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Abstract—This article describes an original method to 

reconstruct a 3D scene from a sequence of images. Our approach 

uses both the dense 3D point cloud extracted by multi-view 

stereovision and the calibrated images. It combines depth-maps 

construction in the image planes with surface reconstruction 

through restricted Delaunay triangulation. The method may 

handle very large scale outdoor scenes. Its accuracy has been 

tested on numerous outdoor scenes including the dense multi-view 

benchmark proposed by Strecha et al. Our results show that the 

proposed method compares favorably with the current state of the 

art. 

 
Index Terms—Delaunay refinement, Multiple-views, Restricted 

Delaunay triangulation,  Surface reconstruction. 

 

I. INTRODUCTION 

Motivations. Various applications in Computer Vision, 

Computer Graphics and Computational Geometry require a 

surface reconstruction from a 3D point cloud extracted by 

stereovision from a sequence of overlapping images. These 

applications range from preservation of historical heritage to 

e-commerce through computer animation, movie production 

and virtual reality walkthroughs. 

Early work on reconstruction has been focused on data 

acquired through laser devices, with characteristics that the 

obtained 3D point cloud is dense and well distributed [1]-[3]. 

Although these reconstruction methods have been reported  as 

successful, the nature of the laser scanners greatly limits their 

usefulness for large-scale outdoor reconstructions. The recent 

advances in multi-view stereovision provide an exciting 

alternative for outdoor scenes reconstruction. However, the 

extracted 3D point clouds are entangled with redundancies, a 

large number of outliers and noise. Fortunately, on top of these 

point clouds, the additional information provided by the 

calibrated images can be exploited to help surface 

reconstruction. 

 

Related Work. Over the past three decades there have been 

significant efforts in surface reconstruction from images, 

typically targeting urban environments or archaeological sites.  
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According to a recent survey provided by Seitz et al. [4], the 

surface reconstruction methods can be roughly categorized into 

4 classes. The first class operates by computing a cost function 

on a 3D volume, which is later on used to extract a surface mesh 

from it. It includes the voxel colouring algorithms [5] and the 

graph cut algorithms [6]. The second class includes the 

variational methods and work by iteratively evolving a surface 

to minimize an error function [7]. The third class of methods is 

based on multiple depth-maps, ensuring a consistent 3D scene 

[8]-[13]. Finally, we call the fourth category of algorithms as 

hybrid algorithms. These algorithms mainly proceed in two 

phases: First, they extract a set of 3D points that are robustly 

matched across the images; second, they fit a surface to the 

reconstructed oriented 3D points [14, 15, 18, 19]. The recent 

work of Vu et al. [16] interestingly mixes a 3D volumetric 

method and implicit methods to output high quality meshed 

models. 

Surface reconstruction from multiple views can also be 

thought in terms of the scenes they can handle. The 

requirements for the ability to handle large-scale scenes 

discards most of the multi-view stereo reconstruction 

algorithms including the algorithms listed in the Middlebury 

challenge [4]. The methods which have proved to be more 

adapted to large-scale outdoor scenes are the ones that compute 

and merge multiple depth-maps. However, in multiple 

situations, the reconstructed 3D models lack of accuracy or 

completeness due to the difficulty to consistently take visibility 

into account. Recently, two different accurate reconstruction 

algorithms have been proposed in [14], [16]. We demonstrate 

the efficiency of our reconstruction results relying on the 

publicly available quantitative challenge from the review of 

Strecha et al. [17] currently led by [14] and [16]. 

 

Contributions. Our reconstruction method is close to [18] and 

to the image-consistent triangulation concept proposed by 

Morris and Kanade [19]. It consists in a pipeline that handles 

large-scale scenes while providing control over the density of 

the output mesh. A triangular depth-map is built in each image 

plane, respecting the main contours of the image. The triangles 

of all the depth-maps are then lifted in 3D, forming a 3D 

triangle soup. The similarity of the triangle soup with the 

surface of the scene is further enforced by combining both 

visibility and photo-consistency constraints. Lastly, a surface 

mesh is generated from the triangle soup using Delaunay  
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Fig. 1.  (a) the Voronoi diagram of a set of 2D points; (b) its dual Delaunay 

triangulation. (c) The Delaunay triangulation restricted to the blue planar closed 

curve is plotted in black. (d) The Delaunay triangulation restricted to the yellow 

region is composed of triangles whose circumcenters are inside the region.  

 

 

refinement methods and the concept of restricted Delaunay 

triangulation. The output mesh can be refined until it meets 

some user-given size and quality criteria for the mesh facets. A 

preliminary version of this work appeared as a video in the 

ACM Symposium on Computational Geometry 2009 [20] and 

as a short paper in the Modeling-3D workshop of the Asian 

Conference of Computer Vision 2009 [21]. 

 

II. BASIC NOTIONS 

In this section we define the concepts borrowed from 

computational geometry that are required for our method.  

 Let 0 nP = {p ,…, p }  be a set of points in 
dR that we call 

sites. The Voronoi cell iV p )( , associated to a site ip , is the 

region of points that are closer to ip than to all other sites in P : 

  ji

d

i ppppjiRppV  ,:)(  

The Voronoi diagram PV( ) of P is a cell decomposition of 

dR induced by the Voronoi cells ipV( ) . 

 The Delaunay complex PD( ) of P is the dual of the 

Voronoi diagram, meaning the following. For each subset

I P , the convex hull Iconv( ) is a cell of PD( )  iff the 

Voronoi cells of points in I  have a non empty intersection. 

When the set P is in general position, i.e. includes no subset of 

d 2  cospherical points, any cell in the Delaunay complex is a 

simplex. This Delaunay complex is then a triangulation, called 

the Delaunay triangulation. It decomposes the convex hull of 

P  into -dimensionald simplices. 

 Let   be a subset of
dR , we call Delaunay triangulation of 

P restricted to  and we note PD ( ) , the sub-complex of

PD( ) , which consists of the faces of PD( ) whose dual 

Voronoi faces intersect  . This concept has been particularly 

fruitful in the field of surface reconstruction, where 3d   and 

P is a sampling of a surface S . Indeed, it has been proved that 

under some assumptions, and specially if P is a “sufficiently 

dense” sample of S , PSD ( ) is homeomorph to the surface S

and is a good approximation of S in the Hausdorff sense [22]. 

Fig. 1 illustrates the notion of restricted Delaunay triangulation.  

 

 The Delaunay refinement surface meshing algorithm 

incrementally builds a sampling P on the surface S whose 

restricted triangulation PSD ( )  is a good approximation of the 

surface S . At each iteration, the algorithm inserts a new point 

of S into P and maintains the 3D Delaunay triangulation 

PD( ) and its restriction PSD ( ) . Insertion of new vertices is 

guided by criteria on facets of PSD ( ) : 

  the angular bound controls the shape of the mesh 

facets; 

  the distance d governs the approximation accuracy of 

the mesh elements; 

  the size parameter l  governs the maximal edge length 

of the mesh facets. 

 

The algorithm [22] has the notable feature that the surface has 

to be known only through an oracle that, given a line segment, 

detects whether the segment intersects the surface and, if so, 

returns the intersection points. 

 

  At last, we also use the notion of 2D-constrained Delaunay 

triangulation based on a notion of visibility [23]. Let G be the 

set of constraints forming a straight-line planar graph. Two 

points p and q are said to be visible from each other if the 

interior of the segment pq  does not meet any segment of G . 

The triangulation T in
2R is a constrained Delaunay 

triangulation of G , if each edge of T is either an edge of G  or 

a constrained Delaunay edge. A constrained Delaunay edge is 

an edge e such that there exist a circle through the endpoints of 

e  that encloses no vertices of T visible from an interior point 

of e . 

 

III. THE RECONSTRUCTION ALGORITHM 

The algorithm takes as input a sequence of calibrated images 

and a set of tracks provided by multi-view stereo. The 

algorithm consists of three steps: 1) merging, filtering and 

smoothing the tracks, 2) building a triangle soup, and 3) 

computing from the triangle soup a mesh modelling the scene. 

The different steps of our algorithm are illustrated in Figure 2. 
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 The following sections describe the three steps of the 

algorithm in more detail. 

3.1 Merging, Filtering and Smoothing 

Figures 3a-3b shows the typical input to our surface 

reconstruction algorithm provided by a stereo vision algorithm. 

In this case the results were obtained from a set of 11 images 

taken from slightly different viewpoints. Each input track stores 

its 3D point location as well as the list of camera locations from 

which it was observed during acquisition. In the following, we 

call line-of-sight the segment from a camera location to the 3D 

position of a track seen by this camera. Despite the robust 

matching process used by the multi-view stereo algorithm, the 

extracted tracks require some pre-processing [24] including 

merging, filtering and smoothing. 
 

Merging. The first pre-processing step in our method consists 

in merging tracks whose positions are too close. We do that by 

building an incremental Delaunay triangulation of the 3D 

positions of the tracks. Each time a track 3D position is to be 

added, its nearest neighbour is requested: depending on the 

distance between these two track 3D positions, one of two cases 

can arise.  

If the nearest neighbour is close, with respect to a threshold

1 , the two tracks are merged in a single one and their list of 

cameras is updated to include the union of the cameras of the 

two merged tracks. If the closest neighbour is at a distance 

larger than 1 then both tracks are preserved in the final set of 

tracks. 

 

Filtering. As tracks are coming from characteristic points 

detected in the images, their 3D locations should be densely 

spread over the surface of the scene objects. Thus, tracks which 

are rather isolated are likely to be outliers. Another criterion 

used to further filter out outliers, is based upon the angle 

between lines-of-sight. When a 3D point location is computed 

from lines-of-sight forming small angles, the intersection 

computation is imprecise and the 3D point is likely to be an 

outlier. For these reasons we use two criteria to detect outliers 

in the set of tracks: The distance to neighbours and the cone 

angle. 

 

- Distance to neighbours. This criterion aims at eliminating 

tracks far away from densely populated regions of space. We 

compute for each track with 3D position ip the average 

Euclidean distance
1k id ( p ) from ip to its 1k -nearest neighbors. 

In practice, for the 3D point clouds of the scenes we wish to 

reconstruct, the distribution of the average distance to the 1k

-nearest neighbors tend to be Gaussian-like. Thus if  is the 

standard deviation of the distance distribution, we remove 

tracks with distance higher than 3 . 

 
 
Fig. 2.  Reconstruction pipeline overview. Both images and camera projection 

matrices are used by the stereo vision algorithm to extract a 3D point cloud. (a) 

We will first pre-process the 3D point cloud. (b) Using the pre-processed 3D 

points and the camera projection matrices we extract a triangle soup that 

minimizes visibility and photo-consistency violations. (c) Finally, we use the 

triangle soup as a surface approximation and build the output 3D model. Note 

that the triangles lying on the table were voluntary removed for readability. 

 

- Cone angle filtering. This criterion aims at eliminating the  

tracks which have been observed from only a few camera 

locations or from a set of camera in directions forming small 

angles from the 3D point. We compute for each track with 3D 

position ip  the aperture angle of the smallest cone with apex at 

ip containing all cameras that observe point ip . Tracks with 
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small cone angles 2 are discarded. Note that this criterion is 

very useful for filtering 3D point clouds extracted from a set of 

images taken from a video sequence. 

 

Smoothing. The final pre-processing step smoothes the 

remaining tracks using a smoothing algorithm based upon 

jet-fitting and re-projection [25]. For each track, we compute a 

low degree polynomial surface (typically a quadric) that 

approximates its 
2
k -nearest neighbours. We then project the 

track onto the computed surface. 

 In all our experiments we used 1=0.001β , where  is half 

the diagonal of the bounding box of the point cloud, 2 =0.08

radian, =1501k and 2 =85k . 

3.2 Triangle soup extraction 

The next step in our method combines the pre-processed tracks 

and the input images to build within each image plane a 

triangular depth-map that comply with the image 

discontinuities. The triangles of each depth-map are then lifted 

into 3D space forming a triangle soup which will require further 

filtering to minimize violations of visibility and 

photo-consistency constraints. 

 

Depth-Maps Construction. Since straight or curved edge 

segments appearing in the images are one of the most important 

keys to understand or reconstruct the scene from 2D images, it 

is expedient to include this edge information in the depth-maps 

construction process. Generally, an edge is a set of points where 

the brightness intensity of the corresponding pixel changes 

most strongly in its neighbourhood. Thus, on a 2D image the 

edge corresponds to a contour and often a sharp edge or an 

occluding boundary in 3D space.  

A simple yet powerful method for edge detection is to 

perform a contrast analysis into the input images using 

gradient-based techniques. The algorithm we used, the Canny 

algorithm [26], has the following properties: 1) high positional 

accuracy of an edge, even with aliasing; 2) good sensitivity to 

high frequency data, and, 3) reduction of the data (many pixels 

don’t produce edge points). The last of these properties, 

reduction of the data, is important as it can make significant 

difference in the computation time of the depth-maps. 

First, the image is smoothed by convolving it with a 

Gaussian filter. This is followed by findin g the gradient of the 

image by feeding the smoothed image through a convolution 

operation with the derivative of a Gaussian mask in both the 

vertical and horizontal directions. The Gaussian mask and its 

derivative are separable, allowing the 2D convolution  

operations to be simplified. Then, non-maxima suppression 

stage is performed which helps to maintain single pixel thin 

edges. Finally, instead of using a single static threshold value 

for the image, the Canny algorithm introduced hysteresis 

thresholding. This process mollifies problems associated with 

edge discontinuities by identifying strong edges, and 

preserving the relevant weak edges, while maintaining some  

 
 

Fig. 3.  Fountain-p11 dataset: (a) one image out of eleven; (b) top view of the 

corresponding point cloud; (c) both the image and the point cloud are used to 

detect the constraints. 

 

 

level of noise reduction. 

We then compute, in each image, an approximation of the 

detected contours as a set of non-intersecting polygonal lines 

with vertices on the projection of the tracks. For this we 

consider in each image the projection of the tracks located in 

this image. We call contour track, or ctrack, a track whose 

projection on the image is close to some detected contour. We 

call a non-contour track, or nctrack, any other track. We 

consider the complete graph over all ctracks of an image and 

select out of this graph the edges which lay over detected 

contours. The selection is performed by a simple weighting 

scheme using [27]. Inherently, whenever there is n  ctracks 
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aligned on an image contour, we select the n(n- 1) 2 edges 

joining these tracks. Albeit, we wish to keep only the n 1( )

edges between consecutive ctracks on the contours. For these 

reasons we use a length criterion to further select a subset of 

non-overlapping edges fashioning the polygonal approximation 

of the contour. In practice, in order to speed up the 

computation, we chose to consider the Delaunay triangulation 

over all ctracks instead of building a complete graph. Other 

steps of the algorithm remain unchanged where Delaunay 

edges are considered instead of the complete graph edges (see 

Fig. 3c). This is a good approximation because of the high 

density of ctracks per image. 

 

In each image plane, edges in the polygonal contour 

approximation are used as input segments to a 2D constrained 

Delaunay triangulation with all projected tracks, ctracks and 

nctracks, as vertices. The output is a triangular depth-map per 

image. The triangles of this depth-map are then lifted in 3D 

space using the 3D coordinates computed by the multi-view 

stereo algorithm. However, lifted depth-maps from consecutive 

images partially overlap one another and the triangle soup 

includes redundancies. When two triangles share the same 

vertices, only one is kept. 

 

Triangle Soup Filtering.  The vast majority --but not all-- 

triangles of the soup lie on the actual surface of the scene. 

However, at occlusion boundaries, the depth map construction 

step might produce triangles that connect foreground surfaces 

to background surfaces. In the sequel, we note 0 n{t , ... ,t }   

the 3D triangle soup. We wish to filter  to remove erroneous 

triangles. 

 

1) The visibility constraint states that the line-of-sight 

from a camera position to the 3D position of a track 

seen by this camera belongs to the empty space, i.e., it 

does not intersect any object in the scene. Therefore a 

triangle intersected by some line-of-sight should be 

removed from   (see Figure 4a). However, this rule has 

to be slightly softened to take into account the 

smoothing step (Section 3.1) where the tracks 3D 

positions have been slightly changed. More 

specifically, each triangle it in  gets a weight iw  equal 

to the number of lines-of-sight intersecting it . We then 

discard from  any triangle with a weight iw greater 

than a threshold
3
 .  

 

2) We also filter out any triangle whose vertices, at least 

one of them, are only seen by grazing lines-of-sight. In 

practice, an angle greater than 80 degrees between the 

line-of-sight and the triangles normal is used in all our 

experiments to characterise a grazing line-of-sight. 

 

3) Depending on the density of the pre-processed tracks, 

the triangle soup can contain “big'' triangles, i.e. 

triangles whose circumradii are big compared to the 

 
 

Fig. 4.  Visibility constraints: the point p see in the current view has its free 

space violated by triangle T1 seen in another view. 

 

 

scale of the scene. We used shape and 

photo-consistency to filter big triangles. 

A triangle is said to be anamorphic if it has a too big 

radius-edge ratio, where the radius-edge ratio of a 

triangle is the ratio between the radius of its 

circumcircle and the length of its shortest edge. 

Anamorphic big triangles are likely to lie in free space 

and should be discarded. Big triangles with regular 

shapes are filtered using photo-consistency criteria: 

A 3D triangle it  in   is photo-consistent, if its 

projections into all images where it vertices are visible 

correspond to image regions with the same “texture”. 

To decide on photo-consistency, two common criteria 

are the Sum of the Squared Difference (SSD) and the 

Normalised Cross-Correlation (NCC) between pixels 

inside the projected triangle in each image. In our 

experiments we use NCC because it is less sensitive to 

illumination change between the views. We only use 

images where the angle between the normal of the 3D 

triangle and the line-of-sight through the centre of the 

image is small. This scheme gives head-on views more 

importance than oblique views. 

 

3.3 Reconstruction 

For the final step, we use the Delaunay refinement surface mesh 

generation algorithm [22] described in Section 2. Recall that 

this algorithm needs to know the surface to be meshed only 

through an oracle that, given a line segment, detects whether 

the segment intersects the surface and, if so, returns the 

intersection points. We implemented the oracle required by the 

meshing algorithm using the triangles of   as an 

approximation of the surfaces. Thus, the oracle will test and  

compute the intersections with  to answer to the algorithm 

queries. 

 In other words, to produce meshes with different resolutions, 

we just have to apply the reconstruction step on the extracted 

triangle soup and alter the Delaunay refinement parameters 

( ,l,d)  see Fig. 6. 
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Fig. 5.  Top-left: 2 images of fountain-p11 and the extracted triangle soup. 

Bottom: our reconstruction (500 000 triangles). Top-right: the cumulative error 

distribution (SAL for our work) compared with VU[16],FUR[14], ST4 [10], 

ST6 [11],ZAH[31] and TYL[13]. 

 
 

IV. IMPLEMENTATION AND RESULTS 

The presented algorithm was implemented in C++, using both 

CImg and Cgal libraries. 

The Cgal library [28] defines all the needed geometric 

primitives and provides efficient algorithms to compute 

Delaunay triangulations in both 2D and 3D [29]. It provides a 

point set processing package [24] needed in the pre-processing 

step of our algorithm. Moreover, the Cgal library provides 

access to the AABB tree which is an efficient data structure for 

intersection detection queries. More importantly, it provides us 

the Delaunay refinement surface meshing algorithm that we use 

in the last step of our algorithm. 

The CImg library [30] is a toolkit for image processing that 

defines simple classes and methods to manipulate generic 

images. In our code, we use it for the contour detection, the 

constraint retrieval and the photo-consistency filtering step. 

In our experiments, we used for the point cloud 

pre-processing step the values of parameters ( 1 ; 2 ; 1k ; 2k ), 

as listed at the end of Section 3.1. Moreover, the visibility 

constraint threshold
3
 , defined in Section 3.2, is set at 5 rays. 

Leaving aside the time required by the multi-view stereo 

processing (image calibration and track extraction), in our 

experiments the runtime of the reconstruction ranges from 9 

minutes for 200 000 tracks on 8 images to 38 minutes for 700 

000 tracks on 25 images, on an Intel®Quad Xeon 3.0GHz PC. 

Strecha et al. [17] provide quantitative evaluations for six 

outdoor scene datasets. The evaluation of the reconstructed 

 

TABLE I 

RUNING TIMES IN OUR APPROACH [MIN], (TS,R) ARE RESPECTIVELY FOR 

TRIANGLE SOUP EXTRACTION AND MESH RECONSTRUCTION 

scene mesh 
times 

(TS,R) 
fig. 

entry-p10 

3D points 

223 300 
triangles 

503 465 
 

(5,4) 

 

6 

fountain-p11 231 884 503 591 (8,4) 5 

Herz-Jesu-p25 501 788 1 200 

755 

(25,13) 6 

Aiguille-du-Midi 

6 788 290 pts 

131 202 

465 419 

272 792 

992 140 

(240,9) 

(240,20) 8 

 

models is quantified through the cumulative error 

distribution, showing, for each deviation  , the percentage of 

the scene recovered within an error less than  . The deviation 

is estimated with respect to the ground truth model acquired 

with a LIDAR system. We have tested our approach on the 

fountain-p11, entry-p10, castle-p19 and Herz-Jesu-p25 

particularly challenging datasets. Focusing on the fountain-p11 

dataset, Fig. 5 shows two of the images, the extracted triangle 

soup, our reconstruction and the cumulative error distribution 

compared with the distributions obtained by other 

reconstructed methods. The stereovision cloud has 392 000 

tracks from which 35 percent were eliminated at the 

pre-processing step. Our algorithm has successfully 

reconstructed various surface features such as regions of high 

curvature and shallow details while maintaining a small 

number of triangles. The comparison with other methods [10, 

11, 13, 14, 16, 31] shows the versatility of our method as it 

generates small meshes that are more accurate and complete 

than most of the state-of-art while being visually acceptable. 

Moreover, Fig. 7 illustrates the ability of our algorithm to take 

into account user-defined size and quality criteria for the mesh 

facets. Fig. 6 shows our reconstruction results for the entry-p10 

and the Herz-Jesu-p25 datasets. For extended results we refer 

the reader to the challenge website [17]. 

To show the ability of our algorithm to cope with much bigger 

outdoor scenes and its ability to produce meshes that take into 

account the user budget for the size of the output mesh, we have 

chosen to test our method on the Aiguille du Midi dataset 

(©B.Valet/IMAGINE). It includes 51 images, the extracted  

cloud has 6 700 000 points with lots of outliers. At the 

pre-processing step, 80 percent of the points were eliminated. 

The Delaunay refinement surface meshing is tuned through 

three parameters: the maximum angle  ; the maximum 

distance between a facet and the surface d, and the maximum 

edge length l. We have tuned parameters d and l to adapt the 

mesh to a targeted size budget. The reconstructions shown in 

Fig. 8 are obtained with  equals 20 degrees and the couple (d, 

l) is set as (0.01, 0.035) and (0.002, 0.01) in unit of the 

bounding box half diagonal. This enabled us to reconstruct 

from a single extracted triangle soup, output meshes of various 

resolutions (270 000 triangles and 1 000 000 triangles 

respectively in Fig. 7). Note that details such as antennas and 

bridges are recovered even in the coarsest model. Table 1 

shows the number of 3D points, the number of triangles for 

each reconstructed mesh and the time for the reconstruction 
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algorithm. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a novel 3D mesh reconstruction 

algorithm combining the advantages of stereovision with the 

power of Delaunay refinement surface meshing. Visual and 

quantitative assessments applied on various large-scale datasets 

indicate the good performance of our algorithm. As for ongoing 

work, we want to explore the possibility to automatically 

pre-compute the thresholds such as ( 1 ; 2 ; 3 ; 1k ; 2k ) from 

the images and incorporate in the reconstruction process a scale 

dependent sharp edges detection and recovery procedure to 

build geometrically simplified models. 
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Fig. 6.  Top to bottom: 2 images of entry-p10 and 2 images of Herz-Jesu-p25; 

our reconstruction of entry-p10 (500 000 triangles); our reconstruction of 

Herz-Jesu-p25 (1 200 000 triangles)

http://cvlab.epfl.ch/strecha/multiview/denseMVS.html
http://www.cgal.org/
http://cimg.sourceforge.net/
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Fig. 7.  Fountain-p11 dataset reconstruction: (a-d) 3D meshes resulting from our reconstruction step. By altering the parameters in the reconstruction step, the output 

mesh becomes coarser, but, the fountain shape remains. 

 

 

 
 

Fig. 8.  On the left: two images of the Aiguille du midi dataset (© B.Vallet/IMAGINE); below: our low resolution reconstruction (270 000 triangles). On the right: 

our high resolution reconstruction (1 000 000 triangles). Note how most details pointed by yellow arrows are recovered in both resolutions.  
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