
Testing Decision Procedures for
Security-by-Contract ∗

Nataliia Bielova Ida Siahaan
Universitá di Trento, Italy

{bielova,siahaan}@disi.unitn.it

Abstract

The traditional realm of formal methods is the off-line verification of formal
properties of hardware and software. In this paper we report a different approach
that uses formal methods (namely the integration of automata modulo theory with
decision procedures) on-the-fly, at the time an application is downloaded on a mo-
bile application such as PDA or a smart phone.

The idea behind security-by-contract is that a mobile application comes equipped
with a signed contract describing the security relevant behavior of the application
and such contract should be matched against the mobile platform policy. Both
are specified as special kinds of automata and the operation is just an on-the-fly
emptiness test over two automata modulo theories where edges are not just finite
states of labels but rather expressions that can capture infinite transitions such as
“connect only to urls starting with https://”.

The paper describe the prototype implementation, its integration with a state
of the art decision solver (based on MathSAT and NuSMV) and the preliminary
experiments that we have done for contract-policy matching.

Keywords Formal Specification, Security Policies, Mobile Code

1 Introduction and Motivations
The paradigm of pervasive services [3] envisions a nomadic user seamlessly and con-
stantly receiving services from other devices and sensors embedded in the environment.
Beside this web-service-like model, a new model is emerging based on the notion of
pervasive client downloads [14]: users download new (and likely untrusted) applica-
tions on their mobile in order to exploit the computational characteristic of the device.

A tourist landing in a large city can download at the airport a navigation application
that can guide her to shopping centers or touristic sights. The application can query
internet sites or bluetooth services to find the optimal routes or discover local services.
Living Search by Microsoft and Navitime by DoCoMo [2] are primitive examples of these
future applications. Peer-to-peer and Web 2.0 collaborative applications share the same
features: Channel4 in the UK allows people to download video on demand if they also
download a P2P servent.

∗Research partly supported by the Projects EU-FP6-IST-STREP-S3MS, EU-FP6-IP-SENSORIA, and
EU-FP7-IP-MASTER

Unfortunately, this business model is not supported by the current security archi-
tecture of Java [17] and .NET [21]:

• mobile code runs only if its origin is trusted (i.e. digitally signed by a trusted
party);

• a pervasive download will likely be from small companies which cannot afford
to obtain a mobile operator’s certification and thus will not run as trusted code;

• then this application should be sandboxed, its interaction with the environment
and the device’s data should be limited;

• yet we made this pervasive download precisely to have lots of (controlled) inter-
action with the pervasive environment.

As it is now this is both a business opportunity but also a big security threat: Chan-
nel 4 naive users with a pay-as-you-go subscription to internet found out at their own
expenses the “surprising” effect of hosting a P2P application for video on demand.

We need a better security model where the mobile code should be run only if it
satisfies a user-defined policy. This is precisely the setting where we can use formal
methods on-the-fly: before downloading the application we just verify that it complies
with the user security policies.

Unfortunately, in the general case this is equivalent to arbitrary software verification
which is not practical for pervasive downloads (remember this has to be done on your
smart phone while you wait). However, the idea behind model-carrying code [28]
and security-by-contract [13] is that code should come accompanied with a ”digest” (a
security model or a security contract) that represents its essential security behavior.

The question raised is how we know that the security claims are actually true on
the code. One possible solution is to use proof carrying code [23] or trust relations and
digital signatures. The PCC approach enables safe execution of code from untrusted
sources. PCC is based on assumption that the code producer should know all the secu-
rity policies that are of interest to consumers since the producer sends the safety proof
together with the mobile code. This assumption can be impractical due to various se-
curity policies among different consumers. On the other hand, if we use only trust
relationship, i.e. digital signatures on mobile code, then we can only reject or accept
the signature and no semantics attached to the signature. The security-by-contract pro-
posed in [13] provides semantics to a digital signature, which was not presented before-
hand. So that, when binding together the code and the contract the signer takes liability
for the security claims ([31] describes mobile devices security architecture that sup-
ports integration of proof-carrying code, static verification and run-time monitoring).
Then one only needs to match the contract against the platform security policies. How-
ever, whenever consumer does not trust the contract provided by the code producer then
the overall architecture can take care that the code actually complies with the contract
by run time monitoring(see [14] describes security by contract architecture).

The next question is which is the best formal representation of such contract and
policy. Model carrying code papers [28] suggested finite automata. Unfortunately,
finite state and even Büchi Automata are too simple to express any practical policy:
already the rule “only allows connections to urls starting with https://” would
generate an automaton with infinite transitions when instantiating urls. Languages for
security-by-contract policies [1] are even more expressive.

The formal model considered for capturing contracts and policies is based on the
novel concept of Automata Modulo Theory (AMT). AMT has been introduced

in [22], which extends Büchi Automata (BA) by labeling transitions with expres-
sions belong to decidable theories. It is suitable for formalizing systems with finitely
many states but infinitely many transitions by leveraging on the power of satisfiability-
modulo-theory (SMT) decision procedures. In this way we can represent the task of
matching the contract with the policy as language containment problem between two
automata. However, while [22] provides the theoretical framework, namely the on-the-
fly matching algorithm and the complexity results of the operation, the actual imple-
mentation of the algorithm and the integration with a state-of-the-art theory solver is
still left open.

1.1 The Contribution of this Paper
We discuss the overall implementation architecture and the integration issues with a
state of the art decision procedure solver NuSMV [12] integrated with its MathSAT li-
braries [9]. Since our goal is to provide this midlet-contract vs platform-policy match-
ing on-the-fly (during the actual download of the midlet) issues like small memory
footprint, and effective computations play a key role.

To this extent we have decided to implement language inclusion as emptiness test as
an on-the-fly procedure a-la-SPIN with oracle calls to the decision procedures available
in NuSMV. Therefore our design decision AMT makes reasoning about infinite tran-
sitions systems with finite states possible without symbolic manipulation procedures
of zones and regions or finite representation by equivalence classes whose memory
intensive characteristic is not suitable for our application.

The second contribution is a detailed performance analysis of the integration design
alternatives regarding the construction of expressions, the initialization of solver, and
the caching of temporary results by considering both running time and internal metrics
of various available options.

We first introduce the concept of security-by-contract (§2) and the notion of Au-
tomata Modulo theory (§3). After description of the on-the-fly algorithm for contract
policy matching we introduce the architecture of our prototype (§4) and the design de-
cisions needed for evaluation (§5). Finally we report our experimental findings (§6)
and conclude with a brief discussion of related work (§7)

2 Security by Contract
In a security-by-contract paradigm [13] a contract accompanying an application is just
a set of rules describing the security behavior of the mobile application with its host
platform. We use the term policy to denote the set of rules that the host platform
would like to be respected. As we have anticipated, such rules can then be mapped to
restrictions on API usage by the application corresponding to variants of automata.

During the application development, the mobile code developers are responsible to
provide a description of the security behavior that their code finally provides. Such
a code can then undergo a formal certification process which can be done by the de-
veloper’s own company, the mobile operator or any other third party for which the
application has been developed. By using suitable techniques such as static analysis or
monitor in-lining or proof carrying code the code is certified to comply with the devel-
oper’s contract. Subsequently the code and the security claims are sealed together with
a digital signature and shipped for deployment.

Figure 1: SxC Workflow
Table 1: End Users’ Distilled Security Requirements

USE of Costly functionalities Any invocation of paid services, such as sending text messages,
using GPRS or wireless connections, must be controllable by the user.

NETwork connectivity Any external connections made by the application can be controlled.

PRIvate information management It is necessary to control what data is accessed by the ap-
plication such as local files, PIM items or contacts from Contact List.

INTeraction with other applets This requirement makes necessary to control means of inter-
process communication, in particular sockets and memory-mapped files.

Power consumption This requirement is two-fold: it makes necessary to control the invocation
of power-consuming functionality, such as WiFi connections, and to control the battery
level in course of running the application. This can be mapped into the NET and USE
categories.

EXTended functionality If the device is equipped with some advanced functionality, such as
camera or GPS receiver, its use is likely to be controlled by policies.

At deployment time the target platform will follow the workflow that we have
sketched in Fig.1 (see also [31]). At first it checks that the evidence is correct. Such
evidence could be a trusted signature as in standard mobile applications. Alternative
evidence could be a proof that the code satisfies the contract and then one could use
PCC techniques to check it [23].

As we have evidence that the contract is trustworthy the platform will check that
the claimed policy is actually compliant with the policy that our platform would like to
be enforced. If this is the case, then the application can be run without further ado.

Contracts and policies may vary significantly but a number of analyses of security
requirements for mobile and ubiquitous applications [20, 29, 33] have shown that we
can essentially distill them in few categories (Table 1). Such requirements can then
be mapped into concrete behavioral constraints on usage of APIs. Here we discuss
informally the syntax and refer to [1] for details.

The contract/policy is written in ConSpec language [1]. It was suggested for security-
by-contract application and its semantics in terms of automata modulo theory [22].
Contract/policy is just a list of disjoint rules for connections, for the Personal Identifi-
cation Module, for file access and so on. The main part of rule includes a list of event
clauses, clause is a method provided by an API. The clause specification is followed by
a sequence of guard-update block pairs. The guard is a boolean expression, specifying
a constraint on the method invocation. The update block is a list of actions that will be

executed in case of true guard.
The main part of a rule gives a rigorous and unambiguous definition of the behavior

(semantics) of the rule. Several semantics can be used for this purpose, e.g. standard
process algebras and security automata.

Example 1 Alice is a mobile application developer. To assure her customers that the
application does not alter any network configurations after Personal information man-
agement1 (PIM) was opened the contract states that no connections can be made. The
MIDlet cannot establish any connections, i.e. cannot open sockets, bluetooth or other
connections.

RULEID HIGH_LEVEL_CONNECTIONS
SCOPE Session
SECURITY STATE
boolean opened = false;
AFTER javax.microedition.pim.PIM.openPIMList(PimListType pimListType,

Mode mode)
PERFORM
true -> { opened = true; }

BEFORE javax.microedition.io.Connector.open(string url)
PERFORM
! opened -> {skip; }

BEFORE javax.microedition.io.Connector.open(string url, int mode)
PERFORM
! opened -> {skip; }

BEFORE javax.microedition.io.Connector.open(string url, int mode,
boolean timeouts)

PERFORM
! opened -> {skip; }

The BEFORE method step corresponds to rules that are invoked before the exe-
cutions of the method. Then the guards are checked after the PERFORM keyword.
The first guard that evaluates to true is executed and the actions between brackets are
executed.

Example 2 Bob is a user of mobile device. He has a number of important mobile
phone numbers from his business partners so he would like that if his agenda is opened
all subsequent communications are secured. The policy for the host platform describes
such behaviour: after PIM was opened the MIDlet can only establish secure connec-
tions, i.e. HTTPS connections.

In the sequel, we consider a number of examples for experiments that provide a
good coverage of the requirements that we mentioned afore (Table2). For instance, the
ex.1 is a pimNoConn example and ex.2 is pimSecConn, both of them cover the USE,
PRI and NET user requirements. We append to each problem name the contract or
policy suffix denoting whether the rule is used to specify a contract or a policy.

3 Automata Modulo Theory (AMT)
The formal tool used to represent policies and contracts is the concept of AMT . The
theory of AMT [22] is a combination of the theory of BA with the SMT problem,
namely the satisfiability of first-order formulas modulo background theories. The intu-
ition of AMT is that we represent a security policy as BA automaton where edges are
not labeled by atomic actions but rather by expressions in a suitable theory.

1The PIM system on the phone has the ability to manage appointment books, contact directories, etc. in
electronic form.

Table 2: Benchmark Contract and Policies

Example ID Natural Language description Coverage
httpHttps The application only uses high-level network connections. NET
https The application only uses HTTPS network connections. NET, PRI
maxKB512 The data received by application is bounded by 512Kb USE, NET
maxKB1024 The data received by application is bounded by 1024Kb USE, NET
noPushRegistry The application does not use the push registry mechanism USE
oneConnPushRegistry Only one connection registered to the Push registry at a time USE, NET
notCreateRSt The policy allows to open record stores, but it is not allowed INT

to create new record stores.
notCreateSharedRS The application does not create shared record stores. INT, PRI
noSMS No messages are sent by the application USE
100SMS Maximum 100 text messages can be sent by the application USE
pimNoConn After PIM was opened no connections are allowed USE, PRI, NET
pimSecConn After PIM was accessed only secure connections (HTTPS) USE, PRI, NET

can be opened

While traditional security automata are usually safety automata [15, 7] we prefer
to use BA because besides safety properties, there are also some liveness properties
which have to be verified. For example, “The application uses all the permissions it
requests”.

Some theories of interest are difference logic DL equality and uninterpreted func-
tions EUF LA(Q) and LA(Z). As in [8] we are particularly interested in the com-
bination of two or more simpler theories. While this is a not complete list, our only
requirement for a theory T is that the T -satisfiability of conjunctions of ground literals
is decidable by a T -solver [24].

Definition 3.1 (Automaton Modulo Theory) A tuple A = 〈E,S, q0,∆T , F 〉 where
E is a set of formulae in the language of the theory T , S is a finite set of states, q0 ∈ S
is the initial state, ∆T : S × E → 2S is labeled transition function, and F ⊆ S is a
set of accepting states.

The runs of the system are the traces of actual values of invoked APIs, represented
by assignments.

Definition 3.2 (AMT concrete run) Let AT = 〈E,S, q0,∆T , F 〉 be an automaton
modulo theory T . A run modulo T of AT on a finite (respectively infinite) word
(trace)w = 〈α0, α1, α2, . . .〉 of assignments is a sequence of states σ = 〈s0, s1, s2 . . .〉,
such that: s0 = q0 and there exists expressions ei ∈ E where si+1 ∈ ∆T (si, ei) and
(A, αi) |= ei is satisfiable for all i ∈ [0 . . . |w|] (resp. i ∈ N). The trace associated
with γ is sequence of assignments w = 〈α0, α1, α2, . . .〉. A finite run is accepting if
s|w| goes through some accepting states. An infinite run is accepting if the automaton
goes through some accepting states infinitely often as in BA.

A trace is a word in the language of AMT . The set α∗ denotes the set of finite
words over α while the set αω is the set of infinite words over α. The language of
AMT is a set of words. The transition function of AT may have many possible
transitions for each state and expression, hence AT may be non-deterministic.

Definition 3.3 (Deterministic AMT) AT = 〈E,S, q0,∆T , F 〉 is a deterministic au-
tomaton modulo theory T iff for every q ∈ S and every q1, q2 ∈ S and every e1, e2 ∈
E, if q1 ∈ ∆T (q, e1) and q2 ∈ ∆T (q, e2), where q1 6= q2 then in the theory T the
expression e1 ∧ e2 is unsatisfiable.

(a)AMT rule for pimNoConn contract (b)AMT rule for pimSecConn policy

Figure 2: AMT rules for the contract and policy of Ex. 3

(a) AMT rule for complementation of the
product from Ex. 3

jop
.
= pim.PIM.openPIMList

(PimListType pimListType, Mode mode)
joc

.
= io.Connector.open(url)

p(url)
.
= startsWith(url,”http://”)

s(url)
.
= startsWith(url,”https://”)

(b) Abbreviations for Java APIs

We describe expressions with function names from Java VM, since we do not con-
sider useful to invent our own names for API calls we use the javax.microedition APIs
for notation.

Example 3 Let us return to Bob’s policy again in Fig.2b which represents an automa-
ton for the contract. Starting from state ¬accessed, we stay in this state while PIM
is not accessed (¬jop). As PIM is accessed we move to state accessed and we stay
in this state only if the subsequent connections are secured i.e. “https://” or we keep
accessing PIM (jop). We enter state errorP if we start an unsecured connection e.g.
url starts with “http://” or “sms://” etc.

Expressions. In order to deal with arbitrary arithmetical conditions and protocols the
expressions allowed on edges follows the following syntax:

bool ::= bool "&" bool | bool "|" bool | "!" bool | "(" bool ")" | str_bool | basic
basic ::= constant | var | basic = basic | basic != basic

| basic < basic | basic > basic | basic <= basic | basic >= basic
| basic + basic | basic - basic | basic * basic | basic / basic

str_bool ::= "startsWith(" str "," str_const ")"
| "equals(" str "," str ")"
| "indexOf(" str "," char ")==-1"

Where bool denotes expression of boolean type (e.g. simple boolean expressions or boolean
function on the string), str bool denotes boolean function on the string, basic denotes the basic
expression on booleans and integers, and var denotes a boolean, integer or string variable.

For the automata to be correctly defined we have to establish a background theory,
for example for predicate startsWith(str,str const). We use startsWith for ex-
tracting protocol from a URL and assume that there are no two distinct str const such
that the predicate holds for the same str, for example “http://” and “https://” are good
as string constants while “http” and “https” are bad as string constants. In addition, if

arg2 and arg2’ are two distinct strings, then the predicate (startsWith(arg1,arg2)

& startsWith(arg1,arg2’)) must yield false for all arg1. These constraints and the
relation between startsWith and indexOf are axiomatized as follows:

1. startsWith(url,"http://") ↔ ! startsWith(url,"https://")

‘‘http://’’ and ‘‘https://’’ are correct protocols.

2. startsWith(url,"http://") → ! indexOf(url,’:’) == -1

the url starts with "http://" that contains the ’:’ character.

The security behaviors provided by the contract and desired by the policy can be
represented as automata where transitions correspond to invocation of APIs as sug-
gested by Erlingsson [15, p.59] and Sekar et al. [28]. Then the operation of matching
the midlet’s claim with platform policy can be mapped into classical problems in au-
tomata theory.

One possible alternative is language inclusion: given two automata AutC and AutP

representing respectively the formal specification of a contract and of a policy, we have
a match when the execution traces of the midlet described by AutC is a subset of the
acceptable traces for AutP . To check this property we can complement the automaton
of the policy, thus obtaining the set of traces disallowed by the policy and check its
intersection with the traces of the contract. If the intersection is not empty, any behavior
in it corresponds to a security violation, pursued in [22].

The other alternative is the notion of simulation: we have a match when every APIs
invoked by AutC can also be invoked by AutP . In other words, every behavior of
AutC is also behavior of AutP . Simulation is usually a stronger notion than language
inclusion as it requires that the policy allows the actions of the midlet’s contract in
a ”step-by-step” fashion, whereas language inclusion looks at an execution trace as a
whole.

In this paper we use the approach of language inclusion as in [22], namely given
two automata AutC and AutP representing respectively the formal specification of a
contract and of a policy we have a match when the language accepted by AutC (i.e. the
execution traces of the application) is a subset of the language accepted by AutP (i.e.
the acceptable traces for the policy). Matching problem can be reduced to an emptiness
test.

In other words, there is no behavior of AutC which is disallowed by AutP . If the
intersection is not empty, any behavior in it corresponds to a counterexample. It means
that we will have to complement the policy automaton.

Example 4 Bob’s policy is negated so that now a violating path is accepted by the
automaton. In Fig.3a if the PIM was accessed then we could open the HTTP connec-
tion and this will lead us to the error state (errorP). We could also open any other
connections except for HTTPS connection.

These operations require that the language of the theory under consideration is
closed under intersection and complementation. In a nutshell, one simply uses the
classical operation on automata but instead of checking edges for equality of labeling
transitions we check them for satisfiability of the conjunction of the labeling expres-
sions [22]. We consider only the complementation of deterministic AMT , because in
our application domain all security policies are naturally deterministic, as the platform
owner should have a clear idea on what to allow or disallow. This constraint arises also
due to BA complementation, the nondeterminic complementation is complicated and

exponentially blow-up in the state space [11]. Safra in [25] gives a better lower bound
(2O(n log n)), however it is still exponential (see [32]).

In the particular example (Ex. 4) complementation is just done by switching ac-
cepting states and non-accepting states because we have a classical security automata
(i.e. only concerned about safety properties [18]). This would be more complex if we
had liveness properties in the original automaton i.e. the original policy had more non-
accepting states beside the error state. While in classical security automaton the only
non-accepting state is the error state.

At this stage we only need to decide which algorithm we use for emptiness test-
ing. One of the key observations is that we will seldom need to crack a big nut (the
whole of the policy against the whole of the contract) but rather repeatedly crack many
small nuts (the “Access to PIM” rule in the policy against the corresponding one in the
contract, the rules for network access and so on). Further, we have a good but lim-
ited memory footprint (a smart phone is the target platform) which rules out symbolic
manipulation procedures by zones and regions of the whole state space. Another im-
portant observation is that whereas the policy is somehow pre-loaded in the device, and
is unlikely to change frequently, the contract will only come on the fly together with
the application (See [14, 31] for some descriptions of the whole run-time architecture)

Our decision was to integrate a truly on-the-fly Nested DFS [27] with decision
procedure (DP) for SMT. The algorithm takes as input the application’s contract and
the mobile platform’s policy as AMT and then starts a depth first search procedure
over the initial pair of states. When a suspect pair of states is reached we have two
cases. If one state is an error state of the complemented policy then we report a security
policy violation without further ado. Otherwise we start a new depth first search from
the suspect states to determine whether they are in a cycle, in other words they are
reachable from themselves. In this latter case, we report an availability violation.

Note that our language inclusion approach differs from simulation approach. We
can consider the corresponding concrete automaton which is constructed by replacing
each transition labeled with an expression from the theory with the infinitely many tran-
sitions labeled by the corresponding satisfying assignments. Automata that are differ-
ent at the theory level might have the same concrete representation. For example, take
two automata modulo theory C and P , one with splitting edge (joc&protocol(url) =
“http′′ and joc&protocol(url) = “https′′) and the other with OR edge (joc&(protocol(url) =
“http′′ ∨ protocol(url) = “https′′)). Both have the same concrete model. Such
equivalence is obvious because at the concrete level if the assignment α1i is such
that (A, α1i) |= joc&protocol(url) = “http′′ or (A, α2i) |= joc&protocol(url) =
“https′′ then clearly (A, αi) |= joc&(protocol(url) = “http′′ ∨ protocol(url) =
“https′′). In other words, ∨ has the maximal model and thus in the transitions cor-
responding to the disjunction in the theory it is the union of all assignments in the
concrete automaton.

This leads toAMT fair simulation is stronger thanAMT language inclusion. For
example if we have policy represented as P and contract represented as C, where both
automata accept the same language but according to simulation |= joc&(protocol(url) =
“http′′ ∨ protocol(url) = “https′′) → joc&protocol(url) = “http′′ does not hold,
thus we do not have simulation. Technically this is a consequence of the maximal
model for ∨.

The on-the-fly matching algorithm presented here is not a fairly standard automata
inclusion, as we need to make call to decision procedure which is some theorem
solver. Thus, when theory T is decidable with an oracle for the SMT problem in
the complexity class C then: the non-emptiness problem for AMT T is decidable in

Figure 3: Contract-Policy Architecture

LIN − TIMEC and NLOG− SPACEC [22].
Returning to Ex.3, the prototype translates the specifications intoAMT (Fig.2) and

runs the on-the-fly algorithm creating and visiting the product automaton. In the Bob
and Alice case this means that visiting the two automata in parallel we should reach a
state where opened (see Fig. 2a) and errorP is reached. When running the matching
algorithm we find out that there is no cycle through any accepting state (the accepting
state for contract and negated policy, i.e. accepting contract and violating policy at the
same time), meaning contract matches policy.

4 The Architecture
In this section we describe the conceptual architecture of the prototype that implements
the overall matching algorithm and supports integration with state of the art decision
procedure solver NuSMV [12] integrated with its MathSAT libraries [9]. The main
aim is to provide a concrete overview of how the prototype is implemented so that one
can easily understand the possible options for integration with the solver. The contract-
matching prototype takes as input a contract and a policy both specified in ConSpec
and checks whether or not the contract matches the policy. A sketch of the prototype
architecture is shown in Fig. 3.

Our first observation is that the policy has to be deployed on the device and it is
unlikely to change frequently. The second observation is that, even if applications
(and related contracts) will change frequently and dynamically, the binding between
an application and its contract will be pretty static. If a digital signature or a proof
carrying code is used, the contract has to be shipped with the application. This contract
must be essentially included in the JAR file that represents the application and must be
directly accessible to the virtual machine that is responsible for the matching and the
enforcement of the security policy (see [31] for details).

In this paper we thoroughly describe a work made on a Java platform for a Desktop
PC and give some experimental results on .NET implementation for a Mobile platform.
The prototype is basically separated in 2 parts: on-device and off-device implementa-
tions. During off-device part execution, the contract and policy are transformed into a

suitable internal representation for the on-the-fly algorithm. The policy automaton is
also complemented at this step of the execution. In on-device part of the prototype the
main on-the-fly algorithm runs over already created contract and policy as AMT and
makes a significant amount of calls to the decision procedure while it’s execution.

Let us now describe initial architecture for Java platform that subsequently re-
mained the same for the .NET architecture. The initial parsing algorithm just trans-
forms a contract (resp. a policy) into a Java class, ContractAutomaton.java (resp. Poli-
cyAutomaton.java) that can be directly manipulated by the actual algorithm responsible
for the on-the-fly policy matching (i.e. emptiness test). If the policy option is specified
then the parser also performs the complementation of the policy. Management of the
variables declaration is discussed later in the §5.

So far we have not used any of the tricks of the trade (e.g. bit state hashing) that
characterize the symbolic automata representations because we wanted the contract
and policy to be manageable under a generic Java MIDP platform without need of extra
libraries. Also, the current experiments that we have run on larger applications do not
seem to require managing significantly big automata but rather many little automata,
one per each security rule. Another reason was that we wanted the policy to be also
potentially executable in parallel with the code.

Since a contract-policy matching algorithm should frequently call the decision pro-
cedure during its’ running, we have found a design decision for an internal represen-
tation of AMT . This particular form of AMT supports all the options of integration
with solver that we address in this paper.

Let us describe this form in more details. We associate a number of variables to
every edge, where method is an API call that the policy is supposed to rule, cond -
a guarded command which must be true in order for the method to be executed, for
instance a cond specifies that the url must start with the string “https”.

For further representation simplification, we follow the semantics for security au-
tomata proposed in [1] so that we have a prioritized execution among guards: we go
to the next guard only if the guards before it have all failed. Such information is rep-
resented in otherConds - the other guarded commands that failed before reaching the
current guard otherMethods - an expression consists of all other methods that are not
supposed to rule at the current moment e.g. ¬m1∧¬m2 wherem1 andm2 are methods
that are not supposed to rule.

Once contract and policy automata are made available to the main system, the lat-
ter can run the on-the-fly procedure which has been also implemented in Java using
only MIDP libraries to guarantee portability (and we have similarly developed a .NET
mobile implementation in C#).

Next stage is non-trivial point because we need to interact with a state-of-the-art
decision procedure for mathematical theories. We took the design decision to use the
solver as a black box for the general algorithm so it gives the answer whether the
problem is satisfiable or not. During the process of implementation it appeared to be
not entirely possible2 we have tried to be close as possible to this decision. In this
way it could be easy to also try a different decision procedure such as MathSAT by
Bozzano et al. [9], DPLL(T) by Tinelli [24] or CVC-lite [4]. For the same reason we
have further decided to interface with the solver without using its internal data structure
but rather to interact with the decision procedure by using strings. While this creates
a bit of overhead for parsing, it makes it significantly easier to replace the solver. An

2The obvious reason is there are issues related to presence of O.S. libraries that might be required by a
solver and not by another one. More subtle reasons are related to garbage collection and are further discussed
in Sec. 5.

industry level application committing to a particular solver would likely bypass this
step.

Among the different possibilities we have used the decision procedure libraries be-
hind the tools MathSAT and NuSMV [12]. In this way we could support expressions in
the edges of the automaton modulo theory that are arbitrarily complex boolean expres-
sion, mathematical expression and uninterpreted function symbols as we have shown
in §3.

5 Design Decisions
Different design decisions are made in order to decide the best configuration of inte-
grating automata-based inclusion algorithm with decision procedure as the problem
is not trivial. Every option of the configuration we propose below has different mem-
ory impact and this information and results of such analysis is very important because
of the resource constraints of mobile device. This is not studied in classical decision
procedure integration papers because the problem of resources is irrelevant. The time
in classical research is considered different if it is linear or exponential, i.e. constant
factor is not taken into account. For achieving our goal even small changes in time
makes sense.

In integrating matching algorithm with the theory solver we faced a number of
design options:

One vs Many Solver in object oriented languages is by itself an object. We could either
create only one instance of solver, relying on the solver to assert and retract
expressions on demand, or create a new instance of the solver every time we call
the decision procedure.

MUTEX SOLVER if an edge in the automaton correspond to a call to a method it is
obviously incompatible with another edge calling a different method. Such con-
straints could be directly incorporated into the algorithm without the need to rep-
resent them as boolean mutual exclusion constraints on the boolean variables rep-
resenting method invocations. In this case all the method names are declared as
mutex constants at the moment of declaring all variables, then the expression sent
to the solver has the following structure: method = name∧cond∧otherConds.
Hence, if the method names of two edges are not the same then the DecisionPro-
cedure returns false.

MUTEX MC allows the on-the-fly algorithm to check whether method names are the
same. The DecisionProcedure is called with parameters: cond ∧ otherConds
only if this check is passed.

PRIORITY MC the semantics for security policy is that guards are evaluated using pri-
ority or hence we can optimize the expressions sent to the decision procedure
as lemmas. Using the lemma, the Expression sent to the DecisionProcedure is
minimized and it has only cond.

CACHING MC Since many edges will be traversed again and again we could save time
by caching the results of the matching. The solver itself has a caching mechanism
that could be equally used (CACHING SOLVER).

While we assumed that all decision could be just taken after considering prelim-
inary experimental results it turned out that at least for the One vs Many decision this
was not possible. The cause is the management of garbage collection both by the Java
virtual machine and by the libraries of MathSAT/NuSMV which requires only one in-
stance of solver exists at time in order to interact correctly with the NuSMV library.
This leads to use a static invocation for the solver and set significant constraints on the
interaction.

For example, before starting to visit all constraints to the library, all variables used
in expressions must be declared. The NuSMV library has to invoke DeclareNew-
BooleanVar, DeclareNewWordVar, DeclareNewStringVar methods for declaration of
boolean, integer and string variables respectively. Only after declaring all the variables
from contract and policy expressions, the on-the-fly algorithm can actually start in-
voking the decision procedure in its visit. A consequence of this rule is that with this
implementation we cannot insert edges that introduce new variables because the solver
can be called only after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints
to the solver with the AddConstraint method of the NuSMV class and then remove
them with the RemoveConstraint. As per today, we still occasionally get bugs in the
NuSMV/MathSAT solver or the main on-the-fly algorithm due to this complication of
a single instance object.

The rest design alternatives can be implemented and tested thus giving way to the
six alternative configurations (see Fig. 4d) of the interactions between the solver and
the on-the-fly emptiness check algorithm.

6 Experiments on Desktop and on Device
To select the best option we collected data on resources used, namely number of vis-
ited states, number of visited transitions, running time for each problem in each design
alternative, and the number of solved problems against time. For sake of example we
list in Table 3 some sample possible combinations of policy-contract (mis)matching
pairs. For instance, the contract pimNoConn contract.pol represents an ex.1 and cor-
responds to the AMT shown in Fig.2a. Similarly, the policy pimSecConn policy.pol
corresponds to ex.2 and related AMT in Fig.2b.

With the exception of the pathological problem P100, which has been designed that
way, most problems have few states and transitions and, as we shall see in the next table
(Table 4 showing performance of ten times run for each problem set and each design
alternative), they also require little time for being assessed.

Let us notice that the number of states and transitions in the AMT for each con-
tract and policy in Table 3 is a number of reachable states and transitions. During the
running of matching algorithm there may be the case when the algorithm stops working
(producing ”do not match” answer) without reaching all the states of contract and/or
policy. And this case is explicitly shown in P6, P7 and P8 examples in Table 4. That
is why we only present here the number of reachable states in Table 3 and number of
visited states during on-the-fly running in Table 4.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Linux
version 2.6.20-16-generic, Kubuntu 7.04 (Feisty Fawn). Currently, we are also porting
the application to the mobile for actual detailed profiling, namely HTC P3600 (3G PDA
phone) with ROM 128MB, RAM 64MB, Samsung R©SC32442A processor 400MHz

Table 3: Problems Suit

Problem Contract Policy SC TC SP TP
P1 size 100 512 contract.pol size 10 1024 policy.pol 2 4 2 4
P2 maxKB512 contract.pol maxKB1024 policy.pol 2 4 2 4
P3 noPushRegistry contract.pol oneConnRegistry policy.pol 2 3 3 9
P4 notCreateRS contract.pol notCreateSharedRS policy.pol 2 4 2 4
P5 pimNoConn contract.pol pimSecConn policy.pol 3 7 3 9
P6 2hard contract.pol 2hard policy.pol 3 7 3 7
P7 httpI contract.pol httpsI policy.pol 3 7 3 7
P8 3hard contract.pol 3hard policy.pol 3 7 3 7
P100 noSMS contract.pol 100SMS policy.pol 2 4 102 304

(a) Abbreviations

SC: Number of States Contract TC: Number of Transitions Contract
SP: Number of States Policy TP: Number of Transitions Policy

and operating system Microsoft R©Windows Mobile R©5.0 with Direct Push technology.
For the sake of example we present the result obtained for alternative with MU-

TEX MC ONE INSTANCE CACHING SOLVER in Table 4. These results are mapped into
diagram shown in Fig.4a for matching problems and Fig.4c for not matching prob-
lems. Notice that we only provide the cumulative running time that is necessary to
solve all problems as in the CASC theorem proving competition. This is important be-
cause our goal is to match (or not match) all rules in a contract with all corresponding
rules in a policy. Thus, the value of the single problem is not important except for some
cases where the average output might be significantly off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large num-
ber of states compared to the others: essentially this happened because we draw an
automaton modulo theory with 100 states and which traverse from one state to another
by adding 1 to the number of SMS sent. In this case there is a difference between M1
and M2, namely around 8%. In order to study this anomaly in more details, we gen-
erated more unreal problem sets: as P100 with combination of sent SMS none, 1, 10,
and 100 for both contract and policy. The generated cases cumulative running time of
implementation is propositional to the number of problems solved (see Fig.4b).

All methods seem to perform equally well because the problems are not stress-
ful enough for the different configurations. This is actually a promising result for
the deployment to the resource constrained in mobile device domain. Therefore, we
have implemented the same algorithm for the mobile platform HTC P3600 (3G PDA
phone). We run the problem suit of P1-P8 and P100 with MUTEX MC ONE INSTANCE
CACHING SOLVER configuration.

Table 4 shows the results on device, where the runtime of every single problem run-
ning is longer than on Desktop PC. This result is obvious due to higher performance of
desktop platform. However, the cumulative time of solved problems is still manageable
for the mobile user to obtain. The algorithm’s runtime will be longer for the problems
that match (the algorithm has to run over all states until the cycle is found) than for the
problems that do not match (the algorithm stops working as soon as counterexample
is found). Note also that the number of visited states and transitions for the matched
problems are the same exactly because of the search all over the states; otherwise the
counterexample can be found in a different time and it does not depend on the run.

Table 4: Running Problem Suit 10 Times

(a) Running Problem Suit

MUTEX MC ONE INSTANCE CACHING SOLVER

Problem Desktop Mobile Result
ART (s) CRT (s) SV TV ART (s) CRT (s) SV TV

P1 2.4 2.4 2 6 4.3 4.3 2 6 Match
P2 2.4 4.8 2 6 4.1 8.4 2 6 Match
P3 2.4 7.2 3 11 3.9 12.3 3 11 Match
P4 2.4 9.6 2 6 4.0 16.3 2 6 Match
P5 4.7 14.3 3 11 4.1 20.4 3 11 Match
P6 2.9 2.9 4 4 3.8 3.8 3 6 Not Match
P7 2.8 5.7 5 7 3.8 7.6 2 4 Not Match
P8 2.9 8.6 5 7 3.8 11.4 3 6 Not Match
P100 9.3 9.3 102 307 11.3 11.3 102 307 Match

(b) Abbreviations

ART: Average Runtime for 10 runs SV: Number of Visited States
CRT: Cumulative Average Runtime TV: Number of Visited Transitions

Cumulative time of problems is presented in Fig. 5a for matching and Fig.5b for not
matching.

In this paper we state the time of the running on the mobile platform for one design
decision just in order to give the reader a feeling how the matching algorithm with
integrated decision procedure can run in real life and that it will take a reasonable time.
Even for a policy that is transformed into Automata Modulo Theory with hundred of
states and in case algorithm reaches all of them, it is still takes only 11.3 seconds to
complete the procedure.

Our current implementation uses PRIORITY MC ONE INSTANCE CACHING MC con-
figuration. PRIORITY MC is preferred because of the nature of rules in policies which
is priority or, also because MUTEX SOLVER does not allow empty methods such as
¬mi ∧ ¬mj which is possible in the matching algorithm. ONE INSTANCE is chosen
because of garbage collection problem. CACHING MC is desired in order to save calls to
solver for the already solved rules.

7 Related Work and Conclusions
Mobile code security can be achieved by several approaches, for example code signing
to ensure the origin of the code by trust relationship, proof-carrying code (PCC) to en-
sure safety by explicit proof, model-carrying code (MCC) that carries security-relevant
behavior of the producer mobile code [28], and security-by-contract (SxC) where a
digital signature should not just certify the origin of the code but rather bind together
the code with a contract [13].

Security-by-contract (SxC). Security-by-contract [13] proposed to augment mobile
code with a claim on its security behavior that can be matched against a mobile plat-
form policy on-the-fly, which provides semantics for digital signatures on mobile code.
Security-by-contract attempts to overcome the major limitation of MCC, namely not

(a) Match succeeds for real policies (b) Matches among synthetic contracts and policies

(c) Match fails for real policies

M1: MUTEX MC ONE INSTANCE CACHING SOLVER
M2: MUTEX SOLVER ONE INSTANCE CACHING SOLVER
M3: PRIORITY MC ONE INSTANCE CACHING SOLVER
M4: MUTEX MC ONE INSTANCE CACHING MC
M5: MUTEX SOLVER ONE INSTANCE CACHING MC
M6: PRIORITY MC ONE INSTANCE CACHING MC

(d) Abbreviations for Configurations

Figure 4: Cumulative response time of matching algorithm on Desktop PC

(a) Match succeeds (b) Match fails

Figure 5: Cumulative response time of matching algorithm on the Mobile Device

fully developed issue of contract matching and limited to finite state automata which
are too simple to describe realistic policies. In coping with this challenge, we propose
an application of formal methods that goes beyond the traditional realm of off-line ver-
ification of formal properties of hardware and software. The formal model considered
for capturing contracts and policies is based on the novel concept of Automata Modulo
Theory (AMT).

Off-line Verification. Our approach is different from off-line verification while we
use integration of emptiness test for automata modulo theory with satisfiability using
decision procedures. Such reasoning capabilities should then be used at the time an
application is downloaded on a mobile application such as PDA or a smart phone. The
usage of decision procedures allowed us to cope with automata modulo theories where
edges are not just finite states of labels but rather expressions that can capture infinite
transitions such as “connect only to urls starting with https://”. In the off-line verifi-

cation realm, the idea of embedding decision procedures into a higher level reasoner
is well accepted and was one of the strongholds of the PVS system. At theoretical
level Tinelli in [30] combines order-sorted first-order theories and their decision pro-
cedures for theories satisfying certain conditions into a decision procedure for their
union, where SMT problems themselves can be addressed by tools such as CVC [4],
UCLID [10], MathSAT [9].

Infinite States System. Infinite numbers of transitions in security policies by label-
ing each transition with a computable predicate instead of an atomic symbol has been
studied in [26] and implemented in systems like PoET/PSLang toolkit [16]. Edit au-
tomata [5] extend security automata to model the transforming effects of in-lined refer-
ence monitors and is implemented in the Polymer system [6]. These approaches focus
on the relations between code and security claims on the code. The Mobile system
[19] implements a linear decision algorithm that verifies that annotated .NET bytecode
binaries satisfy a class of policies that includes security automata and edit automata.

Conclusions. We have described the prototype implementation, its integration with
a state of the art decision solver (based on MathSAT and NuSMV) and the prelimi-
nary experiments that we have done for contract-policy matching in order to select the
more suitable design combination. We are currently undertaking development into two
major directions: porting the implementations on the mobile and developing a version
working for .NET.

Acknowledgments
We would like to thank Prof. F. Massacci for his insightful comments and suggestions.
We thank M. Roveri and A. Cimatti for the support in the usage of the NuSMV and
MathSAT libraries and for hammering down a decision procedure for URLs. We also
acknowledge Marco Dalla Torre for support in the integration of the tools.

References
[1] I. Aktug and K. Naliuka. Conspec – a formal language for policy specification. In Proc.

of the 1st Int. Workshop on Run Time Enforcement for Mobile and Distributed Systems
(REM2007), ENTCS. Elsevier Sci., 2007. To appear.

[2] M. Arikawa, S. Konomi, and K. Ohnishi. Navitime: Supporting pedestrian navigation in
the real world. IEEE Pervasive Comp. Magazine, 6(3):21–29, 2007.

[3] J. Bacon. Toward pervasive computing. IEEE Pervasive Comp. Magazine, 1(2):84, 2002.

[4] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proc. of CAV’04, 2004.

[5] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Found. of Comp.
Security, Copenhagen, Denmark, July 2002.

[6] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In Proc.
of the ACM SIGPLAN 2005 Conf. on Prog. Lang. Design and Implementation, pages 305–
314. ACM Press, 2005.

[7] L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for run-time
security policies. Int. J. of Inform. Sec., 4(1-2):2–16, 2005.

[8] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v. Rossum, and R. Sebas-
tiani. Efficient satisfiability modulo theories via delayed theory combination. In K. Etes-
sami and S.K. Rajamani, editors, Proc. of CAV’05, volume 3576 of LNCS, pages 335–349.
Springer-Verlag, 2005.

[9] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Se-
bastiani. MathSAT: Tight integration of SAT and mathematical decision procedures. J. of
Autom. Reas., 35(1–3):265–293, 2005.

[10] R. E. Bryant, S.K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In Proc. of
CAV’02, pages 78–92, London, UK, 2002. Springer-Verlag.

[11] J.R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel
et al., editor, Int. Congress on Logic, Methodology and Philosophy of Science, pages 1–11,
California, 1962. Stanford University Press.

[12] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Proc. of
CAV’02, 2002.

[13] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a
Semantics for Digital Signatures on Mobile Code. In Proc. of EuroPKI’07. Springer-
Verlag, 2007.

[14] N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard. A security-by-contracts
architecture for pervasive services. In 3rd Int. Workshop on Security, Privacy and Trust in
Pervasive and Ubiquitous Computing. IEEE Press, 2007.

[15] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.
Technical report 2003-1916, Department of Computer Science, Cornell University, 2003.

[16] U. Erlingsson and F.B. Schneider. Irm enforcement of java stack inspection. In Proc. of
Symp. on Sec. and Privacy, page 246. IEEE Press, 2000.

[17] L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Architecture, API Design,
and Implementation. Pearson Education, 2003.

[18] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforcement
mechanisms. TOPLAS, 28(1):175–205, 2006.

[19] K.W. Hamlen, G. Morrisett, and F.B. Schneider. Certified in-lined reference monitoring
on .net. In Proc. of the 2006 workshop on Prog. Lang. and analysis for security, pages
7–16, New York, NY, USA, 2006. ACM Press.

[20] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Usage control requirements in mobile
and ubiquitous computing applications. In Proc. of the Int. Conf. on Sys. and Net. Comm.
(ICSNC 2006), page 27. IEEE Press, 2006.

[21] B. LaMacchia and S. Lange. .NET Framework security. Addison Wesley, 2002.

[22] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform security
policy using automata modulo theory. In Proc. of The 12th Nordic Workshop on Secure IT
Systems (NordSec’07), 2007.

[23] G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT Symp. on
Princ. of Prog. Lang., pages 106–119, New York, NY, USA, 1997. ACM Press.

[24] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. of the
ACM, 53(6):937–977, 2006.

[25] S. Safra. On the Complexity of omega-Automata. In IEEE Symp. on Found. Comp. Science
(FOCS’88), pages 319–327, White Plains, New York, USA, 1988. IEEE Press.

[26] F.B. Schneider. Enforceable security policies. TISSEC, 3(1):30–50, 2000.

[27] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. Technical Report
2004/06, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstech-
nik, 2004.

[28] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-carrying
code: a practical approach for safe execution of untrusted applications. In Proc. of the 19th
ACM Symp. on Operating Sys. Princ., pages 15–28. ACM Press, 2003.

[29] MOBIUS Project Team. Framework- and application-specific security requirements. Pub-
lic Deliverable of EU Research Project D1.2, MOBIUS - Mobility, Ubiquity and Security,
Report available at http://mobius.inria.fr, 2006.

[30] C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In J. Alferes
and J. Leite, editors, Proc. of JELIA’05, volume 3229 of LNAI, pages 641–653. Springer-
Verlag, 2004.

[31] D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka, and
F. Massacci. A flexible security architecture to support third-party applications on mobile
devices. In Proc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

[32] M.Y. Vardi. Büchi complementation a 40-year saga. March 2006.

[33] A. Zobel, C. Simoni, D. Piazza, X. Nuez, and Daniel Rodriguez. Business case and secu-
rity requirements. Public Deliverable of EU Research Project D5.1.1, S3MS- Security of
Software and Services for Mobile Systems, Report available at www.s3ms.org, 2006.

