14_ru&retpath=https%3A%2F%2Fmail.yandex.ru
https://passport.yandex.ru/registration/mail?from=mail&origin=home_v14_ru&retpath=https%3A%2F%2Fmail.yandex.ru

d42hh4005hpu.cloudfront.net
feather-client-files-aviary-prod-us-east-1
.s3.amazonaws.com
feather-files-aviary-prod-us-east-1.s3
.amazonaws.com
hires-aviary-prod-us-east-1.s3.
amazonaws.com
hires-saves-aviary-prod-us-east-1.s3.
amazonaws.com wss: //*. mail.yandex.net

9 font-src yandex.st yastatic.net themes.
googleusercontent.com fonts.gstatic.
com

10 report-uri /monitoring.txt
11 child-src blob: yandex.ru yandex.com

yandex.com.tr yandex.ua *. yandex.ru *.
yandex.com *. yandex.com.tr *. yandex.ua
*.disk.yandex.net *.mail.yandex.net

*. video.yandex.net *. storage.yandex.
net yandex.st yastatic.net
yandexadexchange.net *.
yandexadexchange.net ’self’

amazon.com.
Another interesting example is that of the site amazon.

com. This site is regularly ranked in the top 10 Alexa sites.
At the time of this study, it was ranked 6. The page at
https://www.amazon.com13 which turns out to have a CSP
which content is

1 script-src ’unsafe-inline ’ ’unsafe-eval ’
https: //*. ssl-images-amazon.com https:
//csm.amazon.com

As one may notice, both the iframe and the page are from
the same origin https://www.amazon.com. The iframe is
not sandboxed, meaning that any script in the parent page
can loads any script, which in turn can modify the iframe
content.

dropbox.com.
At the time of this study, dropbox.com was ranked 82

in top Alexa sites. In the current category (only page or
iframe has a CSP), it has one page and iframe. The page
at https://www.dropbox.com/business includes the iframe
https://snapengage.dropbox.com/business.
The page has even 2 CSP policies, one as a HTTP header

which content is

13https://www.amazon.com/ap/signin?clientContext=
158-3927119-6659633&openid.identity=http%3A%
2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier
select&siteState=https%3A%2F%2Fwww.amazon.
com%2Fclouddrive%2Fref%3Dnav youraccount
clddrv%3F encoding%3DUTF8%26mgh%3D1%
26ref %3Dnav youraccount clddrv&marketPlaceId=
ATVPDKIKX0DER&pageId=photos authportal us&
openid.return to=https%3A%2F%2Fwww.amazon.
com%2Fclouddrive%2Fauth&openid.assoc handle=
amzn photos us&openid.oa2.response type=token&
openid.mode=checkid setup&openid.ns.oa2=http%3A%
2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%
2F2&openid.oa2.scope=clouddrive%3Aretailweb&
openid.claimed id=http%3A%2F%2Fspecs.openid.
net%2Fauth%2F2.0%2Fidentifier select&openid.
oa2.client id=iba%3Aamzn1.application-oa2-client.
d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%
3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.
max auth age=172800 does not have any CSP. But it em-
beds an iframe from https://www.amazon.com/clouddrive/
utils/assetpreload?mgh=1

1 default-src ’none’
2 worker-src blob:
3 style-src https: //* ’unsafe-inline ’ ’

unsafe-eval ’
4 connect-src https: //* ws: //127.0.0.1:*/ws
5 child-src blob:
6 img-src https: //* data: blob:
7 frame-src https: //* carousel: //* dbapi-6:

//* dbapi-7: //* dbapi-8: //* itms-apps:
//* itms-appss: //*

8 object-src https: //cfl.dropboxstatic.com/
static/ https: //www.dropboxstatic.com/
static/ ’self’ https: // flash.
dropboxstatic.com https: //swf.
dropboxstatic.com https: // dbxlocal.
dropboxstatic.com

9 media-src https: //* blob:
10 font-src https: //* data:
11 script-src https: //ajax.googleapis.com/

ajax/libs/jquery/ ’unsafe-eval ’ https:
//www.dropbox.com/static/javascript/
https: //www.dropbox.com/static/api/
https: //cfl.dropboxstatic.com/static/
javascript/ https: //www.dropboxstatic.
com/static/javascript/ https: //cfl.
dropboxstatic.com/static/api/ https: //
www.dropboxstatic.com/static/api/
https: //www.google.com/recaptcha/api/
’unsafe-inline ’ ’nonce-TdJYCPWsB85HuS/
iYRnH’

and the other one included directly in the document using
HTML meta tag, which value is

1 script-src https: ’unsafe-eval ’

Therefore, the CSP policies on the page are setting restric-
tions on almost all the directives, including default-src ,
img-src , script-src , connect-src , object-src , child-
src , media-src , style-src etc. However, the iframe does
not have any CSP. One may notice that the page and its
iframe have different origins, respectively https://www.dropbox.
com and https://snapengage.dropbox.com. As a consequence,
they cannot access each other data directly. In order to do
so, both the page and its iframe needs to relax the origin by
executing

1 document.domain="dropbox.com"

It is worth noting that both the page and its iframe loads the
same script https://ajax.googleapis.com/ajax/libs/jquery/
2.1.4/jquery.min.js. We have taken a look its content, this
script is not relaxing the origin. However, since this is a
third party library, one could imagine that it could relax the
origins as described above. Unfortunately, when we take a
look at the way the iframe is included, we found out that it
is sandboxed as follows

1 <iframe src="https: //
snapengage.dropbox.com/business"
sandbox="allow-scripts
allow-same-origin allow-popups"
class="snapengage-iframe" id="
snapengage-iframe"
allowtransparency="true" style="
display: inline;"></iframe>

The sole solution, in order to relax the origin in the page
and the iframe is to remove the sandboxing. Since, there is
a script appearing both in the main page and the iframe, it
could create another iframe in the main page, identical to
the previous one, except that it has removed the sandboxing.

amazon.com
amazon.com
https://www.amazon.com
https://www.amazon.com
dropbox.com
https://www.dropbox.com/business
https://snapengage.dropbox.com/business
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/ap/signin?clientContext=158-3927119-6659633&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&siteState=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fref%3Dnav_youraccount_clddrv%3F_encoding%3DUTF8%26mgh%3D1%26ref_%3Dnav_youraccount_clddrv&marketPlaceId=ATVPDKIKX0DER&pageId=photos_authportal_us&openid.return_to=https%3A%2F%2Fwww.amazon.com%2Fclouddrive%2Fauth&openid.assoc_handle=amzn_photos_us&openid.oa2.response_type=token&openid.mode=checkid_setup&openid.ns.oa2=http%3A%2F%2Fwww.amazon.com%2Fap%2Fext%2Foauth%2F2&openid.oa2.scope=clouddrive%3Aretailweb&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.oa2.client_id=iba%3Aamzn1.application-oa2-client.d45dc8aaf8fa47b0966a0dfbc75de512&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.pape.max_auth_age=172800
https://www.amazon.com/clouddrive/utils/assetpreload?mgh=1
https://www.amazon.com/clouddrive/utils/assetpreload?mgh=1
https://www.dropbox.com
https://www.dropbox.com
https://snapengage.dropbox.com
https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js

In order to show the feasibility of this, we have replayed
as such the dropbox.com example.

• The original page located at https://www.dropbox.com/
business is replaced by http://www.news.com/page.php.
Since, the page had a CSP, we simplified it to

1 default-src ’none’
2 script-src ’self’ www.third.com
3 child-src ’self’ *.news.com
4 connect-src ’self’

which we set as the CSP of the replacing page http:
//www.news.com/page.php.

• The original page loads some scripts from the same
domain. Here, we load the script http://www.news.
com/scripts/data.js which has some data we refer to as
a secret.

• The original page embeds https://snapengage.dropbox.
com/business as an iframe. We have also created a
replacing iframe which is http://sub.news.com/iframe.
php.

• The iframe is sandboxed with the same attributes in in
the original example.

• Finally, in the original example, the page and the iframe
loads a third party script at https://ajax.googleapis.
com/ajax/libs/jquery/2.1.4/jquery.min.js. Here, we have
created a replacement third party script which is lo-
cated at http://www.third.com/scripts/relax.js.

• The purpose of the third party script is to be able to
relax the origins in the page and the iframe, in order
for the iframe to access the parent data, and exfiltrate
them to the third party via the iframe, using an AJAX
request.

• To achieve this goal, the third party creates a new
iframe in the page, which have the same attributes
as the sandboxed iframe, apart from the sandbox at-
tribute. It then relax the origin in both the page and
the iframe, and finally exfiltrate the page data via an
AJAX request in the iframe, made to the third party
server.

We have been able to successfully relax the origin, and ex-
filtrate make an AJAX request from the iframe to the third
party, which would have been impossible if tried directly
from the page. The following listings give the details of the
dropbox example, replayed.

1 <?php
2 header("Content-Security-Policy:

default-src ’none ’; script-src ’
self’ www.third.com ; child-src
’self’ *. news.com; connect-src ’
self’");

3 ?>
4
5 <!DOCTYPE html>
6 <html>
7 <head>
8 <title>SOP and CSP </title>
9 <script type="text/javascript"

src="http:// www.news.com/
scripts/data.js"></script>

10 </head>
11 <body>

12 <iframe src="http: // sub.news.com/
iframe.php" width="480"
height="100" sandbox="
allow-scripts
allow-same-origin allow-popups
"></iframe>

13 <script type="text/javascript"
src="http: // www.third.com/
scripts/relax.js"></script>

14 </body>
15 </html>

Listing 10: http://www.news.com/page.php

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>SOP without CSP </title>
5 <script src="http:// www.third.com/

scripts/relax.js"></script>
6 </head>
7 <body>
8 </body>
9 </html>

Listing 11: http://sub.news.com/iframe.php

1
2 //Some data to protect
3 var secret = "some secret";

Listing 12: http://www.news.com/scripts/data.js

1 if(document.domain == "www.news.com"){
// Here , we are in the page

2
3 //We relax the origin
4 document.domain = "news.com";
5
6 //We create a new iframe without

the sandboxing attribute and
we hide it.

7 var fr = document.createElement(’
iframe ’);

8 fr.src = "http: // sub.news.com/
iframe.php";

9 fr.width = "0";
10 fr.heigth = "0";
11
12 document.body.appendChild(fr);
13
14 }else{ // Here , we are in the

iframe
15 //We relax the origin
16 document.domain = "news.com";
17
18 //We get parent data and exfiltrate

them.
19 getData ({ secret: parent.secret });
20
21 }
22
23
24
25 // Function to exfiltrate data to the

third party
26 function getData(obj){
27
28 // console.log(window.location);
29 var req = new XMLHttpRequest ();
30 req.open(’POST’, ’http://

www.third.com/senddata.php ’,
true);

dropbox.com
https://www.dropbox.com/business
https://www.dropbox.com/business
http://www.news.com/page.php
http://www.news.com/page.php
http://www.news.com/page.php
http://www.news.com/scripts/data.js
http://www.news.com/scripts/data.js
https://snapengage.dropbox.com/business
https://snapengage.dropbox.com/business
http://sub.news.com/iframe.php
http://sub.news.com/iframe.php
https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js
http://www.third.com/scripts/relax.js
http://www.news.com/page.php
http://sub.news.com/iframe.php
http://www.news.com/scripts/data.js

31 req.onreadystatechange = function(
evt){

32 if(req.readyState == 4){
33 if(req.status == 200) {
34 // cb.call(this , JSON.parse(

req.responseText));
35 console.log(req.responseText);
36 alert("The secret is : " +

req.responseText);
37 }
38 }
39 };
40 var jup = JSON.stringify(obj);
41 req.send(jup);
42 }

Listing 13: http://www.news.com/scripts/relax.js

From this demonstration, it is clear that it is not suffi-
cient to protect only a page or an iframe with a CSP, when
it is possible for them to relax origins in order to interact
directly with one another. Lots of JavaScript libraries are
very popular among web applications. It will not be a rather
rare case to have a page and an iframe executing the same
third party scripts. If a CSP does not protect both docu-
ments, even with a sandboxed iframe, we have shown that
it is rather simple to set the same origin in both document,
and bypass the CSP set in one of them.

10.3.2 Different CSP in page and iframe

Twitter.com.
Twitter was ranked 9 in the top Alexa sites, at the time

of our study. Most of the pages of the site are covered with
a CSP. Apart from 2 pages including the Tweet Button14

and https://analytics.twitter.com/is/nphif?soc=1, all other
pages that we have analyzed for this site have a CSP. We
have found one page and its iframe having different CSP.
The page is the landing page of the french version of the
site https://twitter.com/?lang=fr. The iframe is at https://
twitter.com/i/videos/tweet/775778893324247041?embed source=
clientlib&player id=0&rpc init=1 Table 6 shows the differ-
ences in different directives of their policies.

Directive IC≡ PC PC⊃ IC IC⊃ PC
child-src − − ✓
object-src − − −
script-src − − −
connect-src − − −
frame-ancestors ✓ ✓ ✓
img-src − ✓ −
style-src − − −
font-src − − −
media-src − ✓ −

Table 6: Twitter.com: page and iframe

14https://platform.twitter.com/widgets/tweet button.
a9a07b811338df26287681bd6727fd0a.en.html#dnt=
false&id=twitter-widget-0&lang=en&original referer=
https%3A%2F%2Fsupport.twitter.com%2Farticles%
2F20174632&size=l&text=Twitter%E2%80%99s%
20global%20operations%20and%20data%20transfer%20%
7C%20Twitter%20Help%20Center&time=1472198975354&
type=share&url=https%3A%2F%2Fhelp.twitter.com%
2Farticles%2F20174632%3Flang%3Den&via=support

From this table , it is clear that the CSP in the page
and the iframe differ a lot from each other. Apart from the
frame-ancestors (which value is ’self ’ in both policies),
other directives are incomparable with each other. More-
over, the iframe and the page are all from the same do-
main https://twitter.com. In addition to that, the iframe is
not sandboxed. In the perspectives of the SOP, the iframe
and the page can access each other data without limitations,
opening room for possibilities to bypass each other CSP. The
complete CSP from the page https://twitter.com/?lang=fr
is

1 script-src https: // connect.facebook.net
https: //cm.g.doubleclick.net https: //
ssl.google-analytics.com https: // graph
.facebook.com https: // twitter.com ’
unsafe-eval ’ https: //*. twimg.com
https: //api.twitter.com ’
nonce-SGjwKLJ5XrFVZ8OdUU62Zg ==’ https:
// analytics.twitter.com https: //
publish.twitter.com https: //ton.
twitter.com https: // syndication.
twitter.com https: //www.google.com
https: //t.tellapart.com https: //
platform.twitter.com https: //www.
google-analytics.com ’self’

2 frame-ancestors ’self’
3 font-src https: // twitter.com https: //*.

twimg.com data: https: //ton.twitter.
com https: // fonts.gstatic.com https: //
maxcdn.bootstrapcdn.com https: // netdna
.bootstrapcdn.com ’self’

4 media-src https: // twitter.com https: //*.
twimg.com https: //ton.twitter.com
blob: ’self’

5 connect-src https: // graph.facebook.com
https: //*. giphy.com https: //*. twimg.
com https: //api.twitter.com https: //
pay.twitter.com https: // analytics.
twitter.com https: //media.riffsy.com
https: // embed.periscope.tv https: //
upload.twitter.com https: //api.mapbox.
com ’self’

6 style-src https: // fonts.googleapis.com
https: // twitter.com https: //*. twimg.
com https: // translate.googleapis.com
https: //ton.twitter.com ’unsafe-inline
’ https: // platform.twitter.com https:
// maxcdn.bootstrapcdn.com https: //
netdna.bootstrapcdn.com ’self’

7 object-src https: // twitter.com https: //pbs
.twimg.com

8 default-src ’self’
9 frame-src https: // staticxx.facebook.com

https: // twitter.com https: //*. twimg.
com https: //5415703. fls.doubleclick.
net https: // player.vimeo.com https: //
pay.twitter.com https: //www.facebook.
com https: //ton.twitter.com https: //
syndication.twitter.com https: //vine.
co twitter: https: //www.youtube.com
https: // platform.twitter.com https: //
upload.twitter.com https: // s-static.ak
.facebook.com ’self’ https: // donate.
twitter.com

10 img-src https: //graph.facebook.com https:
//*. giphy.com https: // twitter.com
https: //*. twimg.com data: https: //
lumiere-a.akamaihd.net https: //
fbcdn-profile-a.akamaihd.net https: //
www.facebook.com https: //ton.twitter.
com https: //*. fbcdn.net https: //

http://www.news.com/scripts/relax.js
https://analytics.twitter.com/is/nphif?soc=1
https://twitter.com/?lang=fr
https://twitter.com/i/videos/tweet/775778893324247041?embed_source=clientlib&player_id=0&rpc_init=1
https://twitter.com/i/videos/tweet/775778893324247041?embed_source=clientlib&player_id=0&rpc_init=1
https://twitter.com/i/videos/tweet/775778893324247041?embed_source=clientlib&player_id=0&rpc_init=1
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://platform.twitter.com/widgets/tweet_button.a9a07b811338df26287681bd6727fd0a.en.html#dnt=false&id=twitter-widget-0&lang=en&original_referer=https%3A%2F%2Fsupport.twitter.com%2Farticles%2F20174632&size=l&text=Twitter%E2%80%99s%20global%20operations%20and%20data%20transfer%20%7C%20Twitter%20Help%20Center&time=1472198975354&type=share&url=https%3A%2F%2Fhelp.twitter.com%2Farticles%2F20174632%3Flang%3Den&via=support
https://twitter.com
https://twitter.com/?lang=fr

syndication.twitter.com https: // media.
riffsy.com https: //www.google.com
https: // stats.g.doubleclick.net https:
//*. tiles.mapbox.com https: //www.
google-analytics.com blob: ’self’

11 report-uri https: // twitter.com/i/
csp_report?a=NVQWGYLXFVZXO2LGOQ %3D%3D
%3D%3D%3D%3D&ro=false

That of the iframe https://twitter.com/i/videos/tweet/775778893324247041?
embed source=clientlib&player id=0&rpc init=1 is

1 default-src ’self’ wss:// minigames.mail.ru
http: //*. mail.ru http: //*. imgsmail.ru
http: //*. tns-counter.ru http: //*.

googlesyndication.com http: //*.2 mdn.
net http: //*. playflock.com http://my.
com http: //*.my.com http:// appsmail.ru
http: //*. appsmail.ru http: //*. gvt1.

com https: *.mail.ru *. imgsmail.ru my.
com *.my.com appsmail.ru *. appsmail.ru
*. attachmail.ru *.live.com *. youtube.

com *. youtube.ru *. youtu.be *. rutube.
ru *. vimeo.com *. smotri.com *.
dailymotion.com *. rambler.ru *.ivi.ru
*. videomore.ru *. scorecardresearch.com
*. weborama.fr *. adriver.ru *.

serving-sys.com mc.yandex.ru *.mradx.
net tns-counter.ru *. tns-counter.ru *.
googleapis.com *. doubleclick.net *.
googlesyndication.com *.2mdn.net *.
gvt1.com *. playflock.com *. ytimg.com
*. google.com vk.com *.vk.com *.
facebook.com *. twitter.com yandex.ru
*. yandex.ru

2 img-src * data:
3 style-src ’unsafe-inline ’ https: *.mail.ru

*. imgsmail.ru vk.com *.vk.me *.
googleapis.com

4 font-src data: https: *. imgsmail.ru *.vk.
me

5 script-src ’unsafe-inline ’ ’unsafe-eval ’
https: *.mail.ru *. imgsmail.ru *.
yandex.ru *. youtube.com *. dailymotion.
com *. vimeo.com *. tns-counter.ru ok.ru
*.ok.ru *. odnoklassniki.ru connect.

facebook.net *.vk.me vk.com *.vk.com
*.2mdn.net google-analytics.com *.
google-analytics.com *. googleapis.com
apis.google.com *. twitter.com yandex.
ru *. yandex.ru openstat.net *.
yahooapis.com

6 report-uri https: // cspreport.minigames.
mail.ru

mail.ru.
This site was ranked 35 at the time of our study. There

are 2 classes of pages presenting vulnerabilities to CSP viola-
tions due to SOP. On one hand, the page https://minigames.
mail.ru, having a CSP, embeds some pages at https://connect.
mail.ru, which do not have any CSP. The CSP of https:
//minigames.mail.ru is

1 default-src ’self’ http: // localhost:*
http: // localhost.twitter.com:* https:
//*. twitter.com https: //*. twimg.com
https: //vine.co https: //*. vine.co

2 connect-src ’self’ http: // localhost:*
http: // localhost.twitter.com:* https:
//*. twitter.com https: //*. twimg.com
https: //vine.co https: //*. vine.co
https: // nowthismedia.com https: //

nowthisnews.com https: // cliptamatic.
com https: // snappytv.com https: //
grabyo.com https: // umrss.com https: //
unicornmedia.com https: //vevo.com
https: //mlb.com https: // yesnetwork.com
https: //*. nowthismedia.com https: //*.

nowthisnews.com https: //*. cliptamatic.
com https: //*. snappytv.com http: //*.
snappytv.com https: //*. grabyo.com
https: //*. umrss.com https: //*.
unicornmedia.com https: //*. vevo.com
https: //*. mlb.com https: //*. yesnetwork
.com https: //*. apple.com https: //*.
organicfruitapps.com https: //*.
soundcloud.com https: //*. spotify.com
https: // anchor.fm https: //*. bumpers.fm
https: // bumpers.fm https: //*.

spinrilla.com https: // spinrilla.com
http: //*. hungama.com http:// hungama.
com https: //*. akamaihd.net http: //*.
akamaihd.net https: //*. conviva.com

3 font-src ’self’ http: // localhost:* http: //
localhost.twitter.com:* https: //*.
twitter.com https: //*. twimg.com https:
//vine.co https: //*. vine.co data:

4 frame-src ’self’ http:// localhost:* http:
// localhost.twitter.com:* https: //*.
twitter.com https: //*. twimg.com https:
//vine.co https: //*. vine.co

5 frame-ancestors *
6 img-src * data:
7 media-src * blob:
8 object-src ’self’ http:// localhost:* http:

// localhost.twitter.com:* https: //*.
twitter.com https: //*. twimg.com https:
//vine.co https: //*. vine.co

9 script-src ’self’ http://
10 localhost:* http:// localhost.twitter.com:*

https: //*. twitter.com https: //*. twimg
.com https: //vine.co https: //*. vine.co

11 style-src ’unsafe-inline ’ ’self’ http://
localhost:* http: // localhost.twitter.
com:* https: //*. twitter.com https: //*.
twimg.com https: //vine.co https: //*.
vine.co

12 report-uri https: // twitter.com/i/
csp_report?a=
NVQWGYLXFVYGYYLZMFRGYZJNNVSWI2LB&ro=
false

On the other hand, some pages at https://mail.ru, such
as the site home page, having a CSP, embeds pages from
https://ad.mail.ru which do not have any CSP. For instance,
the CSP of site home page is

1 default-src mail.ru *.mail.ru *. imgsmail.
ru *. mradx.net *. gemius.pl *. weborama.
fr *. adriver.ru *. serving-sys.com

2 script-src ’unsafe-inline ’ ’unsafe-eval ’
mail.ru *.mail.ru *. imgsmail.ru *.
mradx.net *. odnoklassniki.ru ok.ru *.
doubleverify.com *. dvtps.com *.
doubleclick.net *. googletagservices.
com *. googlesyndication.com *.
googleadservices.com

3 img-src data: blob: *
4 style-src ’unsafe-inline ’ ’unsafe-eval ’

blob: *.mail.ru *. imgsmail.ru *. mradx.
net

5 font-src data: blob: https: *.mail.ru *.
imgsmail.ru *.mradx.net

6 frame-src mail.ru *.mail.ru *.mradx.net *.
doubleverify.com *. doubleclick.net ok.
ru *.ok.ru

https://twitter.com/i/videos/tweet/775778893324247041?embed_source=clientlib&player_id=0&rpc_init=1
https://twitter.com/i/videos/tweet/775778893324247041?embed_source=clientlib&player_id=0&rpc_init=1
https://minigames.mail.ru
https://minigames.mail.ru
https://connect.mail.ru
https://connect.mail.ru
https://minigames.mail.ru
https://minigames.mail.ru
https://mail.ru
https://ad.mail.ru

7 child-src mail.ru *.mail.ru *. mradx.net *.
doubleverify.com *. doubleclick.net ok.
ru *.ok.ru

8 report-uri https: // cspreport.mail.ru/
splash

imdb.com.
This site was ranked 57 at the time of our study. It has lots

of pages at http://www.imdb.com, without a CSP, which are
embedding iframes from the same origin. The iframes have
the following CSP

1 frame-ancestors ’self’ imdb.com *.imdb.com
*. media-imdb.com withoutabox.com *.

withoutabox.com amazon.com *. amazon.
com amazon.co.uk *. amazon.co.uk amazon
.de *. amazon.de translate.google.com
images.google.com www.google.com www.
google.co.uk search.aol.com bing.com
www.bing.com

yahoo.com.
This site is regularly ranked in the top 10 Alexa sites.

The page at https://login.yahoo.com/?.src=ym&.intl=us&
.lang=en-US&.done=https%3A//mail.yahoo.com is embed-
ding an iframe from https://mg.mail.yahoo.com/mailfe/resources?
o=iframe&src=login. The page has the following CSP

1 referrer origin-when-cross-origin

, while the iframe has none.

mts.ru.
This site is ranked 1469 in top Alexa sites at the time

of our study. We have found 8 pages, which are some vari-
ants of https://pay.mts.ru/webportal/payments/67/Moskva
embedding the same iframe at https://login.mts.ru/profile/
header?ref=https%3A//pay.mts.ru/webportal/payments/67/
Moskva&scheme=https&style=2015v2 The page has a very
light CSP

1 frame-ancestors ’self’ https: //lk.ssl.mts.
ru/

setting restrictions only for the frame-ancestors direc-
tive. In contrary, the CSP of the iframe

1 default-src ’self’ http: //*. mts.ru https:
//*. mts.ru http: //*. mts.ru:* https:
//*. mts.ru:*

2 style-src ’self’ http: //*. mts.ru https:
//*. mts.ru http: //*. mts.ru:* https:
//*. mts.ru:* ’unsafe-inline ’

3 script-src ’self’ http: //*. mts.ru https:
//*. mts.ru http: //*. mts.ru:* https:
//*. mts.ru:* ’unsafe-inline ’ *.
googletagmanager.com *.
google-analytics.com

4 img-src ’self’ http: //*. mts.ru https: //*.
mts.ru *. google-analytics.com data:

5 options inline-script
6 report-uri /amserver/csp-report

restricts most of the directives. It is clear that the CSP of
the page is more permissive than that of the iframe. The
following table gives details about the comparison of each of
the directives.
One may notice that the page and its iframe differ in their

origin, respectively https://pay.mts.ru and https://login.mts.

Directive IC≡ PC PC⊃ IC IC⊃ PC
child-src − − ✓
object-src − − ✓
script-src − − ✓
connect-src − − ✓
frame-ancestors − ✓ −
img-src − − ✓
style-src − − ✓
font-src − − ✓
media-src − − ✓

Table 7: Mts.ru: page and iframe

ru. Nonetheless, it is worth noting that both document loads
the scripts https://www.google-analytics.com/analytics.js,
https://www.googletagmanager.com/gtm.js?id=GTM-TLXGKS
which appear to be manipulating the document.domain ob-
ject for purposes we could not capture.

Other examples.
There are 2 other sites that deserve attention.
The first one, superjob.ru was ranked 3497 in top Alexa

sites. We have found that 72 of its pages and their related
iframe has different CSP. Just of an example, https://www.
superjob.ru/vakansii/rukovoditel-gruppy-razrabotki-po-28776646.
html embeds https://www.superjob.ru/yandex ad R-164825-3.
html. The page and its iframe was serving different CSP
policies. The page was serving

1 default-src ’self’ https: //*. superjob.ru
http: //*. superjob.ru https: //*.
superjob.ua http: //*. superjob.ua
https: //*. superjob.uz http: //*.
superjob.uz https: //*. superjob.by
http: //*. superjob.by

2 report-uri //www.superjob.ru/js/request/
csp_log.php?type=desktop

3 style-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by ’unsafe-inline ’ https: //
fonts.googleapis.com https: //*.
sharethis.com https: //www.google.com
https: // tagmanager.google.com

4 font-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by https: //*. superjob.ru
data: https: //fonts.gstatic.com

5 script-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by data: ’unsafe-inline ’ ’
unsafe-eval ’ https: //*. yandex.ru
https: //*. mail.ru https: //*.
googletagmanager.com https: //*.
google-analytics.com https: //
tagmanager.google.com https: //*.
adriver.ru https: //cdn.userecho.com
https: //apis.google.com https: //*.
jquery.com https: // connect.ok.ru
https: //vk.com https: //*.vk.com https:

http://www.imdb.com
https://login.yahoo.com/?.src=ym&.intl=us&.lang=en-US&.done=https%3A//mail.yahoo.com
https://login.yahoo.com/?.src=ym&.intl=us&.lang=en-US&.done=https%3A//mail.yahoo.com
https://mg.mail.yahoo.com/mailfe/resources?o=iframe&src=login
https://mg.mail.yahoo.com/mailfe/resources?o=iframe&src=login
https://pay.mts.ru/webportal/payments/67/Moskva
https://login.mts.ru/profile/header?ref=https%3A//pay.mts.ru/webportal/payments/67/Moskva&scheme=https&style=2015v2
https://login.mts.ru/profile/header?ref=https%3A//pay.mts.ru/webportal/payments/67/Moskva&scheme=https&style=2015v2
https://login.mts.ru/profile/header?ref=https%3A//pay.mts.ru/webportal/payments/67/Moskva&scheme=https&style=2015v2
https://pay.mts.ru
https://login.mts.ru
https://login.mts.ru
https://login.mts.ru
https://www.google-analytics.com/analytics.js
https://www.googletagmanager.com/gtm.js?id=GTM-TLXGKS
superjob.ru
https://www.superjob.ru/vakansii/rukovoditel-gruppy-razrabotki-po-28776646.html
https://www.superjob.ru/vakansii/rukovoditel-gruppy-razrabotki-po-28776646.html
https://www.superjob.ru/vakansii/rukovoditel-gruppy-razrabotki-po-28776646.html
https://www.superjob.ru/yandex_ad_R-164825-3.html
https://www.superjob.ru/yandex_ad_R-164825-3.html

// userapi.com https: //*. facebook.com
https: //*. facebook.net https: //*.
twitter.com https: //my2.imgsmail.ru
https: //*. googlesyndication.com https:
//*. sharethis.com https: //*. netroxsc.
ru https: //*. netrox.sc https: //
az846955.vo.msecnd.net https: //
az849513.vo.msecnd.net https: //*. blob.
core.windows.net https: // huntflow.ru
https: //www.youtube.com https: //s.
ytimg.com https: // vimeo.com https: //*.
ravenjs.com https: //www.google.com
https: //*. googletagservices.com https:
//*. googleadservices.com https: //
googleads.g.doubleclick.net https: //
securepubads.g.doubleclick.net https:
//dev.recrubase.com https: //app.
recrubase.com https: //*. criteo.net
https: //*. criteo.com

6 frame-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by https: //*. adriver.ru
https: //*. facebook.com https: //*.
twitter.com https: //*. mail.ru https:
//*. google.com https: //*.vk.com https:
//vk.com https: // connect.ok.ru https:
//*. sharethis.com https: //*. yandex.ru
https: //*. googleapis.com https: //www.
googletagmanager.com https: //
tagmanager.google.com https: //
googleads.g.doubleclick.net https: //
pagead2.googlesyndication.com https: //
tpc.googlesyndication.com https: //mti.
edu.ru https: //*. indeed.com https: //
player.vimeo.com https: //www.youtube.
com https: // huntflow.ru https: //
superjob-help.ru mx://res/reader-mode/
reader.html https: //*. soundcloud.com
https: //*. webcaster.pro https: //ext.
staffim.ru https: //*. webvisor.com
https: // yandexadexchange.net https: //
st.yandexadexchange.net https: //dis.eu
.criteo.com

7 object-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by https: //vk.com https: //*.
vk.com https: //*. facebook.net https:
//*. netroxsc.ru https: //*. adriver.ru
https: //*. googlesyndication.com https:
// tagmanager.google.com

8 media-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by https: //*. blob.core.
windows.net

9 img-src https: //*. superjob.ru http: //*.
superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by https: //*. superjob.ru
data: blob: https: //mil.ru https: //*.
mil.ru https: //*. mail.ru https: //*.
yandex.ru https: // counter.yadro.ru
https: // check.googlezip.net https: //*.

google-analytics.com https: // stats.g.
doubleclick.net https: // counter.
rambler.ru https: //*. gstatic.com
https: //*. googlesyndication.com https:
// tagmanager.google.com https: //*.
adriver.ru https: //cdn.userecho.com
https: //vk.com https: //*.vk.com https:
//*. twitter.com https:

10 //*. facebook.net https: //*. facebook.com
https: //*. maps.yandex.net https: //*.
netroxsc.ru https: //*. netrox.sc https:
//*. sharethis.com https: //*. bigmir.net
https: //*.i.ua https: //*. mystat-in.

net https: //www.uz https: //*. all.by
https: //*. akavita.com https: //i.ytimg.
com https: //i.vimeocdn.com/ https: //*.
super-job.ru https: // az846955.vo.
msecnd.net https: // az849513.vo.msecnd.
net https: //*. blob.core.windows.net
https: // huntflow.ru https: //*.
getsentry.com https: // online.swagger.
io https: //ad.adriver.ru https: //cm.
marketgid.com https: //rtb.directadvert
.ru https: // avatars-fast.yandex.net
https: // favicon.yandex.net https: //
googleads.g.doubleclick.net https: //
www.google.com https: //www.google.ru

11 connect-src https: //*. superjob.ru http:
//*. superjob.ru https: //*. superjob.ua
http: //*. superjob.ua https: //*.
superjob.uz http: //*. superjob.uz
https: //*. superjob.by http: //*.
superjob.by ’unsafe-inline ’ ’
unsafe-eval ’ https: // localhost https:
//mc.yandex.ru https: // yandex.ru
https: //www.google-analytics.com
https: // tagmanager.google.com https: //
userecho.com https: //*. userecho.com
wss://alloe.superjob.ru https: //dev.
recrubase.com https: //app.recrubase.
com

as a CSP, while the iframe was serving a different CSP

1 default-src ’self’ *. superjob.ru
2 report-uri //www.superjob.ru/js/request/

csp_log.php?type=desktop
3 style-src *. superjob.ru ’unsafe-inline ’

fonts.googleapis.com *. sharethis.com
www.google.com tagmanager.google.com

4 font-src *. superjob.ru data: fonts.gstatic
.com

5 script-src *. superjob.ru data: ’
unsafe-inline ’ ’unsafe-eval ’ *. yandex.
ru *.mail.ru *. googletagmanager.com *.
google-analytics.com tagmanager.google
.com *. adriver.ru cdn.userecho.com
apis.google.com *. jquery.com connect.
ok.ru vk.com *.vk.com userapi.com *.
facebook.com *. facebook.net *. twitter.
com my2.imgsmail.ru *.
googlesyndication.com *. sharethis.com
*. netroxsc.ru *. netrox.sc az846955.vo.
msecnd.net az849513.vo.msecnd.net *.
blob.core.windows.net huntflow.ru www.
youtube.com s.ytimg.com vimeo.com *.
ravenjs.com www.google.com *.
googletagservices.com *.
googleadservices.com googleads.g.
doubleclick.net securepubads.g.
doubleclick.net dev.recrubase.com app.
recrubase.com *. criteo.net *. criteo.
com yastatic.net

6 frame-src *. superjob.ru *. adriver.ru *.

facebook.com *. twitter.com *.mail.ru
*. google.com *.vk.com vk.com connect.
ok.ru *. sharethis.com *. yandex.ru *.
googleapis.com www.googletagmanager.
com tagmanager.google.com googleads.g.
doubleclick.net pagead2.
googlesyndication.com tpc.
googlesyndication.com mti.edu.ru *.
indeed.com player.vimeo.com www.
youtube.com huntflow.ru superjob-help.
ru mx://res/reader-mode/reader.html *.
soundcloud.com *. webcaster.pro ext.
staffim.ru *. webvisor.com
yandexadexchange.net st.
yandexadexchange.net dis.eu.criteo.com

7 object-src *. superjob.ru vk.com *.vk.com
*. facebook.net *. netroxsc.ru *. adriver
.ru *. googlesyndication.com tagmanager
.google.com

8 media-src *. superjob.ru *.blob.core.
windows.net

9 img-src *. superjob.ru data: blob: mil.ru
*.mil.ru *.mail.ru *. yandex.ru counter
.yadro.ru check.googlezip.net *.
google-analytics.com stats.g.
doubleclick.net counter.rambler.ru *.
gstatic.com *. googlesyndication.com
tagmanager.google.com *. adriver.ru cdn
.userecho.com vk.com *.vk.com *.
twitter.com *. facebook.net *. facebook.
com *.maps.yandex.net *. netroxsc.ru *.
netrox.sc *. sharethis.com *. bigmir.net
*.i.ua *. mystat-in.net www.uz *.all.

by *. akavita.com i.ytimg.com i.
vimeocdn.com/ *. super-job.ru az846955.
vo.msecnd.net az849513.vo.msecnd.net
*.blob.core.windows.net huntflow.ru *.
getsentry.com online.swagger.io ad.
adriver.ru cm.marketgid.com rtb.
directadvert.ru avatars-fast.yandex.
net favicon.yandex.net googleads.g.
doubleclick.net www.google.com www.
google.ru www.google.com.ua www.google
.by

10 connect-src *. superjob.ru ’unsafe-inline ’
’unsafe-eval ’ localhost mc.yandex.ru
yandex.ru www.google-analytics.com
tagmanager.google.com userecho.com *.
userecho.com wss:// alloe.superjob.ru
dev.recrubase.com app.recrubase.com

Those 2 policies are incomparable, as shown by the fol-
lowing table.

Directive IC≡ PC PC⊃ IC IC⊃ PC
child-src − − −
object-src − − −
script-src − − −
connect-src − − −
frame-ancestors ✓ ✓ ✓
img-src − − −
style-src − − −
font-src − − −
media-src − − −

Table 8: Superjob.ru: page and iframe

At the time of writing this paper, we have manually visited
the site, and found out that the page CSP is now the same
as that of the iframe. The same has been observed on the
site http://kinogo-2016.net ranked 8264 in top Alexa sites.

It had a page http://kinogo-2016.net/3377-3.html embed-
ding an iframe at http://kinogo-2016.net/vote/vote.php?v=
6&id=1. Their CSP policies differed in 4 directives: child-
src , script-src , object-src and connect-src . Now they
enforce the same CSP

1 default-src ’self’ kinogo-2016.net
2 script-src ’self’ ’unsafe-inline ’ ’

unsafe-eval ’ oconner.biz h1summer.com
*. rocks level1cdn.com apicaller.ru
videoburner2015.com s.ytimg.com a.
vimeocdn.com tns-counter.ru player.
vimeo.com www.youtube.com mc.yandex.ru
share.yandex.ru videsjs.com *.

digitaltarget.ru *. viral-cdn.ru
seedeasy.ru trafmag.com t.et-code.ru
deammer.ru viral-cdn.ru *. admitad.com
*.vk.com *. beseed.ru beseed.ru https:
// beseed.ru videoroll.net vbmer.com
adone.ru psma01.com videoseed.ru *.
videoseed.ru *.ok.ru vk.com *.mail.ru
www.odnoklassniki.ru *. twitter.com *.
facebook.com vkontakte.ru yastatic.net
*. ytimg.com apicaller.ru www.youtube.

com kinogo-2016.net hdgo.cc https: //*.
googleapis.com https: //*. google.com *.
google.com *. gstatic.com https: //*.
gstatic.com www.google-analytics.com
https: //www.google-analytics.com http:
//*. googlesyndication.com https: //*.
googlesyndication.com *. googleapis.com

3 object-src ’self’ *. rutube.ru *. admitad.
com *. minutta.com *. facetz.net *.
cdnvideo.ru *. instreamatic.com idntfy.
ru mediatoday.ru adpod.ru *. yandex.ru
*. adfox.ru *.vihub.ru storage.
kinogo-2016.net *. storage.kinogo-2016.
net n161adserv.com adpod.in videoseed.
ru psma01.com psma02.com psma03.com
adservone.com adservone-globotech1.
netdna-ssl.com http: //*. onedmp.com
https: //*. onedmp.com https: //cdn.
onedmp.com cunderdr.net psmardr.com
http: //*. ytimg.com *. macromedia.com *.
adobe.com https: //*. adobe.com https:
//*. googleapis.com http: //www.youtube.
com https: //www.youtube.com *. gstatic.
com

4 style-src ’self’ ’unsafe-inline ’ h1summer.
com novinkifilmov.com tns-counter.ru
videoburner2015.com *. vimeocdn.com *.
vimeo.com videsjs.com vbmer.com *.
googleapis.com *. cackle.me viutb.com
kinogo-2016.net https: //* http: //
netdna.bootstrapcdn.com

5 img-src * data: psma01.com psma02.com
psma03.com adservone.com
adservone-globotech1.netdna-ssl.com
http: //*. onedmp.com https: //*. onedmp.
com https: //cdn.onedmp.com psmardr.com
kinogo-net-2015.net fonts.googleapis.

com kinogo-2016.net
6 child-src blob: *
7 media-src ’self’ * mediastream blob: *
8 frame-src ’self’ ’unsafe-eval ’ *. worldssl.

net videoframe.blue h1summer.com video
.sibnet.ru *. rutube.ru rutube.ru *.vk.
com vk.com *.rocks *.mail.ru www.ok.ru
ok.ru winvideo.org *. adfox.ru *. vihub

.ru *. betweendigital.com *.
smartadserver.com videoroll.net
videoapi.my.mail.ru youtu.be psma01.
com psma02.com psma03.com adservone.

http://kinogo-2016.net
http://kinogo-2016.net/3377-3.html
http://kinogo-2016.net/vote/vote.php?v=6&id=1
http://kinogo-2016.net/vote/vote.php?v=6&id=1

com adservone-globotech1.netdna-ssl.
com http: //*. onedmp.com https: //*.
onedmp.com https: //cdn.onedmp.com
psmardr.com *. videoseed.ru yastatic.
net *. cackle.me cackle.me 1001 noch.net
kinogo-net-2015.net *. uptolike.com

moonwalk.cc serpens.nl 37.220.36.15
hdgo.cc *.yahoo.com http:// yandex.sc
http: //www.youtube.com https: //www.
youtube.com http: //*. googlesyndication
.com https: //*. google.com http: //*.
google.com

9 font-src ’self’ data: https: //*. gstatic.
com *. bootstrapcdn.com *. uptolike.com:
*

10 connect-src ’self’ *. moonwalk.cc
37.220.36.15 *. onedmp.com level1cdn.
com *. rutube.ru rutube.ru wss://ws.
hghit.com *. adfox.ru *. vihub.ru *.
weborama.fr *.am15.net *. minutta.com
*. nighter.club *. zerocdn.com *. storage
.kinogo-2016.net *. doubleclick.net
wss: //*. cackle.me kinogo-2016.net *.
yandex.net *. cackle.me *. yandex.ru *.
uptolike.com https: //www.youtube.com
. googlevideo.com https: //. gstatic.
com

	Introduction
	Content Security Policy and SOP
	CSP violations due to SOP
	Only parent page has CSP
	Only iframe page has CSP
	CSP violations due to origin relaxation
	Categories of CSP violations due to SOP

	Empirical study of CSP violations
	Methodology
	Data Collection
	CSP adoption analysis
	CSP violations detection

	Results on CSP Adoption
	Results on CSP violations due to SOP
	Only parent page or only iframe has CSP
	Parent and iframe have different CSPs
	Potential CSP violations

	Avoiding CSP Violations
	Inconsistent Specifications
	Related Work
	Conclusions
	Acknowledgements
	References
	Appendices
	CSP Inclusion Algorithm
	Iframes with sandbox attribute
	Examples of CSP violations
	Only parent page or iframe has a CSP
	Different CSP in page and iframe

