
Iterative Enforcement by Suppression: Towards

Practical Enforcement Theories∗

Nataliia Bielova
University of Trento, Italy

bielova@disi.unitn.it +39 0461 883916 (Corresponding author)

Fabio Massacci
University of Trento, Italy

Fabio.Massacci@unitn.it +39 0461 882086

Abstract

Runtime enforcement is a common mechanism for ensuring that pro-

gram executions adhere to constraints specified by a security policy. It is

based on two simple ideas: the enforcement mechanism should leave good

executions without changes (transparency) and make sure that the bad

ones got amended (soundness). From the theory side, a number of papers

(Hamlen et al., Ligatti et al., Talhi et al.) provide the precise character-

ization of good executions that can be captured by a security policy and

thus enforced by mechanisms like security automata or edit automata.

Unfortunately, transparency and soundness do not distinguish what

happens when an execution is actually bad (the practical case). They

only tell that the outcome of enforcement mechanism should be “good”

but not how far the bad execution should be changed. So we cannot

∗A preliminary, much shorter version of this paper appears in the proceedings of Nord-
Sec’09 [6].

1

formally distinguish between an enforcement mechanism that makes a

small change and one that drops the whole execution.

In this paper we explore a set of policies called iterative properties

that revises the notion of good executions in terms of repeated iterations.

We propose an enforcement mechanism that can deal with bad executions

(and not only the good ones) in a more predictable way by eliminating

bad iterations.

Keywords: runtime enforcement, execution monitors, edit automata

1 Introduction

The last few years have seen a renewed interest in the theoretical and practical

aspects of the runtime security enforcement mechanisms. These mechanisms

dynamically monitor the behavior of applications and immediately take action

when the application behaves in a way that violates security policy.

The first formal model of such monitors was defined by Schneider [23]. He

presented a security automata that recognizes correct (allowed by the policy) run

of the application and halts it as soon as its behavior violates the policy. These

monitors are provably enforcing a restricting class of security policies called

safety properties. These properties specify that “nothing bad ever happens”.

Later a number of refinements have been proposed, for example Hamlen’s

work on rewriting [15] and Ligatti et al. works on edit automata [3, 19]. The

later work proposes a model of monitors that are not only recognizing the correct

behavior of applications, but are also capable of transforming their behavior.

This power gives edit automata capability of enforcing more than safety proper-

ties, and it was proven that they are able to enforce a richer class of properties,

called renewal properties.

In our paper [4] and corresponding technical report [5] we analyzed edit au-

2

tomata and how exactly they can enforce renewal properties. We have proposed

a hierarchy of edit automata and found out that these monitors can potentially

transform insecure behavior of applications in very different ways, or in other

words, enforce the same property differently. For example, we have taken a se-

curity property described in the example of the original Ligatti et al. paper [3]

and found out that the edit automaton in their running example enforces this

property differently from the one constructed by the proof of their theorem.

The latter automaton, that we call Longest-valid-prefix automaton1, is a special

kind of edit automata that waits until the behavior becomes correct again by

itself and only then outputs it. For more details see [4, 5].

We do not think this is due to a mistake in the original papers but rather in a

limitation of the notions of soundness and transparency. They are used in most

of the papers to characterize good behavior that can be potentially enforced with

particular enforcement mechanism. Soundness says that application behavior

should always respect the security policy. Transparency says that if the behavior

is correct, then it should not be transformed by an enforcement mechanism.

However these notions are not enough to define how an enforcement mecha-

nism actually changes the bad behaviour. In practice the bad behavior of appli-

cation is usually changed in some way such that the result is correct (soundness).

This can be done by halting an execution of application (Schneider’s security

automata [23]), by waiting till it becomes correct again (Longest-valid-prefix au-

tomata [3, 4]), by removing wrong subparts (Iterative suppression automata [6])

or by transforming it in some more complex way (Full edit automata [3, 19]).

Yet, this part is simply not reflected in the current theories.
1In the previous papers [4, 6] we called it Ligatti automaton, but changed the naming to

be fair to Ligatti’s coauthors.

3

1.1 Contribution of the paper.

In order to close this gap, in this paper we address the following challenge:

Challenge 1. The enforcement mechanism should have a “plausible”/“believable”

behavior when the actions (of the users) do not correspond to the policy.

Our solution is a notion of “better” enforcement that makes it possible to

overcome the distinction between bad behavior and good behavior and a mech-

anism that performs concrete enforcement of special kind of security properties.

Informally speaking, our notion of “better” is based on the number of ele-

ments from the original execution that should be suppressed in order to get a

legal execution. If the resulting execution cannot be obtained from the original

one by suppressing elements, we say that the distance is equal to∞. While still

preliminary this notions allow us to show that when transforming bad execu-

tions, an iterative suppression automaton is always “better” (i.e. deletes less

elements) than a Longest-valid-prefix automaton while both of them are sound

and transparent.

We start by presenting our running example that will be used throughout

the paper in Section 2. This example of a health-care process of drug dispen-

sation to outpatients has inspired us to do this work. We find it particularly

interesting to show what kind of practical enforcement can be done whenever

process execution violates the security policy. In Section 3 we present the basic

notations for security properties, runtime enforcement, and others. We intro-

duce a new kind of security property called iterative property. Loosely speaking,

it captures the practical intuition of repeating executions of the workflow. This

property corresponds more accurately than renewal and safety property [19]

to the actual behavior of workflow executions that are used in practice. In

our practical example it covers all properties of interests with the exception of

liveness. We also show the relation between iterative properties and all other

4

classical security properties. Then we present formal definitions of enforcement

mechanism in Section 4 and traditional principles of evaluating the enforce-

ment. Algorithms for constructing a Longest-valid-prefix automaton and a new

enforcement mechanism that suppresses the bad iterations are given in Section 5.

Section 6 proposes a comparison of the Longest-valid-prefix automaton and our

mechanism, it also presents a theorem showing that in practical cases (when the

behavior is bad) our mechanism is “better” (producing longer executions) than

the Longest-valid-prefix automaton. Finally we describe related work, propose

more discussions and conclude in Section 7.

2 Running example

We propose a case study based on a healthcare process of drug dispensation. In

Italy hospitals accredited with the Public National Health Service are in charge

of administering drugs and providing diagnostic services to patients. Usually

in these (public or private) hospitals there is a generic dispensation process de-

scription that allows hospitals to refund the drugs administered and/or supplied

in the hospitals’ outpatient departments to the patients that are not hospital-

ized. In particular, there is a process called File F that allows refunding of the

drugs for specific critical and crhonic diseases that should be done by the public

authority. As another example, if the patient is using a specific drug for the

research program purposes (i.e. the patient has been enrolled for the clinical

trial for the testing of that drug) then the reimbursement should be done by the

clinical trial funds.

Drug dispensation process is a high level business process. It involves human

participants as well as IT technologies. Some of contained tasks are completely

human activities without any interaction with IT system (e.g. all patients tasks,

or delivering drugs from stock to patient (physically) by doctor or nurse). The

5

drug dispensation process is modeled in such a way that if all the activities

correspond to this process, then they also comply with the dispensation process

description and hence all the dispensed drugs will be refund.

The drug dispensation process starts when the Patient brings his prescrip-

tion sheet to Doctor or Nurse (we will say Doctor from here on). The Doctor

authenticates himself by entering his ID. The system identifies Doctor’s oper-

ational unit and enables Patient identification. Then the Doctor identifies the

Patient and asks him whether he requires anonymization of his health records.

The Doctor anonymizes it if required. The system retrieves all necessary data

for selecting the drugs to dispensation and offers the option to select drugs to

the Doctor. Drug selection is a special subprocess that we will describe in details

later. After drug selection Doctor verifies candidate drug list (for dispensation)

and continues or restarts the process of drug selection. Then Doctor registers

the drug request, takes the drugs physically from the stock, prints dispensa-

tion sheet, brings drugs to the Patient and archives copy of dispensation sheet,

signed by Patient. More details of the process can be found at [20].

Here we are focusing on the drug selection subprocess. Execution of this

subprocess is repeated by the Doctor for every drug in the prescription. First,

the Doctor fills in the candidate drug list for his Patient. If the drug is highly

sensitive, reviewing therapeutical notes is needed. In this case they will be

shown to the Doctor. Then the system checks drug’s submission to Research

program and in case the drug is registered shows the notification to the Doctor.

In case Doctor receives such notification, he should insert the research protocol

number, a number of the protocol according to which the drug can be given to

the Patient. Then the Doctor inserts all prescription details, the system checks

drug availability in stock and eventually notifies the Doctor. If the drug is not

available in stock Doctor checks the physical existence in the ward and then

6

Fig. 1: BPMN diagram drug dispensation process

decides to continue or cancel the dispensation process.

In Fig. 1 we present a simplified version of the BPMN (Business Process

Model Notation) diagram of drug dispensation process emphasizing the drug

selection subprocess2. We show the whole drug selection process (the top part

of the figure) just to give reader a flavor of the process we described above. As

a running example of this paper we will use the drug selection subprocess (lower

part of the figure).

To ease the comparison with other papers on runtime enforcement [3, 24]

we decided to present the BPMN process using finite state automaton. This
2We would like to thank ANECT (http://www.anect.com/en/) for developing original

BPMN diagrams of the full drug dispensation process.

7

representation is natural, since from a point of view of the Doctor a workflow

described above is a sequence of actions that he should perform. To simplify the

translation we assume that each choice in BPMN diagram corresponds to the

action in resulting process execution that communicates the choice, e.g., if the

drug is for research then the corresponding action is “Drug is for research”, if

the drug is highly sensitive, then an action “Therapeutical notes needed” will be

shown. Not only in our example but in many practical cases the policy is given

implicitly by describing the workflow corresponding to the legal executions, that

can be repeated several times. This is precisely the case when we represent a

process description using automaton. Formal definition and a corresponding

automaton will be given later in the Section 3.

In practice there are many processes where a user should repeat several

operations repeatedly choosing among several options. The Example 1 of drug

dispensation is a good demonstration for this kind of process, so proposing a

mechanism of enforcing this property covers all the other examples of this kind.

Example 1. Let us assume the following execution of the process, where 3

different drugs are in the prescription list, hence the execution will consist of 3

parts, that we call an iteration, for each drug:

1. The first drug is selected and it is not highly sensitive, so therapeutical

notes are not needed; the drug is for research, so the Doctor inserts re-

search protocol number; then he inserts prescription details; and the drug

is available in stock. This iteration is correct, in a sense that it corresponds

to the process description.

2. Then for the second drug: the Doctor selects it; the drug is not higly

sensitive so therapeutical notes not needed; the drug is for research but the

Doctor inserts prescription details only; the drug is available in stock. In

this part of the process execution the drug is for research but the research

8

protocol number is not inserted, therefore it is not correct because it violates

the process description.

3. The third part of the execution consists of actions: the Doctor selects a

highly sensitive drug, so therapeutical notes needed; the Doctor reviews

therapeutical notes; the drug is not for research; Doctor inserts prescrip-

tion details, and the drug is available in stock. This part is correct.

♦

Even if we accept the idea that an incorrect execution should be dropped,

the acceptable behavior for the administrators of the e-health system is just to

drop the second part of the execution.

3 Basic notions of Security properties

The runtime enforcement mechanisms monitor and intercept actions while run-

ning the application. In the papers on runtime enforcement theory for untrusted

applications [3, 7, 14, 23, 19] the actions get intercepted before they are executed

by the target system. Usually the actions are initiated by the application. In

this paper we propose a slightly different position: intercepted actions can be

initiated either by a user or by an application itself.

And still our theory applies also to application monitors. The user is inter-

acting with an application, by doing so he is executing a process and is issuing

sequences of actions. Each action is initiated either by a user of by an applica-

tion. A runtime monitor is a mechanism that is intercepting the actions of the

application before they execute on the system, so that only correct sequences

of actions get through the monitor.

9

3.1 Security properties

Following the standard notation on runtime security policies [3, 14, 23] we denote

the set of observable actions by Σ. A tentative execution, or a trace, is a finite

or infinite sequence of actions; the set of all finite sequences over Σ is denoted

by Σ∗, the set of infinite sequences is Σω, and the set of all sequences (finite

and infinite) is Σ∞. Executions are denoted by σ and actions are denoted by a

possibly with subscript or superscript. With · we denote an empty execution.

The notation σ[..i] denotes the prefix of σ involving the actions σ[1] through

σ[i], and σ[i+1..] denotes the suffix of σ involving all other actions beside σ[..i].

We write τ ;σ to denote concatenation of two sequences and τ must be finite.

By τ � σ, or σ � τ we denote that τ is a finite prefix of finite sequence σ. Given

some σ we write ∀τ � σ as an abbreviation for ∀τ ∈ Σ∗. τ � σ and ∃τ � σ for

∃τ ∈ Σ∗. τ � σ. Similarly, for some τ we write ∀σ � τ as an abbreviation for

∀σ ∈ Σ∞. σ � τ and ∃σ � τ for ∃σ ∈ Σ∞. σ � τ .

A security property is a predicate P̂ over traces or, equivalently, a security

policy P is a set of traces P ⊆ Σ∞ such that σ ∈ P ⇔ P̂ (σ). Hence, we will use

interchangeably the notation P̂ (σ) or σ ∈ P .

Schneider only considered infinite traces (by extending finite traces repeating

the last action) but we prefer to distinguish finite and infinite traces. In the

sequel the execution σ that satisfies the property P̂ is called legal (or good),

and the execution that does not satisfy the property is called illegal (or bad).

There are several classes of properties. The property that defines behavior

as “nothing bad ever happens” is called safety property [1, 17]. No prefix of

a legal trace can violate this property, or equivalently, all the extensions of an

illegal trace violate the property. More intuitively, safety means that as soon as

something bad happens, this is irremediable: if the trace became illegal, it can

10

never become legal again. Formally,

∀σ ∈ Σ∞ : (¬P̂ (σ)⇒ ∃σ′ � σ : ∀τ � σ′ : ¬P̂ (τ)) (1)

Additional to safety properties, there are liveness properties [1] that claim

that “something good eventually happens during any execution” or , every illegal

trace of finite length is not irremediable. In the other words any finite execution

can always be extended to satisfy the property:

∀σ ∈ Σ∗ : ∃τ � σ : P̂ (τ)) (2)

However, except for safety and liveness there are more general properties,

which allow executions to alternate between satisfying and violating security

property. Renewal property presented in [19] is such a property. Its definition

states that every infinite-length legal sequence has an infinite number of legal

finite prefixes and every illegal sequence has only a finite number of legal prefixes.

The original definition of renewal property from [19] is as follows:

∀σ ∈ Σω : P̂ (σ)⇐⇒ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) (3)

It was proved in [19] that every decidable renewal property can be enforced

by a kind of edit automaton that outputs the longest legal prefix of the input.

The renewal property, similar to the liveness property, implicitly assumes that

if an infinite sequence is legal then for every prefix of this sequence the liveness

holds, or “nothing irremediably bad happens in any finite prefix”. It is obviously

implied by the fact that an infinite-length legal execution must have an infinite

number of legal prefixes. Therefore if an infinite-length execution has something

irremediably bad happened in a finite prefix, then the number of valid prefixes

11

Legend

1 Nontermination

2 Resource availability

3 Stack inspection

4 Log out and never open files

5 Property 4 on system without file-open actions

6 Eventually audits

7 Transaction property

8 Termination + file access control

9 Trivial

10 Increasingly longer sequences

11 At most 100 SMS messages

12 At most 100 SMS and eventually audit

13 Every k transactions send a report

Fig. 2: Relationships between security properties

is finite, and hence this execution is invalid.

Let us come back to the Example 1 and define which kind of security property

it corresponds to. The execution is legal if it consists of iterations that are

compliant with the description of the drug selection subprocess. We generalize

this class as iterative properties (assuming that empty trace is always valid).

Definition 1. Property P̂ is an iterative property iff

∀σ ∈ Σ∗ : ∀σ′ ∈ Σ∞ : P̂ (σ) ∧ P̂ (σ′) =⇒ P̂ (σ;σ′) (4)

Fig. 2 (extending Fig. 1 in [19]) represents the relationship between safety,

liveness, renewal properties and iterative properties from the point of view of

good executions.

Iterative properties. The property 2 originally described in [19] is a live-

ness and iterative property. Assume that the system opens some resource i

with action oi and closes it with action ci. The property 2 claims that all the

opened resources must be eventually closed. This property is liveness property

because any illegal sequence can be made legal by adding all the necessary clos-

12

ing actions. However, it is not renewal because for valid infinite sequences like

o1; o2; c1; . . . oi; ci−1; · · · there is not an infinite number of finite prefixes. This

property is however iterative, because for any two sequences (where the first one

should be finite) that satisfy this property, their concatenation also satisfies it.

The property of stack inspection (property 3 in the figure) is safety and also

iterative property. Renewal property 4 “Log out an never open files” represents

the following property. Assume the system has the following actions: a3 ranges

over actions for opening files, a2 over actions for logging out and a1 over all

other actions. The policy says that the user must eventually log out and never

open files. So, this property can be written as (a∗1; a2)∞. It is not a safety

property because there exists an illegal sequence of only a1 actions that can be

extended to a legal one by adding a2. It is not a liveness property, because there

is an illegal sequence containing a3 that can never be extended to a legal one.

However, it is a renewal property and also an iterative property because every

couple of legal sequences produce a legal sequence. The same property on a

system without action a3 (property 5 in the figure) becomes a liveness property

since any sequence of a1 can become legal by adding a2. It is also renewal and

iterative.

Another property that is liveness, renewal and iterative is property 6. This

property P̂ specifies that an execution is good if eventually an audit is performed

which corresponds to an action a in the trace. It is obviously a liveness and not

a safety property. It is also a renewal property because an infinite-length valid

execution must have infinitely many prefixes in which a appears. This property

is also iterative, because by concatenating two sequences in which a eventually

appears, we get the sequence that satisfies P̂ .

The transaction property is also liveness, renewal and iterative. Let τ range

over finite sequences of single, legal transactions. A transaction policy is τ∞

13

and a legal execution is the one containing any number of valid transactions.

The property 8, which was defined as non-renewal and non-liveness in [19], is

an iterative property. If we concatenate two legal executions that are terminated

and never access private files then the resulting execution will also be legal. The

trivial property that considers all executions legal is iterative as well.

The property of nontermination (number 1 in the figure) is a liveness prop-

erty since it holds for all infinite-length traces and it is not a safety property

because all the finite prefixes of the good traces always have good continuations.

However, it is an iterative property because no finite-length traces are valid.

Non-iterative properties. The property “Increasingly longer sequences” states

that the sequence is legal iff it is infinite or its length belongs to the following

set of numbers {Fi}: F0 = 1, Fi+1 = 2Fi + 1. Every illegal finite sequence can

be prolonged such that its length will belong to the defined set of numbers, so

this is a liveness property. It is also renewal because every legal infinite-length

sequence has an infinite number of legal prefixes. However, this property is not

iterative: by concatenating two legal sequences a new illegal sequence is always

obtained.

The property 11 is “at most 100 SMS messages per application run can be

sent by a mobile device.” This property is useful in practice when the use of

communication resources has to be bounded. This property is non-iterative. It

is a safety property – if the sequence is illegal (the application sends more than

100 messages) then there is exists a prefix such that any continuation of this

prefix is an illegal sequence.

Property 12 is a combination of a safety property (11) and a liveness property

(6). It states that at most 100 SMS messages can be sent during an application

run and eventually a particular audit action has to be done (for example making

a backup of the application state). This property is not a safety property because

14

of the eventual audit action, it is also not a liveness one since if the application

sent more than 100 SMS, the trace can never become valid again. It is also not

an iterative property because a concatenation of two runs that sent 100 SMS

each does not produce a valid trace. But this property is a renewal one for the

same reason why properties 11 and 6 are renewal.

There is also a liveness property 13 that is not iterative. Assume a repeating

process (like a transactional one) where after every k transactions a report

should be sent. In case the report is not sent on time, a letter with explanations

should eventually be sent. This is a liveness property but it is not iterative

because the property holds for 1 transaction and for k − 1 transactions, but

their concatenation is not valid because the report for the k transactions is not

sent.

These properties above are paradigmatic of the distinction between iterative

and non-iterative properties. Intuitively speaking, iterative properties are prop-

erties in which the number of times a globally legal sequence is repeated does not

matter. Of course, within the sequence itself the number of times a particular

action is repeated might make a difference between being legal and being illegal,

but once a sequence is globally legal it can be repeated as many times as one

wishes.

In many practical cases the number does not matter, or it is so large that

it is convenient for practical purposes to consider it so. In our scenario, private

hospitals have a superior overall limit of drugs that can be dispensed to the

public, but this is such a macroscopic and game changing phenomenon that

it would not make sense to check it on the individual transactions. Another

example is money withdrawal: money can be withdrawn as many times as

one wishes provided the account is above zero or is replenished. The practical

enforcement mechanism therefore assumes an iterative property. However, also

15

in this case, the bank has an overall limit (if everybody withdraws. . .) but this

macroscopic event is managed in an entirely ad-hoc way (typically asking the

government to step in and convince users to stop withdrawing).

3.2 Property representation

In practice the desired behavior of an application is often described as a work-

flow. Similarly to the previous work [6], we represent such workflow by a Büchi

automaton that can also accept finite sequences like a finite state automaton.

The automaton that recognizes sequences satisfying a security property P̂ we

call a Policy automaton for property P̂ . Just to give the notation that will be

used in the rest of the paper, we present the definition below.

Definition 2. A Policy automaton is a 5-tuple of the form 〈Σ, Q, q0, δ, F 〉,

where Σ is a finite nonempty set of security-relevant actions, Q is a finite set of

states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is a labeled partial transition

function, and F ⊆ Q is a set of accepting states.

In Fig. 3 we present an automaton corresponding to the BPMN description

of the drug selection subprocess (Fig. 1).

Definition 3 (Run of a Policy automaton). Let A = 〈Σ, Q, q0, δ, F 〉 be a policy

automaton. A run of A on a finite (respectively infinite) sequence of actions

σ = 〈a0, a1, a2, . . .〉 is a sequence of states q|σ| = 〈q0, q1, q2 . . .〉 such that qi+1 =

δ(qi, ai). A finite run is accepting if the last state of the run is an accepting

state. An infinite run is accepting if the automaton goes through some accepting

states infinitely often.

Definition 4 (Property represented as Policy automaton). Some property P̂A

is represented as a Policy automaton A if and only if:

∀σ ∈ Σ∞ : P̂A(σ)⇐⇒ A accepts σ (5)

16

Abbreviations

Dis = Drug is selected DNr = Drug is Not for research
Tnn = Therapeutical notes needed Ipd = Insert prescription details
Rtn = Review therapeutical notes DNas = Drug is Not available in stock
TnNn = Therapeutical notes Not needed Dpew = Drug physically exists in the ward
Dr = Drug is for research Das = Drug is available in stock
Irpn = Insert research protocol number

Fig. 3: Policy automaton for a drug selection subprocess.

Notice that the set of infinite traces accepted by a Policy automaton is a re-

newal property. It can be easily proved because the Büchi acceptance condition

is a subset of the definition of renewal properties.

In this paper we are proposing a mechanism that enforces properties rep-

resented by the Policy automaton, hence, we will enforce particular renewal

properties that are also iterative.

4 Enforcement mechanism

In the following discussion we will present an enforcement mechanism as a se-

quence transformer E : Σ∞ → Σ∞. We consider a particular form of enforce-

ment mechanism: edit automaton [19]. Edit automata have a power of inserting

and suppressing actions from the executions. As an example, they can wait

17

until the illegal execution becomes legal again by suppressing its actions and

then insert all the suppressed actions. They also can behave like a security

automata [23] and simply suppress the suffix of the execution that makes it

illegal.

We present our own definition of this automaton. Intuitively, we have just

simplified the original notions by enucleating the notions of output and memory

and always forced the enforcement mechanism to progress in the processing of

the input. Our actions can then be shown to be identical to combinations of

the atomic actions (read symbol but no output, output symbol but do not read

input) from [19] on every non-diverging computation3.

Definition 5. An edit automaton E is a 5-tuple of the form 〈Q, q0, δ, γo, γk〉

with respect to some system with action set Σ. Q specifies the possible states,

and q0 ∈ Q is the initial state. The total function δ : (Q×Σ)→ Q specifies the

transition function; the total function γo : (Q×Σ∗×Σ)→ Σ∗ defines the output

of the transition according to the current state, the sequence of actions kept so

far and the current input action; the total function γk : (Q × Σ∗ × Σ) → Σ∗

defines the sequence that will be kept after committing the transition.

In order for the enforcement mechanism to be effective all functions δ, γk

and γo should be computable.

When the automaton proceeds with one more input action, function γo de-

fines the output of the automaton at this transition and function γk defines

the memory containing the actions that are processed by the automaton but

not output yet. Usually, we will use the keep function to add the input action

to the memory or ignore the input action. In general case the keep function
3A diverging computation is a computation where the edit automaton will run forever

without reading any input while keeping outputting data. While it was theoretically useful in
[19] the very idea that an enforcement mechanism could possibly produce output without any
input stimulus turned out a difficult sell to our e-health partners. In contrast, the idea that the
enforcement mechanism could spend a lot of time in order to process an input and eventually
report a long sequence of follow-up actions was considered impractical but understandable.

18

can perform more actions on the current memory, for example to add arbitrary

actions to it.

Definition 6. Let E = 〈Q, q0, δ, γo, γk〉 be an edit automaton. A run of au-

tomaton E on an input sequence of actions σin = a1; a2; . . . is a sequence

of pairs
〈
(q0, ε), (q1, σk1), (q2, σk2), . . .

〉
such that qi+1 = δ(qi, ai+1) and σki+1 =

γk(qi, σki , ai+1). The output of E on input σin is sequence of actions σout =

σo1;σo2; . . . such that σoi+1 = γo(qi, σki , ai+1).

When an edit automaton E on an input sequence σin produces an output

σout, we will write E(σin) = σout.

We define 〈δ, γo, γk〉 as a function Q×Σ→ Q× (Σ∪{∗})∗× (Σ∪{∗})∗. We

will write 〈δ, γo, γk〉(q, a) = q′|σo|σk if and only if

δ(q, a) = q′

γo(q, σS , a) = σo

γk(q, σS , a) = σk

In the figures we will use similar notation: every transition from state q

to state q′ such that 〈δ, γo, γk〉(q, a) = q′|σo|σk will be labeled by a triple

expr σo σk, where expr is an expression like !a (meaning any action from Σ

except for a), a ∨ b (input action is either a or b) or > (any action from Σ). To

show that we output all the current memory followed by an input action a we

will write ∗; a in place of σo; while to show that we add an input action a to the

current memory, we will write Add in place of σk.

Basically, we will have four types of transitions in our automata:

a) a ∗; a · outputs the memory and empties it afterwards;

b) a · Add adds a current input action a to the memory and does not output

anything;

19

c) a · a empties the memory and then adds to the memory the current input

action a;

d) a a · empties the memory and then outputs the current input action a;

e) a · · empties the memory and does not output anything.

The authors of state of the art papers [3, 11, 15, 19] have noted the impor-

tance of enforcement mechanisms obeying two abstract principles, called sound-

ness and transparency. The enforcement mechanism that enforces property P̂

is sound if all the outputs are legal according to the property:

∀σ ∈ Σ∞ : P̂ (E(σ)) (6)

An enforcement mechanism is transparent if it does not change the execu-

tions that already obey P̂ :

∀σ ∈ Σ∞ : P̂ (σ)⇒ E(σ) ≈ σ (7)

In the original papers equal (“≈”) relation means that the semantics of the

valid traces is not changed by an enforcement mechanism. In this paper we will

use equivalence relation (which is stronger) in the definition of transparency and

prove it for our approach.

However, given a property to be enforced and principles of soundness and

transparency, one can construct different enforcement mechanisms that will be

sound and transparent but will output different results for the same bad input

traces. In the next sections we will present two different constructions of an

enforcement mechanism and show that even though both results satisfy sound-

ness and transparency, one enforces a given property “better” than the other.

Now let us come back to our running example to see how the currently proposed

mechanism can enforce a given property.

20

4.1 Enforcement of drug selection process

We present Example 1 with more details and formalizations in this section. We

will use the same abbreviations of actions as in Fig. 3.

Example 2. The drug selection process contains a set Σ of possible actions:

Σ = {Dis,Tnn,Rtn,TnNn,Dr, Irpn,DNr, Ipd,DNas,Dpew,Das}

While running the drug selection process, a tentative execution consists of 3

iterations, one per each drug.

1. The first iteration is Dis; TnNn; Dr; Irpn; Ipd; Das, which is legal.

2. The second iteration is Dis; TnNn; Dr; Ipd; Das, which is illegal. It means

that the drug is submitted to Research program (Dr action) but the research

protocol number is not inserted (there is no Irpn action after Dr action).

3. The third iteration in Dis; Tnn; Rtn, DNr; Ipd; Das, which is a legal itera-

tion.

The resulting trace is illegal since it has an irremediably bad second part. What

kind of behavior is expected from the enforcement mechanism in this case? ♦

Since the property described above is renewal, it can be enforced by Longest-

valid-prefix automaton. Then the resulting execution will be a first iteration of

the tentative execution. However, the administrators of the e-health system

might expect a resulting trace to be longer. Since the drug selection process

for the third drug is legal by itself, they would like to have this iteration in the

resulting trace. Therefore we think that an expected behavior of the system is

following: to delete the second illegal iteration of the execution, and to output

the first iteration followed by the third one. However, this trace correction is

not provided by existing techniques [19].

21

5 Construction of enforcement mechanisms

We first describe how to construct a Longest-valid-prefix automaton for a given

renewal property. This construction will be used in case the property being

enforced is not iterative and will also provide better explanation to the con-

struction of our mechanism.

5.1 Longest-valid-prefix automaton

Longest-valid-prefix automaton is a specific kind of edit automaton whose I/O

behavior4 follows the proof of Theorem 8 of [3]. This automaton always outputs

the longest valid prefix of the tentative execution. Since we represent the prop-

erty as a Policy automaton, we know whether the sequence can ever become

good again and hence can be sure whether we should halt the execution or still

wait for a valid prefix to arrive from the input. Considering this we show an

algorithm of Longest-valid-prefix automaton construction.

Algorithm 1 Longest-valid-prefix automaton construction

Input: Policy automaton AP =
〈
Σ, QP , qP

0 , δ
P , FP

〉
;

Output: Longest-valid-prefix automaton A = 〈Q, q0, δ, γo, γk〉;
1: q0 = qP

0 ;
2: Q = QP ∪ {q⊥};
3: for all q ∈ Q, a ∈ Σ do
4: if ∃q′ ∈ QP .q′ = δP (q, a) then
5: if q′ ∈ FP then
6: 〈δ, γo, γk〉(q, a) = q′ ∗; a ·;
7: else
8: 〈δ, γo, γk〉(q, a) = q′ · ∗; a;
9: else

10: 〈δ, γo, γk〉(q, a) = q⊥ · ∗; a;

The idea behind this construction is explained below. Suppose the current

state of the automaton is q, the next incoming action is a. If there is a transition

in the Policy automaton from the state q on an action a to an accepting state,
4The original construction in the cited paper yielded an infinite state automaton even if

the policy was finite.

22

then the input read so far is accepted by the Policy Automaton. Therefore, we

output all the actions read so far followed by the current action (we output ∗; a

on line 6). If the next state is non-accepting, it means that possibly there is

a path to the accepting state, so the sequence read so far can become good.

Therefore we simply keep the current action in the memory (we put in the

memory ∗; a and output nothing on line 8).

If there is no transition from state q on action a, it means that there is no

path to some accepting state of the Policy automaton, and the sequence can

never become valid again. So the next state in the automata has to be an error

state: δ(q, a) := q⊥ (Longest-valid-prefix automaton will output nothing but

keep all the input, this corresponds to the line 10 of the algorithm).

The behavior of the constructed Longest-valid-prefix automaton is exactly

the same as of one constructed by the proof of Theorem 8 of [3]: it always

outputs the longest valid prefix of the input. The only difference is that in the

proof Theorem 8 the state of automaton contains all the read actions and if the

trace can never become good again there will be as many states as the length of

the trace. In our construction, as soon as the trace cannot become good again,

the next state will be an error state and all following input actions will be kept.

In the sequel an enforcement mechanism that outputs the longest valid prefix

will be called ELP , where LP stands for “the longest prefix”.

Proposition 1. A Longest-valid-prefix automaton constructed by Algorithm 1

for a renewal property P̂ represented by Policy automaton AP is sound and

transparent enforcement mechanism according to P̂ . This automaton always

outputs the longest valid prefix of the input.

The proofs of the propositions and theorems can be found in the Appendix.

The proposed algorithm constructs an enforcement mechanism for a Policy

automaton with finite number of states. For the infinite state Policy automaton

23

one would need to use the set construction instead of explicit algorithmic con-

struction. In particular one can do it by replacing “for all q ∈ Q, a ∈ Σ do ”

with the definition of the set of transitions as T = {(q′ ∗; a ·)|q ∈ QP ∪ {q⊥} ∧

a ∈ Σ∧ q′ = δP (q, a)∧ q′ ∈ FP }∪ ... (for every case described in the algorithm).

We decided to show the algorithmic construction in this paper for the sake of

readability. This remark applies to all the algorithms in this section.

5.2 Iterative suppression automaton

For iterative properties that are represented by a Policy automaton we propose a

better enforcement than outputting the longest valid prefix. We call it iterative

suppression. Since the property enforced is iterative, it describes good traces

that consist of independent parts, called “iterations”. The idea is that this

enforcement mechanism is able to recognize when a new good iteration can

start, so it can suppress all the bad actions that happen between the good

iterations of a tentative execution.

Algorithm 2 is obtained from the previous construction (Algorithm 1) by

changing the condition for the traces that cannot become good again, to be

more precise statement on line 10 in Algorithm 1 is changed to the statements

on lines 10-16 in Algorithm 2.

The states of iterative suppression automaton are composed from two states

of the Policy automaton: Q = {(q, qF)|q ∈ QP ∪ {q⊥}, qF ∈ FP }, where q = qF

if q ∈ FP , or q 6= qF if there exists a run σ such that qF is the last accepting

state before reaching q. We propose this construction of the state because an

edit automaton has to “remember” the last accepting state visited during the

run and compare the tentative execution to the new iterations starting only

from that last visited accepting state. Condition on line 10 corresponds to the

case when the next action a is not an action recognized by the Policy automaton

24

Algorithm 2 Iterative suppression automaton construction

Input: Policy automaton AP =
〈
Σ, QP , qP

0 , δ
P , FP

〉
;

Output: Iterative suppression automaton E = 〈Q, q0, δ, γo, γk〉;
1: Q = {(q, qF)|q ∈ QP ∪ {q⊥}, qF ∈ FP };
2: q0 = (qP

0 , q
P
0);

3: for all (q, qF) ∈ Q, a ∈ Σ do
4: if ∃q′ ∈ QP .q′ = δP (q, a) then
5: if q′ ∈ FP then
6: 〈δ, γo, γk〉((q, qF), a) = (q′, q′) ∗; a ·;
7: else
8: 〈δ, γo, γk〉((q, qF), a) = (q′, qF) · ∗; a;
9: else

10: if ∃q′′ ∈ QP .q′′ = δP (qF , a) then
11: if q′′ ∈ FP then
12: 〈δ, γo, γk〉((q, qF), a) = (q′′, q′′) a ·;
13: else
14: 〈δ, γo, γk〉((q, qF), a) = (q′′, qF) · a;
15: else
16: 〈δ, γo, γk〉((q, qF), a) = (q⊥, qF) · ·;

but this action can start a new iteration from the last visited accepting state

qF . Then, if only transition on (qF , a) brings to an accepting state q′′ of the

Policy automaton, a is immediately output and the memory is empty; next

state is (q′′, q′′). If next incoming action a is not accepted, then the memory is

cleaned and only a is added to the memory. If a is not starting a new iteration

(condition on line 15) then there is a transition to an error state and action a

is not kept in the memory (line 16).

The main difference with Longest-valid-prefix automaton is that our au-

tomaton is able to recognize new good iterations and suppress only actions that

caused violation of the property.

In our previous work [6] we required that all good iterations must have a

unique starting action – an action that never repeats again in the iteration.

Even if there is no unique starting action, the iterative suppression automaton

still soundly and transparently enforces iterative properties. If an action a can

start a new iteration and also appears in the middle of another iteration, our

construction will first build the transitions that repeat the Policy automaton

25

(lines 5-8) and for the rest of the cases will check whether a can start a new

iteration.

Even though it is not necessary to have unique starting actions, we think

it is interesting to compare our mechanism for the properties with and without

it. In both cases the mechanism is sound and transparent (as we prove below),

but the modification of the invalid sequences will be done somewhat differently.

Imagine a property where all the good traces match the pattern (a; b; a; c)∗ and

an execution a; b; (a; b; a; c). On the second input action b our mechanism will

make a transition to the error state q⊥ (since it is expecting c to arrive) and

exit this state only on the third action a. So the output will be empty. If the

pattern did not have the second a inside (for example, a; b; d; c) and an execution

would be a; b; (a; b; d; c) then our mechanism would recognize that the second a

actually starts a new iteration, so the output will be a; b; d; c.

However, we did not found in practice the repetition of initial actions. This

is somewhat obvious: different execution patterns corresponds to execution of

different macro-processes in real life and thus different starting points: starting

a HIV drug dispensation process or a transplant process are different and the

eventual dispensation of a drug in a transplant process is intrinsically a different

action for our stakeholders.

Now we prove that the proposed mechanism is sound and transparent.

Proposition 2. An iterative suppression automaton constructed by the Algo-

rithm 2 for an iterative property P̂ represented by Policy automaton AP is sound

and transparent enforcement mechanism according to P̂ .

6 Comparison

Let us come back to the running example and corresponding Policy automaton

from Fig. 3. Following the Algorithm 1 we have constructed a Longest-valid-

26

prefix automaton that we now partially show in Fig. 4 (we show all transitions

from the states q4, q6, q⊥). It is easy to see that this automaton outputs the

longest valid prefix: as soon as some wrong action happens (e.g. after defined

that drug is for research Dr, no research protocol number is inserted !Irpn in

state q4) the automaton leads to an error state and there are no outcoming

transitions from that state.

In Fig. 5 we partially show the result of the iterative suppression automaton

construction for the same Policy automaton following the Algorithm 2. For

an easier comparison, we also emphasize the outcoming transitions from the

states q4, q6 and q⊥. This automaton also leads to an error state as soon as

something bad happens, however it is able to recognize the beginning of a new

good iteration which gives this automaton the power of producing more output

for the same bad input.

6.1 Distances

To compare enforcement mechanisms from the point of view of changing bad

inputs we should first define how the mechanism can transform them, or in the

case of suppression, how many actions it suppresses5.

Definition 7. The suppressing distance between two finite traces is a total

function dS : Σ∗ × Σ∗ → N ∪ {∞}, such that

dS(a;σ, b;σ′) =

∞ if a;σ = · and b;σ′ 6= ·

|a;σ| if b;σ′ = ·

dS(σ, σ′) if a = b

1 + dS(σ, b;σ′) if a 6= b

This distance defines how many actions should be suppressed from the first

sequence in order to get the second one. If the second sequence cannot be
5One could use an edit distance for suppressions, insertions and substitutions [2] but since

we are dealing with suppressions only, we propose a notion of suppressing distance.

27

Fig. 4: Resulting Longest-valid-prefix automaton for the Policy automaton
from Fig. 3

Fig. 5: Resulting Iterative suppression automaton for the Policy automaton
from Fig. 3

obtained from the first one by suppressing actions, we say that the distance

is equal to ∞. By using this distance we can show that when transforming

bad traces, an iterative suppression automaton (Algorithm 2) is deleting less

actions than the Longest-valid-prefix automaton (Algorithm 1) while both of

them are sound and transparent. So if an enforcement mechanism A is sound

28

and transparent and produces more outputs than another sound and transparent

enforcement mechanism B, then A is better than B.

Before providing a formal definition of “better” enforcement mechanism, we

note that we can define that one mechanism transforms the input better than

the other mechanism only when the input is irremediable. Moreover, even if

the sequence σ contains some action a that made it irremediable, and there are

no parts of σ after a that are legal, then there is no better enforcement that

outputting the longest valid prefix. Hence, for comparison we will consider only

irremediable sequences that have a legal substring. More formally,

Definition 8. A finite sequence σ is irremediable with legal substring with

respect to the property P̂ if and only if

¬P̂ (σ) ∧ ∃σ′ � σ : (∀τ � σ′ : ¬P̂ (τ)∧

∃σ1, σ
′′, σ2 ∈ Σ∗ : (σ = σ1;σ′′;σ2 ∧ σ1 � σ′ ∧ P̂ (σ′′)))

Definition 9. An enforcement mechanism for property P̂ is a suppression en-

forcement mechanism if it is sound and transparent with respect to P̂ and is

able only to suppress actions.

Definition 10. Given a security property P̂ a suppression enforcement mecha-

nism A is better than a suppression enforcement mechanism B if and only if A

is producing more output than B (A suppresses less actions) for all irremediable

inputs σ with legal substring:

dS(σ,A(σ)) < dS(σ,B(σ)) (8)

Given an iterative property P̂ represented as a Policy automaton we propose

an automatic construction of enforcement mechanism for it in Algorithm 2.

If the property is not iterative, then the Longest-valid-prefix automaton can

29

Fig. 6: Output of Longest-valid-prefix automaton (LA) and edit automaton that
iteratively enforces by suppression (EA)

enforce it by outputting the longest valid prefix.

If P̂ is iterative, then the enforcement mechanism EIS built by an Algo-

rithm 2 is better than the enforcement mechanism ELP built by an Algorithm 1.

Theorem 1. For any iterative property P̂ represented by a Policy automaton

AP an edit automaton EIS constructed by Algorithm 2 is better than a Longest-

valid-prefix automaton ELP constructed

by Algorithm 1 in a sense of Definition 10.

Let us show in Fig. 6 the output of the Longest-valid-prefix automaton and

iterative suppression automaton for the same policy that is represented by a

Policy automaton in Fig. 3. The input contains 5 iterations corresponding to

the drug selection process. The reader is already acquainted with the first 3 of

them - they are the same as in the Example 2. Iterations 1, 3 and 5 are valid,

and iterations 2 and 4 are invalid, hence the whole input is not valid and is

irremediable. However, for iterations 1, 3 and 5 the Doctor managed to proceed

successfully so there are three legal substrings: iterations 1, 3 and 5.

The Longest-valid-prefix automaton shown in Fig. 4 outputs only the first

iteration. It means that Doctor will successfully complete selection process only

for the first drug. The iterative suppression automaton shown in Fig. 5 will out-

30

put all three successful iterations. This output is an example that demonstrates

the Theorem 1.

7 Related work and Conclusions

7.1 Related Work

Runtime enforcement is a general and powerful technique to enforce the secu-

rity policies of the system at runtime. The first work that introduced the notion

of enforceable security policies and execution monitoring was done by Schnei-

der [23]. He proposed a mechanism based on security automata that monitors

the execution of the target system and halts it as soon as it violates the prop-

erty. In this way the proposed mechanism is able to enforce a class of safety

properties [17] stating that “nothing bad ever happens”.

The follow-up work by Hamlen et al. [15] fixed a number of errors and char-

acterized more precisely the notion of policies enforceable by execution monitors

as a subset of safety properties. They also analyzed the properties that can be

enforced by static analysis and program rewriting. This taxonomy leads to a

more accurate characterization of enforceable security policies.

Later Ligatti, Bauer, and Walker [3] have introduced edit automata, a new

mechanism that is capable of enforcing a strictly greater class of security prop-

erties. The authors could achieve such result because differently from Schneider,

that considers execution monitors as sequence recognizers, they propose to view

them as sequence transformers. Edit automata can insert new actions to the

execution or suppress them (with a possibility to memorize them for later use).

Having this power of modifying program actions at run time, edit automata are

provably more powerful than security automata and enforce a class of renewal

properties [19] that is strictly bigger than the class of safety properties.

31

Fong [14] provided a new information-based approach to classify enforce-

able security properties. He proposed a new mechanism called Shallow-History

automata that keeps as a history a set of access control events. In order to

represent constraints on information available to execution monitors, he used

abstraction functions over the history of monitored actions and defined a lattice

on the space of all congruence relations over action sequences aimed at compar-

ing classes of enforceable security policies. Still his policies are limited to safety

properties over finite executions.

Later Talhi et al. [24] proposed Bounded history automata that restricts the

security automata and edit automata by adding the limited history. The authors

also explored the taxonomy of EM-enforceable properties depending on the size

of the execution history saved by an execution monitor.

Another line of work is concerned the synthesis of runtime enforcement mon-

itors. A great part of the work in this direction is done by Martinelli and Mat-

teucci [21]. They have shown how to synthesize such execution monitors. Given

the system and a security policy represented as a µ-calculus formula the user

can choose the controller operator (truncation, suppression, insertion or edit

automata). Then he can generate a program controller that will restrict the

behavior of the system to those specified by the formula. In a later work [22]

the authors generalize the approach in the context of real-time systems.

Chabot et al. [8] proposed to synthesize security automata from the security

properties expressed as Rabin automata. They provide a construction from

safety properties in general case and more than safety in case when additional

information about the program is obtained by static analysis. However, the

comparison of enforceable properties with other (renewal, liveness) properties is

not discussed in the paper.

In [12] Falcone et al. have presented algorithms of constructing edit automa-

32

ton (that is called “enforcement monitor” in the paper) from the given property

expressed as a Street automaton. The properties being enforced are a subset

of safety-progress (SP) classification of properties [10, 9]. The authors do not

compare these properties with the infinite renewal properties [19], however the

construction of the enforcement mechanism in the paper provides an edit au-

tomaton that enforces properties like Longest-valid-prefix automaton. Similar

to our idea, enforcement mechanism in [12] has finite number of states and a

separate memory where a part of an input sequence that is not yet valid is

kept. In their next work [13] Falcone et al. propose an upper-bound of the

set of enforceable properties. They get this bound by characterizing properties

independently from the enforcement mechanisms that only should comply with

soundness and transparency. However, the authors define a property to be en-

forceable only if each incorrect infinite sequence has a finite number of correct

prefixes, and this is a definition of renewal property.

An interesting direction has been suggested by Khoury and Tawbi in a recent

paper [16]. The authors proposed to define an equivalence relation between the

original execution and the execution transformed by the enforcement monitor.

They have shown that our approach of iterative suppressions fits into this theory.

This work is interesting from a theoretical perspective, what is still missing to

have a practical construction of a “better” enforcement mechanism is a precise

definition of concrete equivalence relations. Once a concrete relation is defined

it would be possible to run a validation with end users that the equivalence is

indeed what is expected.

7.2 Discussion

A limitation of the proposed framework is that it assumes that if mechanisms

A and B enforce the same policy, A is “better” than B when A suppresses fewer

33

actions. The new notion of “better” brings us to several threads of discussion.

7.2.1 Action insertions

The notion of “better” is defined according to the number of action suppressed

and does not take into account action insertions. One could argue that sup-

pressing many actions can be worse than inserting one, for example in a drug

dispensation process suppressing the whole iteration can seem to be worse than

inserting a required research protocol number.

From a general perspective this is a limitation but we think that even sup-

pression alone has some theoretical and foremost practical advantages.

From a theoretical perspective adding insertions will significantly complicate

the theory because one would have to answer such questions as “is it better to

insert a missing action or wait for the next input action to arrive first?”. It

is not clear how to define the notion of “better” in this case. Working only

with suppressions we can propose a uniquely defined mechanism for a given

security policy and can show that this mechanism is better (albeit only in this

limited sense) than the existing automatically constructed mechanisms (such as

Longest-valid-prefix automata).

There is also a very important practical reason that is strictly linked to the

case study: in our domain each action brings a liability. The same drug can

be dispensed with different research protocols or within a health care chronic

plan. The edit automata would not know which protocol number to insert.

The choice of the number implies different costs, different billable institutions,

different liability in case of adverse effects on the patient. It is up to the doctor

to insert the appropriate protocol number and thus taking the liability of the

decision. It is acceptable to ask the doctor to redo very few steps but not to

have the machine doing any steps by itself. The insertion in the protocol of a

machine step would require significant interactions at design stage between the

34

risk manager, the head of the pharmacy, the clinician involved, etc., so to decide

the liability of the machine inserted action would be incorrect.

Pure suppression (of few actions) has therefore the advantage of being amenable

to a correct formal treatment and being acceptable by the end-users. Interme-

diate solutions that keep the human liability would be the subject of future

work.

7.2.2 Definition of “better”

Bauer et al. [2] in their work made a proposal for the definition of “better”

enforcement mechanism. They counted the average edit distance (i.e., the min-

imum number of actions inserted, suppressed, or substituted) of a given mecha-

nism and said that it is “more effective” if this measure is lower. This definition

seems to be more general than a definition of “better” in our paper but it was

not shown how such measure can be used in practice (no constructive algorithms

were given) and what does it mean for the end users. Moreover, in this paper

we propose an algorithm for constructing ”better” enforcement mechanisms.

It may seem that both definitions have a serious drawback because suppress-

ing (or inserting) a single action may be a “bigger” change to an execution than

suppressing (or inserting) a large number of other actions. One can think of

the following example: suppression of a single action that writes a top secret

information into a file can make a “bigger” change to the execution than 100 ac-

tions to refresh pixels of the monitor. If there is a “better” mechanism, it should

rather suppress 100 pixel-refresh actions than one action of writing a secret info.

There can be many similar practical examples where more suppression makes

less changes to the execution.

This example (together with possible others) points out that there might be

many different notions of “better”. The example above is just an example in

which different actions have different weights and one could simply consider the

35

suppressions of actions with different weights.

We plan to investigate this kind of cases further in future work but would

like to point out that in all research papers on run-time enforcement published

so far the idea that certain actions have different weights and thus executing

one of them could be a “worse” violations than just doing 100 other actions

have not been considered. For example this is not even discussed in all Bauer

et al. papers [2, 3, 18, 19].

Further, in our case study, the clear feedback from the stake-holders is that,

in absence from a clear indication by the risk manager and a clear decision by

the hospital direction to hold the risk by deviating for one action instead of

another, all actions from the process are equally important.

7.3 Conclusions

Runtime enforcement is based on two simple ideas: the enforcement mechanism

should leave good traces without changes and make sure that the bad ones got

amended. From the theory side, a number of papers [15, 19, 24] provide the

precise characterization of good executions that can be captured by a security

policy and thus enforced by a specific mechanism. Unfortunately, those theories

do not distinguish what happens when an execution is actually bad (the practical

case). The theory only says that the outcome of enforcement mechanism should

be “good” but not how far should the bad execution be changed.

In this paper we have proposed an enforcement mechanism called iterative

suppression automaton that makes it possible to overcome the distinction be-

tween bad traces and good traces. By revising the notion of good traces in terms

of iterations we offered a formal characterization of how enforcement mechanism

can deal with the bad traces. The idea of this enforcement is to suppress all the

bad actions between the legal iterations in the tentative execution.

36

Moreover, we have proposed an algorithm that given an iterative property

represented as a finite state automaton automatically builds an enforcement

mechanism modeled as an edit automaton. To show the advantage of our ap-

proach, we presented a theorem specifying how the enforcement mechanisms can

be compared and shows that iterative suppression automaton provides a better

enforcement than the Longest-valid-prefix automaton in a sense of amount of

suppressed actions.

These are the first steps towards closing the gap between the current theo-

retical works and their practical implementations. As a modest, but still telling

example, the running example of Fig. 2 in [3] could not be generated from the

policy by any of the formal construction appeared in that paper, nor by the

constructions appearing in later papers. In contrast, it can be obtained auto-

matically by our algorithm if, instead of just suppressing every bad iteration,

we also emit a warning.

As a future work we consider the case of actions that cannot be fixed. We

call these actions observable actions. For instance it is important in case of

outsourcing services when some requests are transferred to external parties. It

is possible to have observable actions also within an organization; for example

when a doctor is preparing a set of therapeutical drugs for a specific patient, he

takes a wrong drug from a stock, and it is not possible to delete this physical

action. It could be modeled as a special kind of iterative suppression automaton

that cannot suppress observable actions.

We should also consider the case of multiple users and define behavior of

enforcement mechanism in that case. Indeed, many doctors may try to dispense

drugs at the same time, and construction of enforcement mechanism can be

different. We also leave this problem for future work.

37

Acknowledgments

We would like to thank Andrea Micheletti, Marta Zambelli and Daniela Marino

from the e-health unit of Hospital San Rafaele for many helpful suggestions on a

previous draft of this paper. Discussion with them were essential to understand

in reality what matters and what do not.

We are grateful to the anonymous referees for their constructive suggestions

that helped us to improve this paper.

This work has been partly supported by the European Union under the

projects EU-ICT-IP-MASTER, EU-FET-IP-SecureChange, EU-FP7-IST-NoE-

NESSOS.

References

[1] B. Alpern and F. B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, 1985.

[2] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In

Foundations of Computer Security, pages 95–104, 2002.

[3] L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mecha-

nisms for run-time security policies. International Journal of Information

Security, 4(1-2):2–16, 2005.

[4] N. Bielova and F. Massacci. Do you really mean what you actually en-

forced? In Proceedings of the 5th International Workshop on Formal As-

pects in Security and Trust, volume 5491, pages 287–301. Springer-Verlag

Heidelberg, 2008.

[5] N. Bielova and F. Massacci. Do you really mean what you actually en-

forced? Technical Report DISI-08-060, UNITN, 2008.

38

[6] N. Bielova, F. Massacci, and A. Micheletti. Towards practical enforcement

theories. In Proceedings of The 14th Nordic Conference on Secure IT Sys-

tems, volume 5838 of Lecture Notes in Computer Science, pages 239–254.

Springer-Verlag Heidelberg, 2009.

[7] A. Brown and M. Ryan. Synthesising monitors from high-level policies

for the safe execution of untrusted software. In Proceedings of the 4th

Information Security Practice and Experience Conference, pages 233–247.

Springer-Verlag Heidelberg, 2008.

[8] H. Chabot, R. Khoury, and N. Tawbi. Generating in-line monitors for

rabin automata. In Proceedings of The 14th Nordic Conference on Secure

IT Systems, volume 5838, pages 287–301. Springer-Verlag, 2009.

[9] E. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property

classes. In Proceedings of the 19th International Colloquium on Automata,

Languages and Programming (ICALP ’92), pages 474–486. Springer-Verlag,

1992.

[10] E. Chang, Z. Manna, and A. Pnueli. The safety-progress classification.

Technical report, Stanford University, Dept. of Computer Science, 1992.

[11] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy

Enforcement. PhD thesis, Cornell University, 2003.

[12] Y. Falcone, J.-C. Fernandez, and L. Mounier. Synthesizing enforcement

monitors wrt. the safety-progress classification of properties. In Proceedings

of the Fourth International Conference on Information Systems Security

(ICISS’08), pages 41–55. Springer-Verlag, 2008.

39

[13] Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime verification of

safety-progress properties. In Proceedings of the 9th International Work-

shop on Runtime Verification (RV’09), pages 40–59, 2009.

[14] P.W.L. Fong. Access control by tracking shallow execution history. Proceed-

ings of the 2004 IEEE Symposium on Security and Privacy, pages 43–55,

2004.

[15] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for

enforcement mechanisms. ACM Transactions on Programming Languages

and Systems, 28(1):175–205, 2006.

[16] R. Khoury and N. Tawbi. Using Equivalence Relations for Corrective En-

forcement of Security Policies. In Proceedings of the 5th International Con-

ference, on Mathematical Methods, Models, and Architectures for Computer

Network Security, pages 139–154, 2010. To appear.

[17] L. Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering, SE-3(2):125–143, 1977.

[18] J. Ligatti, L. Bauer, and D. Walker. Enforcing non-safety security policies

with program monitors. In Proceedings of the 10th European Symposium on

Research in Computer Security, volume 3679 of Lecture Notes in Computer

Science, pages 355–373. Springer-Verlag Heidelberg, 2005.

[19] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety

policies. ACM Transactions on Information and System Security, 12(3):1–

41, 2009.

[20] D. Marino, J.-J. Portal, M. Hall, C. Bastos Rodriguez, P. Soria Rodriguez,

J. Sobota, J. Miksu, and Y. Dwi Wardhana Asnar. Master scenarios. Public

40

Deliverable of EU Research Project D1.2.1, MASTER- Managing Assur-

ance, Security and Trust for Services, Report available at www.master-

fp7.eu, 2008.

[21] F. Martinelli and I. Matteucci. Through modeling to synthesis of security

automata. In Proceedings of the Second International Workshop on Secu-

rity and Trust Management, volume 179 of Electronic Notes in Theoretical

Computer Science, pages 31–46. Elsevier Science Publishers B.V., 2007.

[22] I. Matteucci. Automated synthesis of enforcing mechanisms for security

properties in a timed setting. Electronic Notes in Theoretical Computer

Science, 186:101–120, 2007.

[23] F.B. Schneider. Enforceable security policies. ACM Transactions on Infor-

mation and System Security, 3(1):30–50, 2000.

[24] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement un-

der memory-limitation constraints. Information and Computation, 206(2-

4):158–184, 2007.

Appendix: Proofs of theorems

Proposition 1. A Longest-valid-prefix automaton constructed by Algorithm 1

for a renewal property P̂ represented by Policy automaton AP is sound and

transparent enforcement mechanism according to P̂ . This automaton always

outputs the longest valid prefix of the input.

Proof. Given a Policy automaton AP we construct a Longest-valid-prefix au-

tomaton E following the Algorithm 1. Let us show that automaton E always

outputs the longest valid prefix of the input according to the property P̂ .

41

Let us denote the state of E after executing sequence σ with q, and a is the

next incoming action. Let us show that this automaton maintains the invariant

InvL(σ) that σ is the input seen so far and σo has been output, where σo is the

longest valid prefix of σ according to P̂ . Initially InvL(·) holds because P̂ (·)

and automaton has not output anything so far. Let us assume that InvL(σ)

holds and prove that InvL(σ; a) holds as well in any action a.

1) If P̂ (σ; a), then there is an accepting run of AP on σ; a. It corresponds to

the line 5 of the algorithm. In this case the output of E is ∗; a. The memory

was obtained in a following way. Every time when the non-accepting state

is reached, the action is kept in the memory (line 8) and when finally the

sequence becomes valid, a corresponding state of AP is accepting and the

memory of E contains all the read actions. Hence, the output in this case

will be σ; a and InvL(σ; a) holds.

2) If σ; a is not irremediable then while executing σ the path in E will corre-

spond to the path in AP , to be more precise, for every next action σ[i] there

will be a transition in AP . Therefore, only statements on lines 6 and 8 will

be used. Hence E outputs the longest valid prefix and the memory contains

all the not yet output actions that make a trace bad and InvL(σ; a) holds.

3) If σ; a is irremediable then the sequence can never become legal again. It

means that there was an action σ[j] (or a) in the input such that there was

no transition in AP from the state where the run σ[..j − 1] (or σ) arrived on

the input action σ[j]. At that point condition for statement on line 10 was

satisfied, after which no output can be produced. Therefore, if there exists

a valid prefix, then it was output when the corresponding accepting state of

AP was reached before the sequence became irremediable. It means that E

outputs the longest valid prefix and InvL(σ; a) holds.

42

Therefore, in all the cases the invariant InvL(σ; a) is maintained and hence the

Longest-valid-prefix automaton E constructed by Algorithm 1 always outputs

the longest valid prefix. Therefore, in case of valid input the automaton will

not change the input (transparency maintained) and in case of invalid input it

will output a valid trace (soundness maintained).

Proposition 2. An iterative suppression automaton constructed by the Algo-

rithm 2 for an iterative property P̂ represented by Policy automaton AP is sound

and transparent enforcement mechanism according to P̂ .

Proof. Given a Policy automaton AP let us construct an edit automaton E fol-

lowing the Algorithm 2. Now let us show that automaton E satisfies soundness

and transparency according to property P̂ .

Let us assume that state q is a state of the automaton AP after executing

sequence σ, and a is the next incoming action. Let us assume that invariant

Inve(σ) stating that P̂ (E(σ)) and if P̂ (σ) then E(σ) = σ holds and prove that

Inve(σ; a) holds for any action a.

Initially Inve(·) holds because automaton has not output anything so far

and · is valid. Let us assume that Inve(σ) holds and prove that Inve(σ; a)

holds as well in any possible case.

1) If P̂ (σ; a), then there is an accepting run of AP on σ; a. In this case the

output of E is ∗; a (line 6). The memory ∗ was obtained in a following

way. Every time when the non-accepting state is reached, the action is kept

in the memory (line 8), and when finally the sequence becomes valid, a

corresponding state of AP is accepting and is reached thus the memory of E

contains all the read actions. Hence, the output in this case will be σ; a and

Inve(σ; a) holds.

2) If σ; a is invalid but not irremediable then while executing σ the path in E

43

will correspond to the path in AP , to be more precise, for every next action

σ[i] there will be a transition in AP . Therefore, only statements on lines 6

and 8 will be used. By doing so E will output the longest valid prefix and

memory of E will contain all the not yet output actions that make a trace

bad. Hence Inve(σ; a) holds.

3) If σ; a is irremediable then it can never become legal again. According to

Algorithm 2, E outputs a a sequence of actions only when a corresponding

state of the Policy automaton is reached. Since the property being enforced is

an iterative property, then the output of E is always valid. Hence, Inve(σ; a)

holds.

Therefore, in all the cases the invariant Inve(σ; a) is maintained and hence the

edit automaton E constructed by Algorithm 2 satisfies soundness and trans-

parency.

Theorem 1. For any iterative property P̂ represented by a Policy automa-

ton AP an edit automaton EIS constructed by Algorithm 2 is better than a

Longest-valid-prefix automaton ELP constructed by Algorithm 1 in a sense of

Definition 10.

Proof. According to Definition 10, EIS is better than ELP means that for all

irremediable inputs σ with legal substring:

dS(σ,EIS(σ)) < dS(σ,ELP (σ))

We have to prove that for some arbitrary iterative property P̂ represented

by the Policy automaton, the equation above always holds. Let us prove first

that the distance between σ and ELP (σ) and between σ and EIS(σ) is never

equal to ∞.

44

ELP always produces the longest valid prefix of the input according to the

Proposition 1, hence dS(σ,ELP (σ)) 6= ∞. According to the Algorithm 2, EIS

does not add new actions to the input sequence because it only keeps the input

actions in the memory on lines 8 and 14 and output this memory and input

action on lines 6 and 12. Hence, dS(σ,EIS(σ)) 6=∞.

Let us take an invariant Invd(σ) stating that for all irremediable inputs σ

with legal substring dS(σ,EIS(σ)) < dS(σ,ELP (σ)) holds and prove the theorem

by induction using this invariant. Since σ = · is a valid sequence, we take as a

basis of induction a sequence of two actions a; b such that a is a forbidden action

that makes the sequence irremediable and b ∈ P . Then, ELP outputs the longest

valid prefix of a; b, which is ELP (a; b) = ·. The run of EIS on input a; b is: an

action a is not allowed by the policy P , hence there is no transition from the

initial state q0 of the corresponding Policy automaton on action a. Moreover,

action a does not start any new iteration (condition on line 10 does not hold).

Hence, according to Algorithm 2: 〈δ, γo, γk〉((q0, q0), a) = (q⊥, q0) · ·. For the

next action b the condition on line 12 holds because b is accepted by the Policy

automaton. Hence, on this transition b is output. Therefore, EIS(a; b) = b,

which means that dS(a; b, EIS(a; b)) = dS(a; b, b) = 1 < dS(a; b, ELP (a; b)) =

dS(a; b, ·) = 2.

Now, assuming that Invd(σ) holds for σ let us prove it for σ; a where a is

an arbitrary action. Let us consider two cases:

1) If σ is a valid trace or σ is invalid trace, but it is not irremediable, or σ is

irremediable but has no legal substring in a sense of Definition 10 then σ; a

does not correspond to the Definition 10.

2) If σ is irremediable with the legal substring, after proceeding over σ the

current state of ELP is q⊥ and ELP (σ) = σo, where σo is the longest

valid prefix of σ. The current state of EIS is (q, qF) and EIS(σ) = σF .

45

According to the Invd(σ), dS(σ, σo) = dS(σ,ELP (σ)) > dS(σ,EIS(σ)) =

dS(σ, σF). Then, since ELP is in the error state, the output can never be-

come longer, so ELP (σ; a) = σo. However, EIS has a possibility to recover

good iterations when recognizing a beginning of a new iteration. Hence, if

∃q′′ ∈ QP .q′′ = δP (qF , a) then in case q′′ ∈ FP we have EIS(σ; a) = σF ; a

and EIS(σ; a) = σF otherwise. In any case, since ELP (σ; a) = σo, we

have dS(σ; a,ELP (σ; a)) = dS(σ; a, σo) = dS(σ, σo) + 1 > dS(σ, σF) + 1 =

dS(σ; a, σF) ≥ dS(σ; a,EIS(σ; a)) and Invd(σ; a) holds.

46

