
Spot the Difference: Secure Multi-Execution and
Multiple Facets

Nataliia Bielova and Tamara Rezk

Université Côte d’Azur, Inria, France
name.surname@inria.fr

Abstract. We propose a rigorous comparison of two widely known dy-
namic information flow mechanisms: Secure Multi-Execution (SME) and
Multiple Facets (MF). Informally, it is believed that MF simulates SME
while providing better performance. Formally, it is well known that SME
has stronger soundness guarantees than MF.
Surprisingly, we discover that even if we approach them to enforce the
same soundness guarantees, they are still different. While modeling them
in the same language, we are able to precisely identify the features of
the semantics that lead to their differences. In the process of comparing
them, we also discovered four new mechanisms that share features of MF
and SME. We prove that one of them simulates SME, which was falsely
believed to be true for MF.

1 Introduction

Information flow security [22] is an important guarantee for computer systems.
A common security guarantee, called noninterference, requires that the secret
inputs to the program do not influence (flow into) public outputs. In recent
years, with the growing impact of highly dynamic languages such as JavaScript,
a significant number of dynamic mechanisms [2–4, 12, 15, 19, 24] were proposed
for information flow control and enforcement of noninterference.

A dynamic information flow mechanism is sound if it ensures equal observ-
able outputs when executions start in equal observable inputs. In other words,
a sound dynamic mechanism must detect all insecure executions and enforce
noninterference by modifying the insecure executions. An important property of
dynamic mechanisms is transparency [6,13]. A dynamic mechanism is transpar-
ent if it does not modify the executions of the program that are already secure.
In other words, a transparent mechanism does not have any “false positives”
when it comes to detecting secure executions.

Secure Multi Execution (SME) [12] and Multiple Facets (MF) [4] are two
dynamic sound mechanisms to enforce noninterference. For brevity, we call these
mechanisms SME monitor and MF monitor.

The main idea behind SME is to execute a program multiple times, one for
each security level. Each execution receives only input visible to its level, and a
default value for inputs that should not be visible. In this way, executions cannot
depend on non observable inputs. Moreover, SME uses a low priority scheduler

so that non-termination does not depend on high inputs. This allows SME to
prevent information leaks due to program non-termination.

The main idea behind MF is to execute a program using faceted values, one
facet for each security level. When a facet possesses nothing to be observed, there
is a special value to signal this. Moreover, based on the Fenton strategy [14], MF
also skips assignment to public variables in a context that depends on a secret
to prevent implicit information flows.

By appropriately manipulating the faceted values, a single execution of MF
is claimed to simulate the multiple executions of SME with the primary benefit
of being more performant [1, 4, 25]:

“Faceted evaluation is a technique for simulating secure multi-execution
with a single process” – from [25, p. 4]
“Austin and Flanagan [6] show how secure multi-execution can be opti-
mized by executing a single program on faceted values” – from [15, p.15]

One of the two formally studied differences between SME and MF before this
work is their soundness guarantee. SME enforces the soundness guarantee of
Termination-Sensitive Noninterference (TSNI), by preventing information flows
when a program has a different termination behaviour based on a secret input.
However, MF is only proven to enforce Termination-Insensitive Noninterference
(TINI), a weaker information flow policy [22] that does not prevent leaks due to
program non-termination. For transparency, SME has been proved to be TSNI
precise [12,27], a flavour of monitor transparency which means that SME outputs
without changes any execution of a noninterferent program. In contrast, MF is
recently demonstrated not to be TINI precise [9].

In this work, we investigate if the generalized belief on the equivalence of
SME and MF can be formally supported by appropriate hypotheses. Hence, we
raised the following questions:

– Are these monitors essentially different or do they become semantically
equivalent when adapted to the same soundness guarantees ?

– Can SME and MF actually be adapted to other soundness guarantees?

Our contributions are the following:

– A formal demonstration of the differences between SME and MF in a simple
programming language. We underline their different guarantees in Section 4.

– A comparison of different SME-based and MF-based monitors with respect
to soundness and transparency. We have discovered four new monitors:

• SME-TINI monitor, based on SME, which enforces a weaker termination-
insensitive noninterference policy than SME.

• MFd monitor, based on MF, which is semantically equivalent to SME-
TINI (Section 5).

• MFd-TSNI monitor, based on MFd, semantically equivalent to the orig-
inal SME (Section 6).

• MF-TSNI monitor, based on MF, which enforces a stronger termination-
sensitive noninterference policy than original MF.

The comparison of the guarantees of all the monitors described in this paper
is summarized in Fig. 8 (Section 8). The companion technical report [8] includes
all the proofs as well as more details and a formalization of the MFd-TSNI
monitor in a language with input and output channels as the one of [12].

2 Soundness and Transparency

The syntax of the language to demonstrate our technical results is:

(programs) P ::= skip | x:= e | P1; P2 | if x then P1 else P2 | while x do P
(expressions) e ::= v | x |e1 ⊕ e2

The language’s expressions include constants or values (v), variables (x) and
operators (⊕) to combine them. We present the standard big-step deterministic
semantics denoted by (P, µ) ⇓ µ′, where P is the program, and µ is a memory
mapping variables to values (Fig. 1).

skip
(skip, µ) ⇓ µ

assign
(x := e, µ) ⇓ µ[x 7→ JeKµ]

seq
(P1, µ) ⇓ µ′ (P2, µ′) ⇓ µ′′

(P1; P2, µ) ⇓ µ′′

if
JxKµ = α (Pα, µ) ⇓ µ′

(if x then Ptrue else Pfalse, µ) ⇓ µ′ while
(if x then P ; while x do P else skip, µ) ⇓ µ′

(while x do P, µ) ⇓ µ′

where JxKµ = µ(x), JvKµ = v and Je1 ⊕ e2Kµ = Je1Kµ ⊕ Je2Kµ

Fig. 1: Language semantics

Noninterference We assume a two-element security lattice with L ⊑ H and
a security environment Γ that maps program variables to security levels. By
µL we denote the projection of the memory µ on low variables, according to an
implicitly parameterized security environment Γ . We first define noninterferent
executions, following [9].

Definition 1 (Termination-Sensitive Noninterference for µL). Given a
semantics relation ⇓, program P is termination-sensitive noninterferent for an
initial low memory µL, written TSNI ⇓(P, µL), if and only if for all memories
µ1 and µ2, such that µ1

L = µ2
L = µL we have ∃µ′.(P, µ1) ⇓ µ′ ⇒ ∃µ′′.(P, µ2) ⇓

µ′′ ∧ µ′
L = µ′′

L .

Program P is termination-sensitive noninterferent, written TSNI ⇓(P), if all
its executions are TSNI, that is, for all µL, TSNI ⇓(P, µL) holds.

Example 1. Consider Program 1, where variable h can take only two possible
values: 0 and 1.

Program 11 l = 1; if h = 1 then (while true do skip)

If an attacker observes that l=1, she learns that h was 0, and if she doesn’t see
any program output (divergence), then she learns that h was 1. TSNI captures
this kind of information leakage, hence TSNI doesn’t hold.

A weaker security condition, called termination-insensitive noninterference
(TINI), allows information leakage through program divergence.

Definition 2 (Termination-Insensitive Noninterference for µL). Given a
semantics relation ⇓, program P is termination-insensitive noninterferent for an
initial low memory µL, written TINI ⇓(P, µL), if and only if for all µ1 and µ2,
such that µ1

L = µ2
L = µL, we have ∃µ′.(P, µ1) ⇓ µ′ ∧ ∃µ′′.(P, µ2) ⇓ µ′′ ⇒ µ′

L = µ′′
L .

Program P is termination-insensitive noninterferent, written TINI ⇓(P), if
all its executions are TINI, that is, for all µL, TINI ⇓(P, µL) holds1.

Termination-insensitive noninterference is a strictly weaker property than
termination-sensitive noninterference [22]. For example, Program 1 is insecure
with respect to TSNI, however it is secure with respect to TINI since whenever
a program execution terminates, it always finishes in a memory with l=1.

Monitor Soundness and Transparency To define a sound monitor for
termination-sensitive (resp., -insensitive) noninterference, we only substitute the
semantics relation ⇓ with the monitor semantics relation ⇓M in the definitions
of TINI and TSNI. Instead of using a subscript ⇓M (e.g., in TINI ⇓M

) for a
semantics of a monitor M , we will use a subscript M (e.g., TINI M).

Definition 3 (Soundness). Monitor M is termination-sensitive (resp., -insen-
sitive) sound if for all programs P , TSNI M (P) (resp., TINI M (P)).

A number of works on dynamic information flow monitors try to analyse
transparency of monitors. Intuitively, transparency describes how often a moni-
tor accepts (doesn’t block or modify) secure program executions without chang-
ing the original semantics. Different approaches have been taken to compare
transparency of monitors (see [9] for a survey): in this work, we adhere to the
standard meaning [6, 13] of “transparency” as the capability of a monitor to
accept secure executions and use the term “precision” as the capability to ac-
cept all executions of secure programs. To formally define transparency, we first
define a predicate A(P, µ, M) (where A stands for “accepted”) that holds if:

– whenever a program P terminates for an initial memory µ, then the monitor
M will also terminate on µ, producing the same final memory as the original
program: ∃µ′. (P, µ) ⇓ µ′ ⇒ (P, µ) ⇓M µ′, and

– whenever a program P does not terminate for an initial memory µ (denoted
by ⊥), then the monitor does not terminate for µ: (P, µ) ⇓ ⊥ ⇒ (P, µ) ⇓M ⊥.

1 In the following, we don’t write the semantics relation ⇓ when we mean the original
program semantics and the semantics is clear from the context.

The notion of transparency for TSNI (TINI) requires a monitor to accept all
the TSNI (TINI) executions of a program. Our choice of transparency definition
is based on the original literature on runtime monitors [6,13], which requires that
if a program execution is secure (noninterferent), then the monitor must accept
this execution without modifications. Our definition is similar to the one of [21],
which considers both terminating and nonterminating executions, however it
differs because we don’t require the set of executions accepted by a monitor and
the set of noninterferent executions to be equal.

Definition 4 (Transparency). Monitor M is TSNI (resp., TINI) transparent
if for any program P , and any memory µ, TINI (P, µL) ⇒ A(P, µ, M) (resp.,
TSNI (P, µL) ⇒ A(P, µ, M)).

3 SME and MF Original Semantics

In order to compare SME and MF, we first model them in the same language
defined in Section 2. The semantics relation of a command P is denoted by
Γ ⊢ (P, µ) ⇓M µ′ where Γ is a security environment, and M is the name of the
monitor and ⇓M relates a program configuration and a memory. Both SME and
MF monitors have deterministic semantics.

Secure Multi-Execution (SME) Devriese and Piessens proposed secure multi-
execution (SME) [12]. The idea of SME is to execute the program multiple times:
one for each security level. SME has two mechanisms to enforce noninterference:

– Each execution receives only inputs visible to its security level and a fixed
default value for each input that should not be visible to the execution. This
default value predefines a so-called “default” execution, so that under SME
all the interferent executions would behave like a “default” execution.

– A low priority scheduler ensures that lower executions do not depend on
the termination of higher executions. Therefore, the low priority scheduler
ensures that the program termination based on a secret input does not in-
fluence a public output, and hence enforces TSNI.

SME
(P, µ|Γ) ⇓ µ2 µ1 =

{
µ′ if ∃µ′.(P, µ) ⇓ µ′

⊥ otherwise
Γ ⊢ (P, µ) ⇓SME µ1 ⊙Γ µ2

where

µ|Γ (x) =
{

defH Γ (x) = H

µ(x) Γ (x) = L
µ1 ⊙Γ µ2(x) =

{
µ1(x) Γ (x) = H

µ2(x) Γ (x) = L

Fig. 2: Secure Multi-Execution semantics (SME)

The SME adaptation for the while language, taken from [9], is given in Fig. 2,
with executions for levels L and H. The µ|Γ function substitutes the values of
all the high variables in µ with the default value defH , such that all the insecure
program executions will behave as an execution predefined by defH .

Example 2 (SME imitates “default” executions). Consider the following program
and assume that the SME’s default value is defH=0.

Program 21 l = 1; if h = 0 then l = 0

A “default” execution would take defH value instead of a real high value and
compute the final memory with l=0. This program is not TINI, and therefore
all its executions will terminate under SME with the memory where l=0.

In our SME semantics, the special runtime value ⊥ represents the idea that no
value can be observed (notice that original programs use only standard values).
We overload the symbol to also denote a memory that maps every variable to ⊥.
Using memory ⊥ we simulate the low priority scheduler of SME in our setting:
if the high execution does not terminate, the low observer will still see the low
part of the memory in the SME semantics. In this case all the high variables,
whose values should correspond to values obtained in the normal execution of the
program, are given value ⊥. We model the final memory by a merging function
⊙Γ that combines high and low parts of two final memories from high and low
executions. Notice that even though the semantics becomes non computable, this
model allows us to prove the same results as for the original SME and further
use it for comparison with MF.

Example 3 (SME prevents leakage through non-termination). Consider Program 3:

Program 31 if l = 0 then (while h=0 do skip)
2 else (while h=1 do skip)

This program is TINI but not TSNI. Assume µ = [h=1, l=0] and that the
default high value used by SME is defH=1. The program terminates on memory
µ, producing l=0, however there exists a memory µ′ = [h=0, l=0], low-equal
to µ, on which the original program doesn’t terminate, thus leaking secret in-
formation through non-termination. SME prevents such leakage, because SME
terminates on both memories µ and µ′ producing l=0.

Multiple Facets (MF) Austin and Flanagan [4] proposed multiple facets
(MF). In MF, each variable is mapped to several values or facets, one for each
security level: each value corresponds to the view of the variable for an observer
at different security level. The main mechanisms used by MF are the following:

– MF uses a special value ⊥ to signal that a variable contains no information
to be observed at a given security level.

– MF uses the Fenton strategy [14] that skips sensitive upgrades. A sensitive
upgrade is an assignment to a low variable in a high security context that
may cause an implicit information flow. If there is a sensitive upgrade, MF
semantics does not update the observable facet. Otherwise, if there is no sen-
sitive upgrade, MF semantics updates it according to the original semantics.

MF
(P, µ ↑Γ) ↓MF µ̂

Γ ⊢ (P, µ) ⇓MF µ̂ ↓Γ

skip
(skip, µ̂) ↓MF µ̂

assign
(x := e, µ̂) ↓MF µ̂[x 7→ [e]µ̂]

seq
(P1, µ̂) ↓MF µ̂′ (P2, µ̂′) ↓MF µ̂′′

(P1; P2, µ̂) ↓MF µ̂′′

if-bot
[x]µ̂ = ⟨α : ⊥⟩ (Pα, µ̂) ↓MF µ̂′

(if x then Ptrue else Pfalse, µ̂) ↓MF µ̂′ ⊗ µ̂

if-val
[x]µ̂ = ⟨α1 : α2⟩ α2 ̸= ⊥ (Pα1 , µ̂) ↓MF µ̂1 (Pα2 , µ̂) ↓MF µ̂2

(if x then Ptrue else Pfalse, µ̂) ↓MF µ̂1 ⊗ µ̂2

while
(if x then P ; while x do P else skip, µ̂) ↓MF µ̂′

(while x do P, µ̂) ↓MF µ̂′

where

µ ↑Γ (x) =
{

⟨µ(x) : ⊥⟩ if Γ (x) = H

⟨µ(x) : µ(x)⟩ if Γ (x) = L
µ̂ ↓Γ (x) =

{
µ̂(x)1 if Γ (x) = H

µ̂(x)2 if Γ (x) = L

and µ̂1 ⊗ µ̂2(x) = ⟨µ̂1(x)1 : µ̂2(x)2⟩

Fig. 3: Multiple Facets semantics (MF)

Our adaptation of MF semantics is given in Fig. 3, where we use the following
notation: a faceted value, denoted v̂ = ⟨v1 : v2⟩, is a pair of values v1 and v2.
The first value presents the view of an observer at level H and the second value
the view of an observer at level L. In the syntax, we interpret a constant v as
the faceted value ⟨v : v⟩. The evaluation of faceted expressions is strict in ⊥ – if
an expression contains ⊥ then it evaluates to ⊥ – and it is defined as follows:

[v̂]µ̂ = v̂ [x]µ̂ = µ̂(x) [e1 ⊕ e2]µ̂ = [e1]µ̂ ⊕ [e2]µ̂

where ⟨v1 : v′
1⟩ ⊕ ⟨v2 : v′

2⟩ = ⟨v1 ⊕ v2 : v′
1 ⊕ v′

2⟩.
Faceted memories, ranged over by µ̂, are mappings from variables to faceted

values. A function µ ↑Γ creates a faceted memory from a memory µ using the
labelling function Γ , and function µ̂ ↓Γ erases facets from the faceted memory
µ̂ and returns a normal memory µ. We use the notation µ̂(x)i (i ∈ {1, 2})
for the first or second projection of a faceted value stored in x. Similar to the
formalisation of SME, the special runtime value ⊥ represents the idea that no
value can be observed (program syntax only uses standard values). Moreover,
MF skips any operation that depends on a value ⊥ (see rule if-bot in Fig. 3).

Example 4 (MF uses ⊥ to signal “no information”). Consider the following pro-
gram, that copies the secret from h to low variable l : l = h . Given an initial
environment µ= [h=1, l=0], the function µ ↑Γ creates a faceted memory µ̂,
where h = ⟨1 : ⊥⟩. After assignment, the variable l will contain the faceted
value of h, that will be projected to the ⊥ value using the function µ̂ ↓Γ to erase
facets in the end of the execution.

Example 5 (MF “skips” sensitive upgrades). Consider Program 4.

Program 41 l = 0; if h = 1 then l = 1 else l = 2

In MF, the L facet of variable l will be the initial value of variable l since MF
will not update a low variable in a high context. Therefore, all the executions of
Program 4 are modified by MF, producing the final memory with l=0.

4 Differences between SME and MF

Even though MF is claimed to simulate SME, the example below demonstrates
that even in a simple language, SME and MF semantics are different.

Example 6 (SME and MF semantics are different). Consider Program 5 and an
initial memory [h=0, l=0].

Program 51 l = 0;
2 if h = 0 then l = 1;
3 if l = 1 then l = 2 else l = 3

This program terminates in MF with the final memory where l=3 because
the value of l is not updated due to a sensitive upgrade. In contrast, under SME
with defH = 0, the program terminates with the final memory where l=2.

Projection Theorem of MF For MF semantics, a Projection Theorem [4,
Thm. 1] states that a computation over a 2-faceted memory simulates 2 non-
faceted computations, one per each security level. The theorem uses a projection
of a faceted memory into a normal memory using the following functions (simpli-
fied for our setting), where Lev represents either a high viewer H or a low viewer
L, so that H(⟨v1 : v2⟩) = v1, L(⟨v1 : v2⟩) = v2, and Lev(µ̂) = λx.Lev(µ̂(x)).

The Projection Theorem states that whenever the monitor terminates2 for
some memory µ̂, Γ ⊢ (P, µ̂) ↓MF µ̂′, then for any viewer Lev,

(P, Lev(µ̂)) ⇓ Lev(µ̂′).

The Projection Theorem may resemble to an equivalence between SME and MF
semantics, however, as we have shown above, MF is not equivalent to SME.

Example 7 (Projection Theorem of MF doesn’t imply equivalence to SME). Con-
sider Program 6 and an initial memory µ=[h=1, l=1]. This program is TINI and
TSNI and SME would terminate in the memory µ′ = [h=1, l=0].

Program 61 if h = 0 then l = 0 else l = 0

2 Notice that the original program semantics in [4] already contains rules that deal
with special ⊥ values, that skip any operation that involves a ⊥ value.

The Projection theorem is based on the assumption that MF terminates
on a given initial faceted memory. We use the function µ ↑Γ that creates a
faceted memory from a normal memory µ given a security labelling Γ . The
obtained memory is µ̂ = [h = ⟨1 : ⊥⟩, l = ⟨1 : 1⟩]. Upon a faceted execution of
the program, the final faceted memory is µ̂′ = [h = ⟨1 : ⊥⟩, l = ⟨0 : 1⟩].

For a viewer at level H, the initial projected memory is H(µ̂) = [h=1, l=1],
and the final projected memory is H(µ̂′)=[h=1, l=0], which corresponds to the
original final memory µ′. However, only a viewer a level H is able to see this
memory, while a viewer at level L will see a different memory.

For a viewer at level L, the projected initial memory is L(µ̂) = [h=⊥, l=1],
and the final projected memory is also L(µ̂′) = [h=⊥, l=1], since the mechanism
of MF skips the sensitive upgrades and the value of l is not changed. It means
that a viewer at level L will see l=1 in MF, however will see l=0 in SME.

Soundness Monitors that enforce TSNI and TINI are comparable with re-
spect to soundness thanks to the fact that TSNI is a stronger guarantee than
TINI [22]. SME was previously proven TSNI sound [12], and therefore SME is
also TINI sound. Example 3 demonstrated how SME enforces TSNI and hence
TINI soundness. In contrast, MF was previously proven TINI sound [4], however
it is unable to enforce TSNI.

Example 8 (MF is not TSNI sound). Consider Program 1. When h=1, the MF
semantics will diverge because the faceted value of h is ⟨1 : ⊥⟩ and the premises
of the if-bot rule are not satisfied (the program diverges on line 3). However
when h=0, the MF semantics will terminate with final memory where l=1.

Transparency Devriese and Piessens [12, Thm. 2] have proven that SME is
TSNI precise, meaning that for TSNI secure programs, all their executions are
not modified by SME.

Theorem 1 ([12, Thm. 2]). SME is TSNI precise, meaning that for any
program P , the following holds: TSNI (P) ⇒ ∀µ. A(P, µ, SME).

In this paper, we prove a more fine-grained guarantee for SME, which is TSNI
transparency. Notice that TSNI transparency is stronger than TSNI precision
because it requires that the monitor not only does not modify any executions of
secure programs, but also secure executions of insecure programs.

Theorem 2. SME is TSNI transparent.

Example 9. Consider Program 7. This program is not TSNI, however there are
TSNI-secure executions of this program when initially l=1. For an initial memory
where l=1, and for any default high value defH , SME will terminate in a final
memory, where l=1, like the original program.

Program 71 if l=0 then (while h=0 do skip)

SME-TINI
(P, µ|Γ) ⇓ µ2 (P, µ) ⇓ µ1

Γ ⊢ (P, µ) ⇓SMETINI µ1 ⊙Γ µ2

Fig. 4: SME semantics for TINI (SME-TINI)

Example 10 (MF is not TSNI and not TINI transparent). Consider Program 6,
which is TSNI secure, and an initial memory [h=1, l=1]. The MF semantics will
modify this execution. Since the test depends on a high variable h, the if-bot
rule will be used to evaluate the conditional, and only the high facet of the
value in l will be updated, getting the value 0, while the low facet will not be
updated, hence the new faceted value of l is ⟨0 : 1⟩. Following the definition
of the ↓Γ function, the final memory will contain l=1 because Γ (l) = L, while
the original program would terminate in the memory where l=0. Hence, this is
a counter example for TSNI and TINI transparency of MF.

5 SME vs MF by downgrading SME to TINI

The first reason for SME and MF to be incomparable is that SME enforces
termination-sensitive noninterference (TSNI), whereas MF enforces a weaker
version of noninterference called termination-insensitive noninterference (TINI).
To formally compare SME and MF, we modify SME semantics in order for SME
to enforce the same version of noninterference as MF, which is TINI.

SME that enforces TINI (SME-TINI) We propose a version of SME, that
we call SME-TINI and present its semantics in Fig. 4. SME-TINI runs the pro-
gram multiple times like SME, but it does not have a low priority scheduler and
hence is not sensitive to termination leaks.

Example 11 (SME-TINI does not enforce TSNI). Consider Program 1 and a de-
fault value for SME is defH = 0. In an initial memory where h=1, the program
will diverge in the SME-TINI semantics whereas it will terminate with the mem-
ory l=1 in the SME semantics. In an initial memory where h=0, the program
will terminate with l=1 in both SME-TINI and SME semantics. This example
shows that, in contrast to SME, SME-TINI does not enforce TSNI.

Theorem 3. SME-TINI is TINI sound.

Example 12 (SME-TINI is TINI sound). Consider Program 4 and an initial
memory [h=1,l=0]. SME-TINI with defH = 0 enforces TINI by always termi-
nating in a final memory where l=2.

However, differently from original SME, SME-TINI does not provide trans-
parency guarantee.

MFd
(P, µ ↑def

Γ) ↓MF µ̂

Γ ⊢ (P, µ) ⇓MFd µ̂ ↓Γ

Fig. 5: Multiple Facets with default (MFd).

Example 13 (SME-TINI is not TINI transparent). Consider Program 3, an ini-
tial memory µ=[h=0, l=1] and defH=1. The original program terminates on
memory µ= [h=0, l=1]. Though program is TINI, SME-TINI does not termi-
nate on µ because its low execution does not terminate since defH=1.

Surprisingly, we find out that even if we downgrade SME to only enforce
TINI, and SME-TINI and MF now have the same soundness guarantees, still
SME-TINI and MF semantics are different.

Example 14 (SME-TINI and MF semantics are different). Consider again Pro-
gram 4 and an initial memory [h=1, l=0]. SME-TINI with defH = 0 enforces
TINI by always producing an output 2, however MF does not execute an alter-
native else-branch, and keeps an initial value of l, terminating with the final
memory where l=0.

The main reason for a different semantics now is the way in which SME-
TINI and MF treat insecure executions: while SME forces all insecure executions
to behave like the “default” executions, MF uses the Fenton strategy to skip
sensitive upgrades.

Multiple Facets with Default (MFd) To propose a version of MF that has
the same semantics as SME-TINI, we replace the ⊥ value of MF with defH as the
default high value (this is exactly as the default of SME). In fact, there is a maybe
different default high value for each high variable, so in fact defH is a vector of
variables but for simplicity of presentation (and without loss of generality), we
call it a default value and use only one high variable in our examples.

The new version of MF, that we call MFd, uses the semantics rules of MF,
and instead of a µ ↑Γ function that creates a faceted memory in the MF rule,
it uses a µ ↑def

Γ function, that is defined as follows:

µ ↑def
Γ (x) =

{
⟨µ(x) : µ(x)⟩ if Γ (x) = L

⟨µ(x) : defH⟩ if Γ (x) = H

Therefore, the MFd semantics is presented with only one rule shown in Fig. 5.
Since the MFd semantics never introduces a runtime value ⊥, the MFd rules
do not include the rule if-bot of the original MF semantics (Fig. 3). Notice
that, the fact that the rule if-bot is not included implies that one of the bases
of original MF, which is to skip sensitive upgrades as originally proposed by
Fenton [14], is made obsolete.

Theorem 4. MFd is TINI sound.

To prove that MFd is equivalent to SME-TINI, we first propose the following
definition of an equivalence relation on two monitor semantics.

Definition 5. A monitor A is semantically equivalent to a monitor B, written
A ≈ B, if and only if for all programs P , all memories µ and µ’, and all labelling
functions Γ , the following holds:

Γ ⊢ (P, µ) ⇓A µ′ ⇐⇒ Γ ⊢ (P, µ) ⇓B µ′.

Theorem 5. MFd ≈ SME-TINI.

Example 15 (MFd and SME-TINI semantics are equivalent). Consider Program 4
and an initial memory [h=1, l=0]. SME-TINI with defH = 0 always terminates
in a final memory where l=2. MFd also terminates in a final memory with l=2,
because differently from original MF, it does not skip the sensitive upgrades but
rather uses the results of the “default” execution, like SME.

6 SME vs MF by upgrading MFd to TSNI

By analysing SME and MF semantics, we concluded that they are different
for two reasons. First, SME enforces TSNI, while MF enforces TINI. In the
previous section we have downgraded SME to enforce a weaker property TINI,
however the resulting SME-TINI monitor was not semantically equivalent to
MF. Therefore, we have found the second reason for their difference: while SME
is using a default value for high variables in the low execution, MF uses special
runtime values ⊥, allowing the execution of some branches to be skipped.

In the previous section we proposed a new version of MF, called MFd, that
solves the second difference of SME and MF, but does not solve the first one:
MFd does not have the same strong soundness guarantee, TSNI, that original
SME has. Therefore, we propose modifications to the MFd semantics in order
for MFd to enforce TSNI.

We propose a new monitor, that we call MFd-TSNI, and present its semantics
in Fig. 6. The main difference between MFd and MFd-TSNI is the embedding of
a low priority scheduler to schedule with priority the low facet in the execution.
This can be observed in the rules if-val and if-bot-val. The rule if-val simu-
lates the idea behind the low priority scheduler from original SME. The symbol
⊥ is overloaded to denote a memory that maps every variable to ⊥ when the
high execution does not terminate. We illustrate the efficiency of MFd-TSNI in
enforcing TSNI in the following example.

Example 16. Consider Program 8 which is not TSNI and initial memory µ=
[h=1, l=1], the default value used to create a faceted memory is defH= 0.

Program 81 if h=1 then (while true skip);
2 if h=0 then l=0

MFd-TSNI
(P, µ ↑def

Γ) ↓MF T µ̂

Γ ⊢ (P, µ) ⇓MFdT µ̂ ↓Γ

skip
(skip, µ̂) ↓MF T µ̂

assign
(x := e, µ̂) ↓MF T (µ̂[x 7→ [e]µ̂])

seq
(P1, µ̂) ↓MF T µ̂′ (P2, µ̂′) ↓MF T µ̂′′

(P1; P2, µ̂) ↓MF T µ̂′′

if-bot-val
[x]µ̂ = ⟨⊥ : α⟩ α ̸= ⊥ (Pα, µ̂) ↓MF T µ̂′

(if x then Ptrue else Pfalse, µ̂) ↓MF T ⊥ ⊗ µ̂′

if-val

[x]µ̂ = ⟨α1 : α2⟩ α1 ̸= ⊥

α2 ̸= ⊥ (Pα2 , µ̂) ↓MF T µ̂2 µ̂1 =
{

µ̂′ if ∃µ̂′.(Pα1 , µ̂) ↓MF T µ̂′

⊥ otherwise
(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂1 ⊗ µ̂2

while
(if x then P ; while x do P else skip, µ̂) ↓MF T µ̂′

(while x do P, µ̂) ↓MF T µ̂′

Fig. 6: Multiple Facets semantics with default for TSNI (MFd-TSNI)

An initial value of h in the new faceted memory µ̂ is h=⟨1 : 0⟩, while l = ⟨1 :
1⟩. Upon the first test, the if-val rule is applied. This rule first requires that the
execution corresponding to the low facet terminates, which is the case and the
final faceted memory after the first test is µ̂2 = µ̂. However, the program does
not terminate if we use the high facet of h, therefore all the program variables
get assigned to ⊥ in a memory µ̂1. After the combination of memories, we get
the final memory after the first test, which is µ̂1 ⊗ µ̂2, where h = ⟨⊥ : 0⟩ and l
= ⟨⊥ : 1⟩.

Upon the second test, the if-bot-val rule is applied since the high facet of
variable h is now ⊥. Therefore, MFd-TSNI executes only one branch where h=0
and computes the final memory where l = ⟨0 : 0⟩.

We prove that the new monitor MFd-TSNI is semantically equivalent to
original SME.

Theorem 6. MFd-TSNI ≈ SME.

As a direct consequence of the semantical equivalence to SME, MFd-TSNI is
TSNI sound and TSNI transparent. Notice that MFd was not transparent.
Theorem 7. MFd-TSNI is TSNI sound and TSNI transparent.

Example 17 (MFd-TSNI is TINI sound and TSNI sound). Consider Program 4
and defH = 0. For any initial memory, MFd-TSNI always terminates in final
memory where l=2, thus enforcing TINI and TSNI.

Example 18 (MFd-TSNI is TSNI transparent). Consider again Program 7. For
the initial memory where l=1, and for any default high value defH , MFd-TSNI
will terminate in a final memory, where l=1, like the original program.

MF-TSNI
(P, µ ↑Γ) ↓MF T µ̂

Γ ⊢ (P, µ) ⇓MFT µ̂ ↓Γ

if-bot
[x]µ̂ = ⟨α : ⊥⟩ α ̸= ⊥ µ̂1 =

{
µ̂′ if ∃µ̂′.(Pα, µ̂) ↓MF T µ̂′

⊥ otherwise
(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂1 ⊗ µ̂

if-bot-bot
[x]µ̂ = ⟨⊥ : ⊥⟩

(if x then Ptrue else Pfalse, µ̂) ↓MF T µ̂

Fig. 7: Additional rules for the Multiple Facet semantics for TSNI (MF-TSNI)

MF that enforces TSNI Given the technique we used to upgrade MFd to
MFd-TSNI to enforce termination-sensitive noninterference, in this section we
show how to upgrade the original MF in order to enforce TSNI using the same
low priority scheduler.

The new monitor, that we call MF-TSNI, uses the ↑Γ function from MF to
create a faceted memory, and uses all the rules of MFd-TSNI, with additional
two rules to incorporate the possibility of having a special ⊥ value in the low
facet of the faceted value. We present these additional rules in Fig. 7.

We now prove that the new MF-TSNI monitor indeed enforces termination-
sensitive noninterference.

Theorem 8. MF-TSNI is TSNI sound.

Example 19 (MF-TSNI is TSNI sound and TINI sound). Consider Program 1.
When h=1, the if-bot rule of MF-TSNI (Fig. 7) will construct a memory µ̂1,
where all the variables are assigned to ⊥ value since the high facet execution
does not terminate. Therefore, MF-TSNI will terminate with the final memory
where l = ⟨⊥ : 1⟩. When h=0, the MF-TSNI will terminate in the final memory
where l = ⟨1 : 1⟩, thus enforcing TINI and TSNI.

MF-TSNI is not TSNI transparent for the same reason that MF is not TSNI
transparent: the Fenton strategy of skipping sensitive upgrades prevents a mech-
anism from being transparent.

Example 20 (MF-TSNI is not TSNI transparent). Consider again Program 6,
which is TSNI and TINI. For an initial memory where l=1, MF-TSNI will ter-
minate in a final memory, where l=1, thus being not transparent.

7 Related Work

We present only SME and MF closely related work. We refer to [22, 23] for a
wider overview on information flow properties, to [6,13,18] for a wider overview
on transparency properties of monitors, and to [9, 17] for a wider overview on
information flow monitors.

Originally, Secure Multi-Eexecution is presented in a while language featur-
ing input/output commands and channels [12]. An output command produces a
value that is queued in the output channel. An input command reads a value that
is read from the input channel. We model SME as in [9], in a while language
without channels. Instead of channels, we use memories mapping variables to
values. To simulate an input (resp. output) command, our language reads (resp.
writes) a variable from memory. In the original SME semantics [12], a configu-
ration contains a pool of threads, one thread for each level. Then, a scheduler
selects to execute first all steps of the lower level threads. Hence, all outputs of a
low execution appear first in the output channel in the original SME semantics.
The low priority scheduler is simulated in our model by the only rule of Fig. 2.
In this rule, the low thread executes to the end to obtain the low part of the
final memory and, if the high thread does not terminate, the high part of the final
memory is ⊥. Hence, the semantics becomes non computable. With the current
model we can at least prove the same results as in the original SME monitor,
and further use it for comparison with MF. Notice that, at the cost of simplicity
we could have used the original SME language and semantics in order to have
computability (we have modelled the MFd-TSNI monitor in the original SME
language as a proof of concept in the companion technical report [8]).

SME is proved to be TSNI sound in Theorem 1 of [12]. Kashyap et al. [16]
investigate different strategies for SME to also enforce several flavours of time-
sensitive noninterference. Intuitively, time-sensitive noninterference is stronger
than termination-sensitive noninterference because it requires that two execu-
tions starting in low-equal memories must terminate within the same number
of program execution steps. Other works [10, 20, 26] have proposed other infor-
mation flow properties, declassification properties, for modified SME monitors.
We do not study in this work SME-based monitors for declassification. SME is
proved to be TSNI precise in Theorem 2 of [12]. Notice that TSNI precision is
a weaker property than transparency since a program which is not secure may
still have some secure executions.

TSNI transparency does not hold for original SME because the low priority
scheduler may reorder outputs compared to the original program semantics,
letting outputs of low executions appear first in the output channel. Zanarini
et al. [27] propose a modification to SME in order to prove a version of TSNI
transparency (In fact, they prove a property called CP precision in Theorem 23
of [27], which is a weaker notion that TSNI transparency because it recognizes as
secure a program that silently diverges on one branch, and terminates without
producing any outputs on the other branch). In contrast, we can prove TSNI
transparency in our SME model (and also CP precision) without need of the
SME modifications proposed in Zanarini et al. because reordering is not visible
in our model due to the lack of output channels, and intermediate outputs.

Zanarini et al. [27] also prove a version of TINI transparency for their TSNI
sound SME-based monitor (Theorem 22 of [27]). Using our notations, their no-
tion of TINI transparency is different from ours since if an execution is secure,
if the original program terminates in a final memory µ and if the monitor ter-

minates in final memory µ′, then µ and µ′ should be low equal (in fact, they
prove a property called ID-transparency in Theorem 22 of [27], which recognizes
as transparent a monitor that always diverges).

SME is also shown TSNI sound and TSNI precise for a language featuring
dynamic code evaluation [5] and adapted to reactive systems [7]. SME is imple-
mented in a real browser called FlowFox [11], and SME guarantees via program
transformations are implemented in JavaScript and Python [5].

Originally, Multiple Facets is presented in a lambda calculus with muta-
ble reference cells and reactive input/output [4]. In contrast, we model MF in
an imperative while language without mutable references. Moreover, since our
language features memories that map variables to values, we use security envi-
ronments as a means to create faceted values in our MF model. As we do, the
original MF semantics [4] uses the special value ⊥ in order to model the Fenton
strategy [14], which roughly means to skip sensitive upgrades [2, 28] to prevent
implicit flows.

MF is also modelled in [9] using an imperative while language as ours. The
semantics in [9] uses security environments and program counters in order to
implement the Fenton strategy. Our formalisation is simpler since we use facets
and ⊥ to do this, as in [4]. MF is proved to be TINI sound in Theorem 2 of [4]
and also is extended to declassification and proved sound in Theorem 6 of [4].

Transparency guarantees of MF are studied in [9]. It was first shown that
MF is not TINI transparent (more precisely, TINI transparency is called true
transparency in [9]). Using a notion of false transparency, it is then shown that
MF can accept more insecure executions than any other information flow mon-
itor with the exception of SME (Table 1 of [9]). Moreover, Theorems 3 and
4 of [4] prove that MF generalizes no-sensitive upgrade monitor (NSU) [2, 28]
and permissive-upgrade monitor (PU) [3]. These theorems imply that MF is
relatively more transparent than NSU and PU [9].

MF has been implemented in JavaScript as a Firefox browser extension [4]
and also as a Haskell Library using monads [25].

8 Conclusion

We have formally compared SME, MF, and other mechanisms derived from
them. We present a summary of the comparison in Fig. 8.

Soundness Transparency
TINI TSNI TINI TSNI

SME 3 3 7 3

MF 3 7 7 7

SME-TINI 3 7 7 7

MFd 3 7 7 7

MFd-TSNI 3 3 7 3

MF-TSNI 3 3 7 7

Fig. 8: Summary of our results

We have first downgraded SME
to enforce only TINI, and pro-
posed a new version of MF,
called MFd, which is indeed se-
mantically equivalent to a TINI
version of SME. We then up-
graded the MFd monitor to
enforce TSNI and proposed a
new monitor that we call MFd-
TSNI. We have proven that

MFd-TSNI is semantically equivalent to SME, and therefore enjoys the same
TSNI soundness and TSNI transparency guarantees as SME. Finally, we propose
to upgrade MF semantics so that it can also enforce termination-sensitive nonin-
terference (TSNI). The new monitor, that we call MF-TSNI, is not semantically
equivalent to MFd-TSNI, and is not TSNI transparent. Both SME [10, 20, 26],
and MF [4] have been extended to handle declassification, a security property
more versatile than noninterference. It is left as future work to understand if our
results generalize to declassification properties in order to compare SME and
MF.

Acknowledgment

We would like to thank Frank Piessens on valuable feedback on earlier versions
of this paper and anonymous reviewers who helped us to improve the paper.
This work has been partially supported by the ANR project AJACS ANR-14-
CE28-0008.

References

1. T. Austin, K. Knowles, and C. Flanagan. Typed faceted values for secure informa-
tion flow in haskell. Technical Report UCSC-SOE-14-07, University of California,
Santa Cruz, 2014.

2. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS’09, pages 113–124, 2009.

3. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
PLAS’10, pages 3:1–3:12. ACM, 2010.

4. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In
Proc. of the 39th Symposium of Principles of Programming Languages. ACM, 2012.

5. G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-
execution through static program transformation. In Formal Techniques for Dis-
tributed Systems - Joint 14th IFIP WG 6.1 International Conference, FMOODS
2012 and 32nd IFIP WG 6.1 International Conference, FORTE, 2012.

6. L. Bauer, J. Ligatti, and D. Walker. Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. International Journal of Information Security, 4(1-
2):2–16, 2005.

7. N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference
for a browser model. In Proc. of the 5th International Conference on Network and
System Security (NSS 2011), pages 97–104. IEEE, 2011.

8. N. Bielova and T. Rezk. Spot the Difference: Secure Multi-Execution and Multiple
Facets Technical Report. https://goo.gl/b7yoQ9.

9. N. Bielova and T. Rezk. A taxonomy of information flow monitors. In International
Conference on Principles of Security and Trust (POST 2016), volume 9635, pages
46–67. Springer, 2016.

10. I. Bolosteanu and D. Garg. Asymmetric secure multi-execution with declassifi-
cation. In International Conference on Principles of Security and Trust (POST
2016), volume 9635, pages 24–45. Springer, 2016.

11. W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a Web Browser
with Flexible and Precise Information Flow Control. In Proc. of the 19th ACM
Conference on Communications and Computer Security, pages 748–759, 2012.

12. D. Devriese and F. Piessens. Non-interference through secure multi-execution. In
Proc. of the 2010 Symposium on Security and Privacy, pages 109–124. IEEE, 2010.

13. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, 2003.

14. J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–147, 1974.
15. D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information flow

control for a javascript-like language. In IEEE 28th Computer Security Foundations
Symposium, CSF, 2015.

16. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 413–428, 2011.

17. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University and University of Rennes 1, 2007.

18. J. Ligatti, L. Bauer, and D. Walker. Enforcing Non-safety Security Policies with
Program Monitors. In Proc. of the 10th European Symposium on Research in Com-
puter Security, volume 3679 of LNCS, pages 355–373. Springer-Verlag Heidelberg,
2005.

19. A. G. A. Matos, J. F. Santos, and T. Rezk. An Information Flow Monitor for a
Core of DOM - Introducing References and Live Primitives. In Trustworthy Global
Computing - 9th International Symposium, TGC, 2014.

20. W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. In 2013 IEEE 26th Computer Security
Foundations Symposium, 2013.

21. W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained,
declassification-aware, and transparent. Journal of Computer Security, 24(1):39–
90, 2016.

22. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

23. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

24. J. F. Santos and T. Rezk. An Information Flow Monitor-Inlining Compiler for
Securing a Core of Javascript. In ICT Systems Security and Privacy Protection -
29th IFIP TC 11 International Conference, SEC 2014, 2014.

25. T. Schmitz, D. Rhodes, T. H. Austin, K. Knowles, and C. Flanagan. Faceted
dynamic information flow via control and data monads. In International Confer-
ence on Principles of Security and Trust (POST 2016), volume 9635, pages 3–23.
Springer, 2016.

26. M. Vanhoef, W. D. Groef, D. Devriese, F. Piessens, and T. Rezk. Stateful de-
classification policies for event-driven programs. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, pages 293–307, 2014.

27. D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for
reactive systems. In IEEE 26th Computer Security Foundations Symposium, pages
18–32, 2013.

28. S. A. Zdancewic. Programming languages for information security. PhD thesis,
Cornell University, 2002.

