

Computational Geometry Algorithms Library

www.cgal.org

Monique Teillaud

Introduction to

- $\bullet\,$ The ${\rm CGAL}$ Open Source Project
- $\bullet~Structure~of~\mathrm{CGAL}$
- The Kernel

The Open Source Project

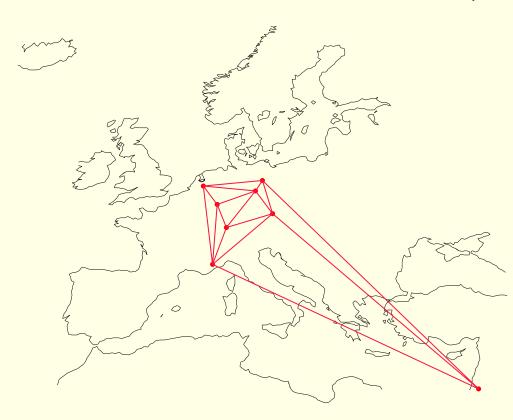
Goals

- Promote the research in Computational Geometry (CG)
- "make the large body of geometric algorithms developed in the field of CG available for industrial applications"

\Rightarrow robust programs

CG Impact Task Force Report, 1996

Among the key recommendations:


- Production and distribution of usable (and useful) geometric codes
- Reward structure for implementations in academia

History

Development started in 1995

Consortium of 8 European sites Two ESPRIT LTR European Projects (1996-1999)

Utrecht University (XYZ Geobench) INRIA Sophia Antipolis (C++GAL) ETH Zürich (Plageo) MPI Saarbrücken (LEDA) Tel Aviv University Freie Universität Berlin RISC Linz Martin-Luther-Universität Halle • Work continued after the end of European support (1999) in several sites.

• January, 2003: creation of Geometry Factory

INRIA startup sells commercial licenses, support, customized developments

• November, 2003:

Release 3.0 Open Source Project

• December, 2004: Release 3.1

• *kernel* under LGPL

basic library under QPL
 free use for Open Source code
 commercial license needed otherwise

- A guarantee for CGAL users
- \bullet Allows CGAL to become a standard
- \bullet Opens ${\rm CGAL}$ for new contributions

- 400.000 lines of **C++** code
- >2000 pages manual
- release cycle of ${\sim}12$ months
- CGAL 2.4: 9300 downloads (18 months)
- CGAL 3.1: 7329 downloads (9 months)
- 4000 subscribers to the announcement list
- 800 users registered on discussion list
- 50 developers registered on developer list

(7000 for gcc) (600 in gcc-help)

Supported platforms

- Linux, Windows, Mac OS X, Irix, Solaris
- g++, VC++, Intel C++, MipsPRO CC, SunPro CC

Development process

Editorial Board created in 2001.

• responsible for the **quality** of CGAL

New packages are **reviewed**.

 \rightarrow helps authors to get credit for their work.

CG Impact Task Force Report, 1996 Reward structure for implementations in academia

- decides about technical matters
- coordinates communication and promotion

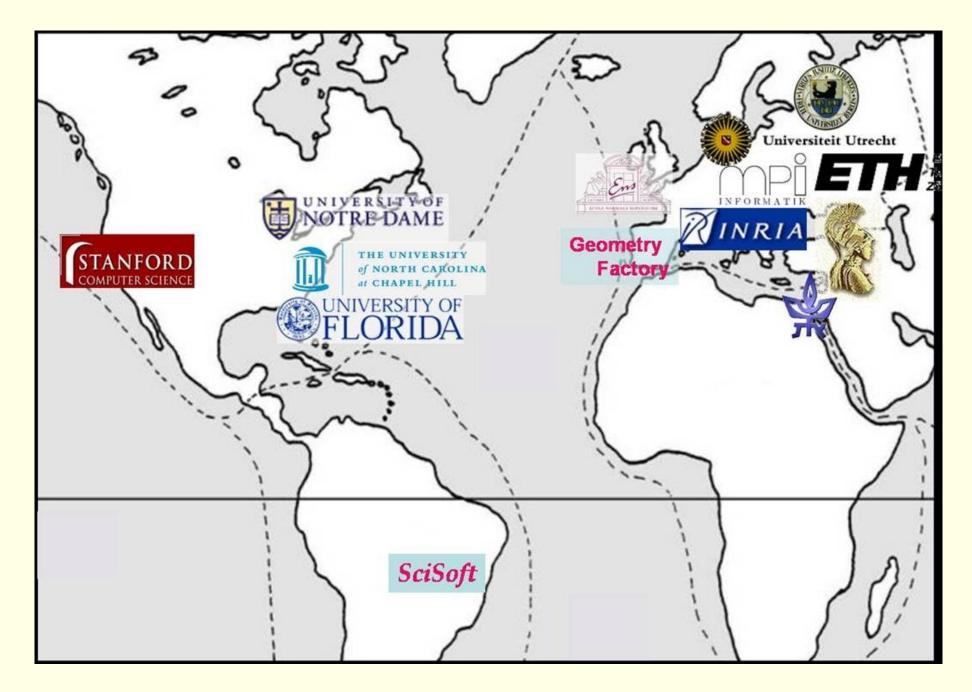
Andreas Fabri (GEOMETRY FACTORY) Efi Fogel (Tel Aviv University) Bernd Gärtner (ETH Zürich) Michael Hoffmann (ETH Zürich) Menelaos Karavelas (University of Notre Dame, USA \rightarrow Greece) Lutz Kettner (Max-Planck-Institut für Informatik) Sylvain Pion (INRIA Sophia Antipolis) Monique Teillaud (INRIA Sophia Antipolis) Remco Veltkamp (Utrecht University) Ron Wein (Tel Aviv University) Mariette Yvinec (INRIA Sophia Antipolis)

Tools

- Own manual tools: $\[\] \text{ET}_{E}X \longrightarrow \text{ps, pdf, html}\]$
- CVS server for version management
- Developer manual
- mailing list for developers
- 1-2 developers meetings per year, 1 week long
- 1 internal release per day
- Automatic test suites running on all supported compilers/platforms

Contributors keep their identity

• up to 3.0.1: names of authors mentioned in the Preface.


• 3.1: Names of authors appear at the beginning of each chapter. Section on history of the package at the end of each chapter, with names of all contributors.

 $\bullet \ {\rm CGAL}$ developers listed on the "People" web page.

• Authors publish papers (conferences, journals) on their packages.

• **Copyright** kept by the institution of the authors.

Users

Projects using CGAL

Leonidas J. Guibas' and co-workers, Stanford University.

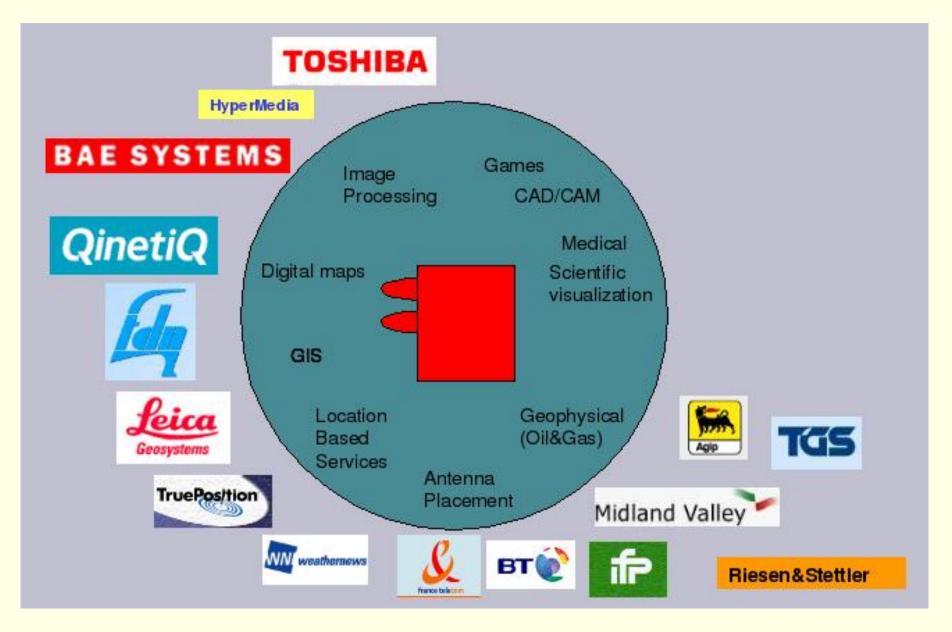
Tamal K. Dey's and co-workers, The Ohio State University.

Nina Amenta and co-workers, The University of Texas at Austin.

Xiangmin Jiao, University of Illinois at Urbana-Champaign. (Surface Mesh Overlay)

Peter Coveney and co-workers, University of London.

Teaching


Introduction to

. . .

• Leo Guibas, Siu Wing Cheng, . . .

14

Commercial customers of Geometry Factory

Structure of

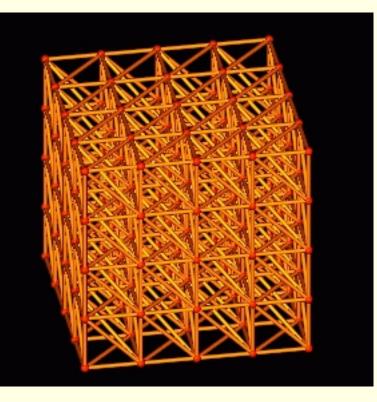
Basic Library	Support
Algorithms and Data Structures	Library
Kernel Geometric objects Geometric operations	Visualization File I/O NumberTypes
core library	Generators
configurations, assertions,	

Contents of The Basic Library

[MPI]

- 5 different algorithms in 2D
- 3 different algorithms in 3D

Triangulations and related

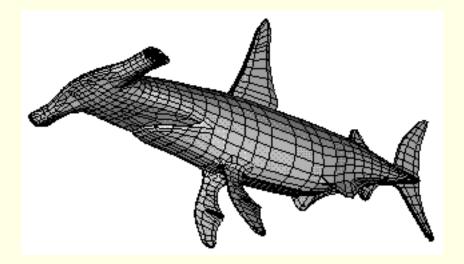

[INRIA]

• 2D/3D Triangle/Tetrahedron based data-structure

 Fully dynamic 2D/3D Delaunay triangulation Delaunay hierarchy [Devillers '98 '02]

2D/3D Regular Triangulations (fully dynamic in 3.2?)
2D Constrained Delaunay Triangulation

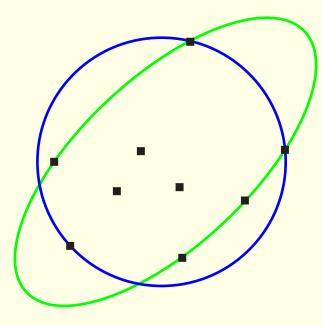
- 2D Apollonius diagram
- 2D Segment Voronoi Diagram
- 2D Meshes



Polyhedra

[MPI]

- Half-edge data-structure
- Polyhedral surface (orientable 2-manifold with boundary)
- 2D Nef polygons
- 3D Nef polyhedra



Geometric Optimization

[ETH]

- Smallest enclosing circle and ellipse in 2D
- Smallest enclosing sphere in dD
- Largest empty rectangle

• . . .

Arrangements

[Tel-Aviv]

- Line segments or polylines
- Conic arcs with Leda or Core

Completely new version in ${\rm CGAL}$ 3.2

Search Structures

Arbitrary dimension

- Range-tree, Segment-tree, kD-tree
- Window query
- Approximate nearest neighbors
- . . .

Work in Progress

Kinetic Data Structures [Russel Karavelas]

Surface reconstruction [Oudot Rey]

3D Meshes [Rineau Yvinec]

Parameterization [Alliez]

Curved Kernel Extension of the CGAL kernel Algebraic issues [Emiris Kakargias Pion Tsigaridas Teillaud SoCG'04]

. . .

The **Call** Kernel

In the kernel

Elementary geometric objects

Elementary computations on them

Primitives 2D, 3D, dD

- Point
- Vector
- Triangle
- lso_rectangle
- Circle

. . .

Predicates

- Orientation
- InSphere

. . .

Constructions

comparison
 intersection

. . .

• squared distance

Affine geometry

Point - Origin \rightarrow Vector Point - Point \rightarrow Vector Point + Vector \rightarrow Point

Point Vector Origin

Point + Point **illegal**

 $midpoint(a,b) = a + 1/2 \times (b-a)$

Kernels and Number Types

Cartesian representationHomogeneous representationPoint
$$x = \frac{hx}{hw}$$
Point hx Point $y = \frac{hy}{hw}$ Intersection of two lines $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ $\begin{cases} a_1hx + b_1hy + c_1hw = 0 \\ a_2hx + b_2hy + c_2hw = 0 \end{cases}$ $(x, y) = \left(\left| \frac{b_1 \ c_1 \ b_2 \ c_2 \ a_1 \ b_1 \ a_2 \ b_2 \ b_2 \end{vmatrix}, - \left| \frac{a_1 \ c_1 \ a_2 \ c_2 \ a_1 \ b_1 \ a_2 \ b_2 \ b_$

C++ Templates

CGAL::Cartesian< FT > CGAL::Homogeneous< RT >

(CGAL::Simple_Cartesian) (CGAL::Simple_Homogeneous)

Cartesian Kernels : Field type double Quotient<Gmpz> leda_real

\longrightarrow Flexibility

typedef double
typedef Cartesian< NumberType >
typedef Kernel::Point_2

Homogeneous Kernels : Ring type int Gmpz double

NumberType;
Kernel;
Point;

