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Abstract. In the landmark paper on the theoretical side of Polymer,
Ligatti and his co-authors have identified a new class of enforcement
mechanisms based on the notion of edit automata, that can transform
sequences and enforce more than simple safety properties.
We show that there is a gap between the edit automata that one can
possibly write (e.g. by Ligatti himself in his running example) and the
edit automata that are actually constructed according the theorems from
Ligatii’s IJIS paper and IC follow-up papers by Talhi et al. ”Ligatti’s
automata” are just a particular kind of edit automata.
Thus, we re-open a question which seemed to have received a definitive
answer: you have written your security enforcement mechanism (aka your
edit automata); does it really enforce the security policy you wanted?
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1 Introduction

The explosion of multi-player games, P2P applications, collaborative tools on
Web 2.0, and corporate clients in service oriented architectures has changed the
usage models of the average PC user: users demand to install more and more
applications from a variety of sources. Unfortunately, the full usage of those
applications is at odds with the current security model.

The first hurdle is certification. Certified application by trusted parties can
run with full powers while untrusted ones essentially without any powers. How-
ever, certification just says that the code is trusted rather than trustworthy
because the certificate has no semantics whatsoever. Will your apparently in-
nocuous application collect your private information and upload it to the remote
server [16]? Will your corporate client developed in out-sourcing dump your hard
disk in a shady country? You have no way to know.

Model carrying code [18] or Security-by-Contract [4] which claim that code
should come equipped with a security claims to be matched against the platform
policies could be a solution. However this will only be a solution for certified code.
? Research partly supported by the Project EU-FP7-IP-MASTER



To deal with the untrusted code either .NET [12] or Java [7] can exploit
the mechanism of permissions. Permissions are assigned to enable execution of
potentially dangerous functionalities, such as starting various types of connec-
tions or accessing sensitive information. The drawback is that after assigning
a permission the user has very limited control over its usage. An application
with a permission to upload a video can then send hundreds of them invisibly
for the user (see the Blogs on UK Channel 4’s Video on Demand application).
Conditional permissions that allow and forbid use of the functionality depend-
ing on such factors as the bandwidth or some previous actions of the application
itself are currently out of reach. The consequence is that either applications are
sandboxed (and thus can do almost nothing), or the user decided that they are
trusted and then they can do almost everything.

To overcome these drawbacks a number of authors have proposed to enforce
the compliance of the application to the user’s policies by execution monitoring.
This is the idea behind security automata [5, 8, 1, 17], safety control of Java
programs using temporal logic specs [10] and history based access control [11].

In order to provide enforcement of security policies at run time by monitoring
untrusted programs we want to know what kind of policies are enforceable and
what sorts of mechanisms can actually enforce them. In a landmark paper [2]
Bauer, Ligatti and Walker seemed to provide a definitive answer by presenting a
new hierarchy of enforcement mechanisms and classification of security policies
that are enforceable by these mechanisms.

Traditional security automata were essentially action observers that stopped
the execution as soon as an illegal sequence of actions was on the eve of being per-
formed. The new classification of enforcement mechanisms proposed by Ligatti
included truncation, insertion, suppression and edit automata which were con-
sidered as execution transformers rather than execution recognizers. The great
novelty of these automata was their ability to transform the “bad” program
executions in good ones.

These automata were then classified with respect to the properties they can
enforce: precisely and effectively enforceable properties. It is stated in [2] that
as precise enforcers, edit automata have the same power as truncation, suppres-
sion and insertion automata. As for effective enforcement, it is said that edit
automata can insert and suppress actions by defining suppression-rewrite and
insertion-rewrite functions and thus can actually enforce more expressive prop-
erties than simple safety properties. The proof of Thm. 8 in [2] provides us with a
construction of an edit automaton that can effectively enforce any (enforceable)
property.

Talhi et al. [19] have further refined the notion by considering bounded ver-
sion of enforceable properties.

1.1 Contribution of the Paper

If everything is settled why we need to write this paper? Everything started
when we tried to formally show “as an exercise” that the running example of
edit automaton from [2] provably enforces the security policy described in that



paper by applying the effective enforcement theorem from the very same paper.
Much to our dismay, we failed.

As a result of this failure we decided to plunge into a deeper investigation
and discovered that this was not for lack of will, patience or technique. Rather,
the impossibility of reconciling the running example of a paper with the theorem
on the very same paper is a consequence of a gap between the edit automata
that one can possibly write (e.g. by Ligatti himself in his running example)
and the edit automata that are actually constructed according Thm. 8 from [2]
and Thm. 8 from [14] and the follow-up papers by Talhi et al. [19]. ”Ligatti’s
automata” are just a particular kind of edit automata. Figure 3 later in the
paper shows that we were trying to prove the equivalence of automata belonging
to different classes, even though they are the “same” according to [2].

The contribution of this paper is therefore manyfold:

– We show the difference between the running example from [2] and the edit
automata that are constructed according Thm. 8 in the very same paper.

– We introduce a more fine grained classification of edit automata introducing
the notion of Delayed Automata and related security properties and relation
between different notion of enforcement.

– We further explain the gap by showing that the particular automata that
are actually constructed according Thm. 8 from [2] are a particular form of
delayed automata that have an all-or-nothing behavior and that we named
Ligatti’s automata.

The remainder of the paper is structured as follows. At first we sketch the
difference between the edit automaton from the running example and Thm. 8
from [2] (§2). Then we present the basic notions of policies, enforcement and
automata in Section 3. We give a more fine grained classification of edit automata
introducing the notion of Delayed Automata (§4). Section 5 explains relation
between different notions of enforcement and types of edit automata. Finally we
conclude with a discussion of future and related works (§6).

2 The example revised

Example 1 (Verbatim from [2]). To make our example more concrete, we will
model a simple market system with two main actions, take(n) and pay(n),
which represent acquisition of n apples and the corresponding payment. We let
a range over all the actions that might occur in the system (such as take, pay,
window-shop, browse, etc.) Our policy is that every time an agent takes n apples
it must pay for those apples. Payments may come before acquisition or vice versa,
and take(n); pay(n) is semantically equivalent to pay(n);take(n). The edit au-
tomaton enforces the atomicity of this transaction by emitting take(n);pay(n)
only when the transaction completes. If payment is made first, the automaton
allows clients to perform other actions such as browse before committing (the
take-pay transaction appears atomically after all such intermediary actions).
On the other hand, if apples are taken and not paid for immediately, we issue



Table 1. Sequences of actions for market policy

No. Sequence of actions σ Expected output P̂ (σ)

1 take(1) · ×
2 pay(1) · ×
3 take(1);browse warning; browse ×
4 pay(1);browse browse ×
5 pay(1); take(1) pay(1);take(1)

√

6 take(1);browse;pay(2) warning;browse ×
7 take(1);browse;pay(2);take(2) warning;browse;pay(2);take(2) ×
8 take(1);browse;pay(1) warning;browse ×
9 take(1);browse;pay(1);take(2) warning;browse ×
10 take(1);browse;pay(1);take(2);browse warning;browse;warning;browse ×
11 take(1);browse;pay(1);take(2); warning;browse; ×

browse;pay(2) warning;browse

12 take(1); pay(2); take(2) pay(2);take(2) ×
13 pay(1);browse;pay(2) browse ×
14 pay(1);browse;pay(2);take(2) browse;pay(2);take(2) ×
15 pay(1);browse;pay(2);take(2);browse browse;pay(2);take(2);browse ×

a warning and abort the transaction. Consistency is ensured by remembering
the number of apples taken or the size of the prepayment in the state of the
machine. Once acquisition and payment occur, the sale is final and there are no
refunds (durability).”

In order to formally define the allowed and prohibited behavior described in
the market policy we present: 1) a predicate P̂ over sequences of executions; 2)
the expected output for every input sequence according the original example in
Table 1.

Let us explain the expected output of some examples form Table 1, e.g.
sequence 7:
– It contains take(1) action and browse action after it.
– Since there is no pay(1) action, the policy is violated. We expect the action

take(1) be suppressed and output the warning action instead.
– The browse action does not violate the policy hence we output it.
– Next actions pay(2);take(2) do not violate the policy.
– Therefore the output is warning;browse;pay(2);take(2).

In the sequences 13-15 the text of original example leaves opened a number
of interpretations. It is clear that good sequences must have a pair of take(n)
and pay(n) as the text implies, but it is not clear whether we allow interleaving
of pay(n) and pay(m). The text seems to imply that this is not possible so we
mark them as violations.

We say that expected output is defined if either a take-pay transaction
is completed (after the last pay(n) action there is a take(n) action) or the
transaction is violated (after take(n) action there is an action different from
pay(n)). But it is not clear how the sequence 14 should be transformed because



Fig. 1. An edit automaton that “effectively” enforces the market policy [2].

Table 2. Difference in output for edit automata

No. Input Output
EA from Fig. 1 [2] Constructed EA

by Thm.8 [2]

1 pay(1); take(1) take(1);pay(1) pay(1);take(1)

2 take(1); browse; pay(1); warning;browse ·
take(2); browse; pay(2)

3 take(1); pay(2); take(2) warning ·
4 take(1); browse; pay(2); take(2) warning;take(2); pay(2) ·
5 pay(1); browse; pay(2); take(2); browse browse; warning ·

we don’t know if the pay(1) action should still be followed by the take(1) action
or it should be simply suppressed.

The edit automaton that, as authors of [2] say, effectively enforces the market
policy is shown in Fig. 1. But the definition of effective enforcement includes the
notion of property P̂ : the predicate over the sequences of actions and this pred-
icate is not given explicitly in [2]. That is why following the example in English
we are presenting the Table 1 as a market policy. Assuming that our presentation
of the policy corresponds to the Example 1, the given edit automaton [2] should
effectively enforce the policy in Table 1.

According to the Thm. 8 of [2], any property P̂ can be effectively enforced by
some edit automaton. We will construct such automaton according to the proof
of this theorem (for more details about construction see technical report [3]).

After construction we discovered that edit automaton that effectively en-
forces P̂ (Fig. 1) and the one constructed by the proof of Theorem 8 (some edit
automaton that effectively enforces P̂ ) produce different output for the same
input. Let us show in Table 2 some cases of input and output of both automata.

Analysing the Table 2 we find out that the transformed sequences of actions
are not always the ones expected from the edit automaton. So the question arises:



Fig. 2. Relation between input and output for edit automaton from Fig. 1 [2] and edit
automaton constructed by Thm.8 [2]

Why the output is predictable in some cases and unpredictable in the others? The
answer to this question is:

1. Both edit automata produce the expected output when the input sequence
is legal (sequence 1 in the example)

2. The edit automaton constructed following the proof of Thm. 8 [2] is a very
particular kind of the edit automaton.

When the sequence is illegal the output of both edit automata is unexpected.
In Fig. 2 we show the relation between input and output for edit automaton from
Fig. 1 [2] and edit automata constructed by Thm.8 [2] with respect to the ”good”
and ”bad” traces. In case of ”bad” input sequences edit automaton constructed
by Thm.8 [2] outputs only the longest valid prefix: so either it outputs some
valid sequence (ex.1 in Tab.2) or suppresses all the sequence (ex.2-5 in Tab.2).
While edit automaton from Fig. 1 [2] always outputs some ”good” sequence of
actions even if the longest valid prefix is an empty sequence (ex.2-5 in Tab.2).

In order to explain this difference we analyze different classifications of edit
automata that explain the behavior of the edit automaton constructed following
the proof of Thm. 8 and the edit automaton from Fig. 1 [2]. For example,
all theorems referring to edit automata in [19] are about the particular kind of
automaton that is constructed following the proof of Thm. 8 [2].

3 Basic notions of policies, enforcement and automata

Similarly to [2] we specify the system at a high level of abstraction, where the
set Σ is the set of program actions; the set of all finite sequences over Σ is
denoted by Σ∗ , similarly the set of all infinite sequences is Σω , and the set Σ∗

∪ Σω is a set of all finite and infinite executions. Execution σ is a finite sequence
of actions a1, a2, ..., an. In scope of this paper we assume only finite executions
leaving infinite sequences of actions to be considered in future work.



With · we denote an empty execution. The notation σ[i] is used to denote the
i -th action in the sequence (begin counting at 0). The notation σ[..i] denotes the
subsequence of σ involving the actions σ[0] through σ[i], and σ[i + 1..] denotes
the subsequence of σ involving all other actions. We use the notation τ ;σ to
denote the concatenation of two sequences.

As showed in Section 2 the constructed edit automaton following the algo-
rithm in [2] and edit automaton presented in [2] are different. We give the original
definition of edit automata from [2]:

An Edit Automaton E is described by a 5-tuple of the form 〈Q, q0, δ, γ, ω〉
with respect to some system with actions set Σ. Q specifies possible states, and
q0 is the initial state. The partial function δ : (Σ×Q) → Q specifies the transition
function; the partial function ω : (Σ ×Q) → {−,+} has the same domain as δ
and indicates whether or not the action is to be suppressed (-) or emitted(+);
the partial function γ is an insertion function, γ : (Σ×Q) → Σ∗×Q. The partial
functions δ and γ have disjoint domains.

(σ, q) τ−→ E(σ′, q′) (1)

(σ, q) a−→ E(σ′, q′) if σ = a;σ′ ∧ δ(a, q) = q′ ∧ ω(a, q) = + (2)

(σ, q) ·−→ E(σ′, q′) if σ = a;σ′ ∧ δ(a, q) = q′ ∧ ω(a, q) = − (3)

(σ, q) τ−→ E(σ, q′) if σ = a;σ′ ∧ γ(a, q) = τ ; q′ (4)

(σ, q) ·−→ E(·, q) otherwise (5)

Assuming that the function γ always inserts all necessary actions that have
to appear before the a action, we can rewrite the case of insertion as statement
(4) and then statement (2). We consider that after inserting some actions τ at
the next step the automaton will accept the current action a (if inserting τ ; a
makes the output illegal then one can simply suppress a without inserting τ).
Hence, the equation (4) can be represented as follows:

(σ, q)
τ ;a−→ E(σ′, q′) if σ = a;σ′ ∧ γ(a, q) = τ ; q′ (6)

In this way, the sequences σ and σ′ are not relevant in the definition of
transitions. Loosely speaking this was a Mealy-Moore transformation [9]. In order
to give a formal definition in our notations, we will use the σS sequence to define
the sequence that was read but is not in the output yet.

Definition 1 (Edit Automata (EA)). An Edit Automaton E is a 5-tuple
of the form 〈Q, q0, δ, γo, γk〉 with respect to some system with actions set Σ. Q
specifies possible states, and q0 ∈ Q is the initial state. The partial function
δ : (Q × Σ) → Q specifies the transition function; the partial function γo :
(Σ∗ × Q) → Σ∗ defines the output of the transition according to the current
state and the sequence of actions that is read but not in the output yet; the
partial function γk : (Σ∗ ×Q) → Σ∗ defined the sequence that will be kept after
committing the transition. The dependence between the transition, output and



keep function is following: if δ(q, a) is defined then γo(q, a, σ) and γk(q, a, σ)
must be defined for all σ.

(q, σS)
γo(q,σS ;a)−→ E(q′, γk(q, σS ; a)) (7)

In order for the enforcement mechanism to be effective all functions δ, γk

and γo should be decidable.

Proposition 1. The Definition 1 of edit automaton has the same expressive
power of the original definition [2].

The proofs of all propositions and theorems are in the technical report [3].

4 A new classification of automata

Let us now give a deeper look at the automaton constructed according the proof
of Thm. 8 [2]. In this construction at every state the automaton has emitted
the sequence σ′, and σ′ is the longest valid prefix of the input sequence σ. In-
deed, Table 2 shows that this statement holds for edit automaton constructed
by Thm. 8 and it doesn’t hold for the edit automaton from Fig. 1 [2]. Therefore,
in order to understand what kind of edit automaton is in Fig. 1 we need to give
a formal definition of this kind of automaton. This automaton outputs some
valid prefix only when the sequence can become valid again in the future (e.g.
for the sequence take(1);pay(1);take(2) after reading take(1);pay(1) the au-
tomaton will output these actions, and after reading the take(2) action it will
still output the valid prefix take(1);pay(1)). And it outputs some corrected
sequence (current valid prefix and some other sequence) if the sequence cannot
become valid in the future(in example 2 of Table 2 after reading take(1);browse
actions the automaton outputs another action warning).

This corresponds to the following intuition:

Remark 1. The automaton constructed according to the proof of Thm. 8 in [2]
just delays the appearance of input actions until the input has built up a correct
sequence again.

Formally, we propose a notion of wider class of such automata called Delayed
Automata. They simply output some prefix of the input. These class will be
the container of other less trivial cases when the property P̂ will be called into
account.

Definition 2 (Delayed Automata). Delayed automaton A is an edit automa-
ton that is described by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉, where the
transition is defined as in equation (7) with the restriction that it always outputs
some prefix of the input:

σS ; a = γo(q, σS ; a); γk(q, σS ; a) (8)



In order to give a formal definition of the automata from Thm. 8 [2] for
any property P̂ we present also a wider class of automata called All-Or-Nothing
Automata. These automata always output a prefix of the input (hence it is
a particular kind of the Delayed Automata). Moreover, at every step of the
transition either it outputs all suspended inputs or suppresses the current action.

Definition 3 (All-Or-Nothing Automata). All-Or-Nothing automaton A is
an edit automaton described by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉, where
the transition relation is defined as in equation (7) with the following restrictions:

– This automaton outputs a prefix of the input: the statement (8) holds.
– At every step of the transition either it outputs the whole suspended sequence

of actions or suppresses the current action:

γo(q, σS ; a) =

{
σS ; a
·

(9)

The next step is the refinement of this class towards what we call Ligatti Au-
tomata for P̂ . These automata always output a prefix of the input (hence it
is a particular kind of the Delayed Automata) and they are particular kind of
All-Or-Nothing automata. Moreover, they output the longest valid prefix. The
definition of Ligatti Automaton for property P̂ given below was made according
to the construction of edit automaton given in the proof of Thm. 8 [2].

Definition 4 (Ligatti Automata for property P̂ ). Ligatti automaton E
for property P̂ is an edit automaton described by a 5-tuple of the form E =
〈Q, q0, δ, γo, γk〉, where the set of states Q = Σ∗ (every state contains the already
accepted sequence σ) and the transition relation is defined in a similar way as
in equation (7):

(σ, σS)
γo(σ,σS ;a)−→ E(σ; γo(σ, σS ; a), γk(σ, σS ; a)) (10)

With the following restrictions:

– The automaton outputs a prefix of the input (the statement (8) holds)
– Either it outputs the whole suspended sequence of actions or suppress the

current action (the statement (9) holds).
– Output is a valid prefix of the input

P̂ (σ; γo(σ, σS ; a) (11)

– If the current sequence is valid then it outputs the whole sequence:

If P̂ (σ;σS ; a) then γo(σ, σS ; a) = σS ; a. (12)

At every state a Ligatti automaton for property P̂ keeps the sequence σ that
was read till the current moment in order to decide whether P̂ (σ;σS ; a) holds.
This explains why Q= Σ∗. In our definition a Ligatti Automaton for property
P̂ is obviously a particular kind of Edit Automatfon. We will show that this
statement holds in the original definition as well.



Proposition 2. The Ligatti Automaton for property P̂ is an Edit Automaton
according to Ligatti’s own Definition.

Let us now show the inverse of this claim: the edit automaton constructed
following the proof of Thm. 8 [2] is a Ligatti Automaton for property P̂ .

Proposition 3. The Edit automaton constructed following the proof of Thm. 8
in [2] for property P̂ is a Ligatti Automaton for P̂ .

In a nutshell, the difference between edit automata and Ligatti automata
for property P̂ is the following: edit automata suppress and insert arbitrary
actions according to the given rewriting functions ω and γ while Ligatti automata
for property P̂ can only insert those actions that were read before; suppressed
actions either will be inserted when the input sequence becomes valid or all
subsequent actions will be suppressed. Thus Ligatti automata for property P̂
outputs the longest valid prefix of the input sequence.

Since the automaton constructed following the proof of Thm. 8 [2] is a Ligatti
automaton for property P̂ while the automaton given in [2] (Fig. 1) is an edit
automaton, the difference between their behaviors is not clear.

Still, the automaton of Fig. 1 is not a completely arbitrary edit automaton
and we propose a notion of Delayed Automaton for property P̂ . If the sequence
is valid it outputs a valid prefix of the input, otherwise it can output some valid
sequence (i.e. fixing the input).

Definition 5 (Delayed Automata for property P̂ ). Delayed automaton A
for P̂ is an edit automaton that is described by a 5-tuple of the form A =
〈Q, q0, δ, γo, γk〉, where the transition is defined in the same way as in equation
(7) with the following restrictions:

If P̂ (σ;σS ; a) then

– Output is a prefix of the input (the statement (8) holds) and
– Output is a valid prefix of the input (the statement (11) holds).

Later in Fig. 3 we will pictorially describe the situation. However, in order to
explain more relations present in that picture we need first to define the notion
of enforcement in the next section.

5 A new classification of enforcement properties

The principles of soundness and transparency were presented in [2] in order
to be able to compare different enforcement mechanisms. Let us first see an
intuitive description of these mechanisms. The notion of soundness requires all
the observable output of enforcement mechanism to be valid. The notion of
transparency means that an enforcement mechanism must preserve the semantics
of executions that are already valid. The notion of precise enforcement by [2]
obeys both of these properties. According to that definition, the automaton in
question outputs program actions in lock-step with the target program’s action



stream if the action stream σ is valid. Suppose that at the current moment the
automaton reads i-th action in the sequence, and the sequence σ[..i + 1] is not
valid. Then the automaton will not output any other actions.

In order to formalize the behavior where the automaton suppresses some
actions and later insert them when the sequence turns out to be legal, we present
the notion of Delayed precise enforcement.

Definition 6 (Delayed Precise Enforcement). An edit automaton A with
starting state q0 delayed precisely enforces a property P̂ on the system with
action set Σ iff ∀σ ∈ Σ∗ ∃q′ ∃σ′ ∈ Σ∗.

1. (σ, q0)
σ′

−→ A(·, q′), and
2. P̂ (σ′), and

3. P̂ (σ) ⇒ σ = σ′ ∧ ∀i ∃j. j ≤ i ∃q∗. (σ, q0)
σ[..j]−→ A(σ[i + 1..], q∗).

There is another notion of enforcement called ”effective=enforcement” [14],
which also obeys the properties of soundness and transparency.

Definition 7 (Effective=Enforcement). An automaton A with starting state
q0 effectively= enforces a property P̂ on the system with action set Σ iff ∀σ ∈
Σ∗ ∃q′ ∃σ′ ∈ Σ∗.

1. (σ, q0)
σ′

−→ A(·, q′), and
2. P̂ (σ′), and
3. P̂ (σ) ⇒ σ = σ′

Let us show the relation between delayed precise enforcement and effective=en-
forcement.

Theorem 1. If edit automaton A delayed precisely enforces a property P̂ then
it effectively=enforces property P̂ .

Let us come back to Example 1. As it is said in [2] the given edit automaton
(Fig. 1) effectively=enforces the market policy. But since the market policy is
given only in natural language and the predicate P̂ is not given, statement ”An
edit automata effectively enforces the market policy” is stretching the definition.

Let us show in Fig. 3 all edit automata and its’ particular subclasses presented
above. The following theorems show the relation between different types of edit
automata.

Proposition 4. If edit automaton A is a Delayed Automaton then it is not
necessary that A is a Delayed Automaton for property P̂ .

Proposition 5. If edit automaton A is a Delayed Automaton for property P̂
then it is not necessary that A is a Delayed Automaton.

From the Thm. 4 and Thm. 5 we can conclude that classes of Delayed Au-
tomata and Delayed Automata for P̂ have some common subclass but none of
them include the other.



Fig. 3. The classes of Edit Automata.

Theorem 2. If edit automaton A effectively=enforces property P̂ then A is a
Delayed Automaton for property P̂ and it is not necessary that A is a Delayed
Automaton.

Proposition 6. If edit automaton A is a Delayed Automaton for property P̂
then it is not necessary that A effectively=enforces property P̂ .

From Thm. 2 and Proposition 6 we conclude that the class of edit automata
that effectively=enforces property P̂ is a particular class of Delayed Automata
for P̂ and is not a proper subset of Delayed Automata.

Thm. 1 shows that edit automata that delayed precisely enforce property P̂
are a particular type of edit automata that effectively=enforce P̂ . The key point
is that in the definition of delayed precise enforcement it is left open how illegal
input is transformed.

Let us have a look at the 2d and 3d conditions of precise enforcement [2]:

P̂ (σ′)

P̂ (σ) ⇒ ∀i ∃q′′. (σ, q0)
σ[..i]−→ A(σ[i + 1..], q′′)

These conditions mean that the automaton will produce an output in a
step-by-step fashion with the monitored action stream and will output only a
valid prefix. As soon as input sequence becomes illegal, the automaton will stop
outputting. Therefore, in case of precise enforcement for illegal input, it will
output some valid prefix σ′ = σ[..k] such that ∀i. i ≤ k. P̂ (σ[..i])∧¬P̂ (σ[..k+1]).
In case of delayed precise enforcement for illegal input the output will be some
valid prefix σ′ = σ[..k] such that ∀i. i ≤ k. P̂ (σ[..i]).

Theorem 3. Edit automaton A delayed precisely enforces a property P̂ if and
only if A is a Delayed Automaton, A is a Delayed Automaton for P̂ and it
effectively=enforces property P̂ .



Proposition 7. Delayed automaton A that delayed precisely enforces property
P̂ is not necessarily a Ligatti Automaton for P̂ .

Proposition 8. All-Or-Nothing automaton A is a Delayed Automaton but not
necessarily a Delayed Automaton for property P̂ .

Theorem 4. All-Or-Nothing automaton A delayed precisely enforces a property
P̂ if and only if A is a Ligatti Automaton for property P̂ .

Now we will define type of edit automaton constructed following the proof
of Theorem 8 in [2] for property P̂ and type of edit automaton presented by the
authors in [2] (Fig. 1).

As the Proposition 3 states, edit automaton constructed following the proof
of Theorem 8 in [2] for property P̂ is a Ligatti Automaton for P̂ . The edit
automaton given in Fig. 1 [2] is an edit automaton that effectively=enforces P̂ :
the 2d condition of effective=enforcement is fulfilled (automaton always outputs
the valid sequence) and the 3d condition is valid because in case of valid input it
always outputs all the sequence. The edit automaton given in Fig. 1 [2] is not a
Delayed Automaton because it does not always output some prefix of the input
(see examples 2-5 in Tab.2)

Therefore we can conclude that both automata from Theorem 8 [2] and from
Fig. 1 [2] are edit automata that effectively=enforce property P̂ . But when one
wants to construct such an automaton and follows the proof of Theorem 8 [2],
he obtains Ligatti Automaton for P̂ that delayed precisely enforces P̂ .

6 Related work and Conclusions

Schneider [17] was the first to introduce the notion of enforceable security poli-
cies. The follow-up work by Hamlen et al. [8] fixed a number of errors and char-
acterized more precisely the notion of policies enforceable by execution monitors
as a subset of safety properties. They also analyzed the properties that can be en-
forced by static analysis and program rewriting. This taxonomy leads to a more
accurate characterization of enforceable security policies. Ligatti, Bauer, and
Walker [2] have introduced edit automata; a more detailed framework for reason-
ing about execution monitoring mechanisms. As we already said, in Schneider’s
view execution monitors are just sequence recognizers while Ligatti et al. view
execution monitors as sequence transformers. Having the power of modifying
program actions at run time, edit automata are provably more powerful than
security automata [13].

Fong [6] provided a fine-grained, information-based characterization of en-
forceable policies. In order to represent constraints on information available to
execution monitors, he used abstraction functions over sequences of monitored
programs and defined a lattice on the space of all congruence relations over ac-
tion sequences aimed at comparing classes of EM-enforceable security policies.
Still his policies are limited to safety properties over finite executions.



Martinelli and Matteucci [15] have shown how to synthesize program con-
trollers that monitor behavior of the untrusted components of the system. Given
the system and a security policy represented as a µ-calculus formula the user
can choose the controller operator (truncation, suppression, insertion or edit
automata). Then he can generate a program controller that will restrict the
behavior of the system to those specified by the formula.

When a security policy is represented by a predicate P̂ over set of finite exe-
cutions we can conclude that both automata from Thm. 8 [2] and from Fig. 1 [2]
are edit automata that effectively=enforce property P̂ . If one wants to construct
such an automaton and follows the proof of Thm. 8 [2], he obtains a Ligatti
automaton for P̂ that delayed precisely enforces P̂ . A problem that is present
in the construction of Thm. 8 is that it assumes an oracle that can tell for each
sequence σ whether P̂ (σ) holds or not.

A security policy in Thm. 8 [2] is a predicate P̂ on all possible finite sequences
of executions, but in this case the edit automaton which effectively enforces this
policy is only of theoretical interest: following the proof of Thm. 8 only infinite
states automata can be constructed.

In summary, we have shown that the difference between the running example
from [2] and the edit automata that are constructed according Thm. 8 in the very
same paper is due to a deeper theoretical difference. In order to understand this
difference we have introduced a more fine grained classification of edit automata
introducing the notion of Delayed Automata. The particular automata that are
actually constructed according Thm. 8 from [2] are a particular form of delayed
automata that have an all-or-nothing behavior and that we named Ligatti’s
automata after their inventor.

Hence, the construction from Talhi et al. [19] only applies to Ligatti’s au-
tomata. Given a Ligatti automaton they can extract the Büchi automaton that
represent the policy effectively enforced by the Ligatti automaton. What hap-
pens if the automaton is not a Ligatti automaton? For example the automaton
from Fig. 1? Proposition 6.24 [19] simply does not apply. It needs to be shown
whether given a general edit automaton one can construct a Büchi automaton
so that the latter represents the policy that is effectively enforced by the former.
We leave this question open for future investigation.

What remains to be done? Our results shows that the edit automaton that
you can actually write (e.g. by using Polymer) does not necessarily correspond
to the theoretical construction that provably guarantees that your automaton
enforce your policy. A first step would be to find a construction that given a
security policy represented as a Büchi automaton gives the Ligatti automaton
that effectively enforces it.

So we fully re-open the most intriguing question that the stream of papers
on execution monitors seemed to have closed: you have written your security
enforcement mechanism (aka your edit automata); how do you know that it really
enforces the security policy you specified?



References

1. L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer.
In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, pages 305–314. ACM Press, 2005.

2. L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1-2):2–
16, 2005.

3. N. Bielova and F. Massacci. Do you really mean what you actually enforced?
Technical Report DISI-08-033, UNITN, 2008.

4. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward
a Semantics for Digital Signatures on Mobile Code. In Proceedings of the 4st
European PKI Workshop: Theory and Practice. Springer-Verlag, 2007.

5. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. Technical report 2003-1916, Department of Computer Science, Cornell
University, 2003.

6. P.W.L. Fong. Access control by tracking shallow execution history. Proceedings of
the 2004 IEEE Symposium on Security and Privacy, pages 43–55, May 2004.

7. L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Architecture, API
Design, and Implementation. Pearson Education, 2003.

8. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for en-
forcement mechanisms. ACM Transactions on Programming Languages and Sys-
tems, 28(1):175–205, 2006.

9. J. Hartmanis. Algebraic structure theory of sequential machines. Prentice-Hall,
Englewood Cliffs, New Jersey, 1966.

10. K. Havelund and G. Rosu. Efficient monitoring of safety properties. International
Journal on Software Tools for Technol. Transfer, 2004.

11. K. Krukow, M. Nielsen, and V. Sassone. A framework for concrete reputation-
systems with applications to history-based access control. In Proceedings of the
12th ACM Conference on Communications and Computer Security, 2005.

12. B. LaMacchia and S. Lange. .NET Framework security. Addison Wesley, 2002.
13. J. Ligatti, L. Bauer, , and D. Walker. Enforcing non-safety security policies with

program monitors. In Proceedings of the 10th European Symposium on Research
in Computer Security, pages 355–373, 2005.

14. Jarred Adam Ligatti. Policy Enforcement via Program Monitoring. PhD thesis,
Princeton University, June 2006.

15. F. Martinelli and I. Matteucci. Through modeling to synthesis of security au-
tomata. In Proceedings of the Second International Workshop on Security and
Trust Management. Lecture Notes in Computer Science, 2006.

16. Bill Ray. Symbian signing is no protection from spyware. http://www.

theregister.co.uk/2007/05/23/symbian_signed_spyware/, May 2007.
17. F.B. Schneider. Enforceable security policies. ACM Transactions on Information

and System Security, 3(1):30–50, 2000.
18. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-

carrying code: a practical approach for safe execution of untrusted applications. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages
15–28. ACM Press, 2003.

19. C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under
memory-limitation constraints. Information and Computation, 206(2-4):158–184,
2007.


